Viromes of Coastal Waters of the North Caspian Sea: Initial Assessment of Diversity and Functional Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sampling
2.2. Sample Processing
2.3. Transmission Electron Microscopy
2.4. Isolation of Nucleic Acids and Sequencing
2.5. Initial Shotgun Metagenomic Data on DNA Viruses in Marine and Freshwater Samples
2.6. Primary Processing of Virome Reads
2.7. Taxonomic Analysis of Original Genome Reads
2.8. Assembly of Virome Reads
2.9. Identification of Viral Scaffolds
2.10. Taxonomic Assignment of Viral Scaffolds
2.11. Functional Assignment of Viral Communities
2.12. Statistical Analysis of Taxonomic and Functional Diversity
3. Results
3.1. Environmental Characteristics
3.2. Morphology of Viruses Discovered in the North Caspian Sea
3.3. Identification of Viral Reads
3.4. Taxonomic Composition of Viromes of the Caspian Sea
3.5. Diversity of Virotypes in the North Caspian Sea Datasets
3.6. Analysis of Assembled Reads
3.7. Functional Analysis
3.8. Comparative Analysis of Viromes from Various Marine and Freshwater Ecosystems
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dimitrakopoulos, P.G.; Troumbis, A.Y. Biotopes. In Encyclopedia of Ecology, 2nd ed.; Fath, B., Ed.; Elsevier: Oxford, UK, 2019; pp. 359–365. ISBN 978-0-444-64130-4. [Google Scholar]
- Munang’andu, H.M.; Mugimba, K.K.; Byarugaba, D.K.; Mutoloki, S.; Evensen, Ø. Current Advances on Virus Discovery and Diagnostic Role of Viral Metagenomics in Aquatic Organisms. Front. Microbiol. 2017, 8, 406. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-Z.; Shi, M.; Holmes, E.C. Using Metagenomics to Characterize an Expanding Virosphere. Cell 2018, 172, 1168–1172. [Google Scholar] [CrossRef] [PubMed]
- Rumbou, A.; Vainio, E.J.; Büttner, C. Towards the Forest Virome: High-Throughput Sequencing Drastically Expands Our Understanding on Virosphere in Temperate Forest Ecosystems. Microorganisms 2021, 9, 1730. [Google Scholar] [CrossRef] [PubMed]
- Turmagambetova, A.S.; Alexyuk, M.S.; Bogoyavlenskiy, A.P.; Linster, M.; Alexyuk, P.G.; Zaitceva, I.A.; Smith, G.J.D.; Berezin, V.E. Monitoring of Newcastle Disease Virus in Environmental Samples. Arch. Virol. 2017, 162, 2843–2846. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Rodriguez, T.M.; Hollister, E.B. Human Virome and Disease: High-Throughput Sequencing for Virus Discovery, Identification of Phage-Bacteria Dysbiosis and Development of Therapeutic Approaches with Emphasis on the Human Gut. Viruses 2019, 11, 656. [Google Scholar] [CrossRef] [Green Version]
- Maranger, R.; Bird, D. Viral Abundance in Aquatic Systems:A Comparison between Marine and Fresh Waters. Mar. Ecol. Prog. Ser. 1995, 121, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Middelboe, M.; Brussaard, C.P.D. Marine Viruses: Key Players in Marine Ecosystems. Viruses 2017, 9, 302. [Google Scholar] [CrossRef] [Green Version]
- Bergh, O.; Børsheim, K.Y.; Bratbak, G.; Heldal, M. High Abundance of Viruses Found in Aquatic Environments. Nature 1989, 340, 467–468. [Google Scholar] [CrossRef]
- Coutinho, F.H.; Silveira, C.B.; Gregoracci, G.B.; Thompson, C.C.; Edwards, R.A.; Brussaard, C.P.D.; Dutilh, B.E.; Thompson, F.L. Marine Viruses Discovered via Metagenomics Shed Light on Viral Strategies throughout the Oceans. Nat. Commun. 2017, 8, 15955. [Google Scholar] [CrossRef] [Green Version]
- Gregory, A.C.; Zayed, A.A.; Conceição-Neto, N.; Temperton, B.; Bolduc, B.; Alberti, A.; Ardyna, M.; Arkhipova, K.; Carmichael, M.; Cruaud, C.; et al. Marine DNA Viral Macro- and Microdiversity from Pole to Pole. Cell 2019, 177, 1109–1123.e14. [Google Scholar] [CrossRef] [Green Version]
- Alarcón-Schumacher, T.; Guajardo-Leiva, S.; Antón, J.; Díez, B. Elucidating Viral Communities During a Phytoplankton Bloom on the West Antarctic Peninsula. Front. Microbiol. 2019, 10, 1014. [Google Scholar] [CrossRef]
- Yuan, S.; Friman, V.-P.; Balcazar, J.L.; Zheng, X.; Ye, M.; Sun, M.; Hu, F. Viral and Bacterial Communities Collaborate through Complementary Assembly Processes in Soil to Survive Organochlorine Contamination. Appl. Environ. Microbiol. 2023, 89, e01810-22. [Google Scholar] [CrossRef]
- Suttle, C.A. Viruses in the Sea. Nature 2005, 437, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Breitbart, M. Marine Viruses: Truth or Dare. Annu. Rev. Mar. Sci. 2012, 4, 425–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suttle, C.A. Marine Viruses–Major Players in the Global Ecosystem. Nat. Rev. Microbiol. 2007, 5, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.W.; Suttle, C.A. Viruses and Nutrient Cycles in the Sea: Viruses Play Critical Roles in the Structure and Function of Aquatic Food Webs. BioScience 1999, 49, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Thingstad, T.F. Elements of a Theory for the Mechanisms Controlling Abundance, Diversity, and Biogeochemical Role of Lytic Bacterial Viruses in Aquatic Systems. Limnol. Oceanogr. 2000, 45, 1320–1328. [Google Scholar] [CrossRef]
- Thingstad, T.F.; Lignell, R. Theoretical Models for the Control of Bacterial Growth Rate, Abundance, Diversity and Carbon Demand. Aquat. Microb. Ecol. 1997, 13, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Knowles, B.; Silveira, C.B.; Bailey, B.A.; Barott, K.; Cantu, V.A.; Cobián-Güemes, A.G.; Coutinho, F.H.; Dinsdale, E.A.; Felts, B.; Furby, K.A.; et al. Lytic to Temperate Switching of Viral Communities. Nature 2016, 531, 466–470. [Google Scholar] [CrossRef]
- Silveira, C.B.; Rohwer, F.L. Piggyback-the-Winner in Host-Associated Microbial Communities. Npj Biofilms Microbiomes 2016, 2, 16010. [Google Scholar] [CrossRef] [Green Version]
- Angly, F.E.; Felts, B.; Breitbart, M.; Salamon, P.; Edwards, R.A.; Carlson, C.; Chan, A.M.; Haynes, M.; Kelley, S.; Liu, H.; et al. The Marine Viromes of Four Oceanic Regions. PLoS Biol. 2006, 4, e368. [Google Scholar] [CrossRef] [Green Version]
- Steward, G.F.; Preston, C.M. Analysis of a Viral Metagenomic Library from 200 m Depth in Monterey Bay, California Constructed by Direct Shotgun Cloning. Virol. J. 2011, 8, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, S.J.; Allen, L.Z.; Lorenzi, H.A.; Fadrosh, D.W.; Brami, D.; Thiagarajan, M.; McCrow, J.P.; Tovchigrechko, A.; Yooseph, S.; Venter, J.C. Metagenomic Exploration of Viruses throughout the Indian Ocean. PLoS ONE 2012, 7, e42047. [Google Scholar] [CrossRef] [PubMed]
- Hurwitz, B.L.; Sullivan, M.B. The Pacific Ocean Virome (POV): A Marine Viral Metagenomic Dataset and Associated Protein Clusters for Quantitative Viral Ecology. PLoS ONE 2013, 8, e57355. [Google Scholar] [CrossRef] [PubMed]
- Brum, J.R.; Ignacio-Espinoza, J.C.; Roux, S.; Doulcier, G.; Acinas, S.G.; Alberti, A.; Chaffron, S.; Cruaud, C.; de Vargas, C.; Gasol, J.M.; et al. Patterns and Ecological Drivers of Ocean Viral Communities. Science 2015, 348, 1261498. [Google Scholar] [CrossRef] [Green Version]
- Roux, S.; Brum, J.R.; Dutilh, B.E.; Sunagawa, S.; Duhaime, M.B.; Loy, A.; Poulos, B.T.; Solonenko, N.; Lara, E.; Poulain, J.; et al. Ecogenomics and Potential Biogeochemical Impacts of Globally Abundant Ocean Viruses. Nature 2016, 537, 689–693. [Google Scholar] [CrossRef] [Green Version]
- Rohwer, F.; Thurber, R.V. Viruses Manipulate the Marine Environment. Nature 2009, 459, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Paul, J.H.; Sullivan, M.B. Marine Phage Genomics: What Have We Learned? Curr. Opin. Biotechnol. 2005, 16, 299–307. [Google Scholar] [CrossRef]
- Coutinho, F.H.; Gregoracci, G.B.; Walter, J.M.; Thompson, C.C.; Thompson, F.L. Metagenomics Sheds Light on the Ecology of Marine Microbes and Their Viruses. Trends Microbiol. 2018, 26, 955–965. [Google Scholar] [CrossRef]
- Perez Sepulveda, B.; Redgwell, T.; Rihtman, B.; Pitt, F.; Scanlan, D.J.; Millard, A. Marine Phage Genomics: The Tip of the Iceberg. FEMS Microbiol. Lett. 2016, 363, fnw158. [Google Scholar] [CrossRef] [Green Version]
- Warwick-Dugdale, J.; Buchholz, H.H.; Allen, M.J.; Temperton, B. Host-Hijacking and Planktonic Piracy: How Phages Command the Microbial High Seas. Virol. J. 2019, 16, 15. [Google Scholar] [CrossRef] [Green Version]
- Garin-Fernandez, A.; Pereira-Flores, E.; Glöckner, F.O.; Wichels, A. The North Sea Goes Viral: Occurrence and Distribution of North Sea Bacteriophages. Mar. Genomics 2018, 41, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Dumont, H.J. The Caspian Lake: History, Biota, Structure, and Function. Limnol. Oceanogr. 1998, 43, 44–52. [Google Scholar] [CrossRef]
- Van der Boon, A. From Peri-Tethys to Paratethys: Basin Restriction and Anoxia in Central Eurasia Linked to Volcanic Belts in Iran. Available online: https://dspace.library.uu.nl/handle/1874/356088 (accessed on 5 June 2023).
- Kosarev, A.N.; Yablonskaya, E.A. The Caspian Sea; SPB Academic Publishing: The Hague, The Netherlands, 1994; ISBN 978-90-5103-088-4. [Google Scholar]
- Kosarev, A.N. Physico-Geographical Conditions of the Caspian Sea. In The Caspian Sea Environment; Kostianoy, A.G., Kosarev, A.N., Eds.; The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2005; pp. 5–31. ISBN 978-3-540-31505-6. [Google Scholar]
- Leroy, S.A.G.; Marret, F.; Gibert, E.; Chalié, F.; Reyss, J.-L.; Arpe, K. River Inflow and Salinity Changes in the Caspian Sea during the Last 5500 Years. Quat. Sci. Rev. 2007, 26, 3359–3383. [Google Scholar] [CrossRef] [Green Version]
- Van de Velde, S.; Wesselingh, F.P.; Yanina, T.A.; Anistratenko, V.V.; Neubauer, T.A.; ter Poorten, J.J.; Vonhof, H.B.; Kroonenberg, S.B. Mollusc Biodiversity in Late Holocene Nearshore Environments of the Caspian Sea: A Baseline for the Current Biodiversity Crisis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 535, 109364. [Google Scholar] [CrossRef]
- Mahmoudi, N.; Robeson, M.S.; Castro, H.F.; Fortney, J.L.; Techtmann, S.M.; Joyner, D.C.; Paradis, C.J.; Pfiffner, S.M.; Hazen, T.C. Microbial Community Composition and Diversity in Caspian Sea Sediments. FEMS Microbiol. Ecol. 2015, 91, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.I.; Techtmann, S.; Fortney, J.; Mahmoudi, N.; Joyner, D.; Liu, J.; Olesen, S.; Alm, E.; Fernandez, A.; Gardinali, P.; et al. Oil Hydrocarbon Degradation by Caspian Sea Microbial Communities. Front. Microbiol. 2019, 10, 995. [Google Scholar] [CrossRef]
- Prata, C.; Ribeiro, A.; Cunha, Â.; Gomes, N.C.M.; Almeida, A. Ultracentrifugation as a Direct Method to Concentrate Viruses in Environmental Waters: Virus-like Particle Enumeration as a New Approach to Determine the Efficiency of Recovery. J. Environ. Monit. 2012, 14, 64–70. [Google Scholar] [CrossRef]
- López-Pérez, M.; Haro-Moreno, J.M.; Gonzalez-Serrano, R.; Parras-Moltó, M.; Rodriguez-Valera, F. Genome Diversity of Marine Phages Recovered from Mediterranean Metagenomes: Size Matters. PLoS Genet. 2017, 13, e1007018. [Google Scholar] [CrossRef] [Green Version]
- Butina, T.V.; Bukin, Y.S.; Krasnopeev, A.S.; Belykh, O.I.; Tupikin, A.E.; Kabilov, M.R.; Sakirko, M.V.; Belikov, S.I. Estimate of the Diversity of Viral and Bacterial Assemblage in the Coastal Water of Lake Baikal. FEMS Microbiol. Lett. 2019, 366, fnz094. [Google Scholar] [CrossRef] [PubMed]
- Butina, T.V.; Bukin, Y.S.; Petrushin, I.S.; Tupikin, A.E.; Kabilov, M.R.; Belikov, S.I. Extended Evaluation of Viral Diversity in Lake Baikal through Metagenomics. Microorganisms 2021, 9, 760. [Google Scholar] [CrossRef]
- Butina, T.V.; Petrushin, I.S.; Khanaev, I.V.; Bukin, Y.S. Metagenomic Assessment of DNA Viral Diversity in Freshwater Sponges, Baikalospongia Bacillifera. Microorganisms 2022, 10, 480. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, D.E.; Lu, J.; Langmead, B. Improved Metagenomic Analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Liu, C.-M.; Luo, R.; Sadakane, K.; Lam, T.-W. MEGAHIT: An Ultra-Fast Single-Node Solution for Large and Complex Metagenomics Assembly via Succinct de Bruijn Graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Roux, S.; Enault, F.; Hurwitz, B.L.; Sullivan, M.B. VirSorter: Mining Viral Signal from Microbial Genomic Data. PeerJ 2015, 3, e985. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Ye, Z.; Stanton, R. Misuse of RPKM or TPM Normalization When Comparing across Samples and Sequencing Protocols. RNA 2020, 26, 903–909. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference Sequence (RefSeq) Database at NCBI: Current Status, Taxonomic Expansion, and Functional Annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef] [Green Version]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and Sensitive Protein Alignment Using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a Reference Resource for Gene and Protein Annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef] [Green Version]
- Aramaki, T.; Blanc-Mathieu, R.; Endo, H.; Ohkubo, K.; Kanehisa, M.; Goto, S.; Ogata, H. KofamKOALA: KEGG Ortholog Assignment Based on Profile HMM and Adaptive Score Threshold. Bioinformatics 2020, 36, 2251–2252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, X.; Cai, T.; Olyarchuk, J.G.; Wei, L. Automated Genome Annotation and Pathway Identification Using the KEGG Orthology (KO) as a Controlled Vocabulary. Bioinformatics 2005, 21, 3787–3793. [Google Scholar] [CrossRef]
- Tenenbaum, D.; Volkening, J.; Maintainer, B.P. KEGGREST: Client-Side REST Access to the Kyoto Encyclopedia of Genes and Genomes (KEGG). 2023. Available online: https://bioconductor.org/packages/release/bioc/html/KEGGREST.html (accessed on 27 April 2023).
- O’hara, R.B. Species Richness Estimators: How Many Species Can Dance on the Head of a Pin? J. Anim. Ecol. 2005, 74, 375–386. [Google Scholar] [CrossRef]
- Colwell, R.K.; Coddington, J.A. Estimating Terrestrial Biodiversity through Extrapolation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1994, 345, 101–118. [Google Scholar] [CrossRef] [Green Version]
- Hill, M.O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, R.; Shimodaira, H. Pvclust: An R Package for Assessing the Uncertainty in Hierarchical Clustering. Bioinformatics 2006, 22, 1540–1542. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Simpson, G.; Solymos, P.; Stevenes, M.; Wagner, H. Vegan: Community Ecology Package. R Package Version 2.0-2. 2012. Available online: https://www.researchgate.net/publication/282247686_Vegan_Community_Ecology_Package_R_package_version_20-2 (accessed on 27 April 2023).
- Gplots: Various R Programming Tools for Plotting Data—ScienceOpen. Available online: https://www.scienceopen.com/document?vid=0e5d8e31-1fe4-492f-a3d8-8cd71b2b8ad9 (accessed on 2 April 2023).
- La Scola, B.; Desnues, C.; Pagnier, I.; Robert, C.; Barrassi, L.; Fournous, G.; Merchat, M.; Suzan-Monti, M.; Forterre, P.; Koonin, E.; et al. The Virophage as a Unique Parasite of the Giant Mimivirus. Nature 2008, 455, 100–104. [Google Scholar] [CrossRef]
- Weynberg, K.D. Viruses in Marine Ecosystems: From Open Waters to Coral Reefs. Adv. Virus Res. 2018, 101, 1–38. [Google Scholar] [CrossRef]
- Koonin, E.V.; Dolja, V.V.; Krupovic, M. Origins and Evolution of Viruses of Eukaryotes: The Ultimate Modularity. Virology 2015, 479, 2–25. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Zhou, L.; Zhou, Y.; Wang, H.; Xiao, J.; Yan, S.; Wang, Y. Diverse and Unique Viruses Discovered in the Surface Water of the East China Sea. BMC Genom. 2020, 21, 441. [Google Scholar] [CrossRef] [PubMed]
- Brum, J.R.; Hurwitz, B.L.; Schofield, O.; Ducklow, H.W.; Sullivan, M.B. Seasonal Time Bombs: Dominant Temperate Viruses Affect Southern Ocean Microbial Dynamics. ISME J. 2016, 10, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Zeigler Allen, L.; McCrow, J.P.; Ininbergs, K.; Dupont, C.L.; Badger, J.H.; Hoffman, J.M.; Ekman, M.; Allen, A.E.; Bergman, B.; Venter, J.C. The Baltic Sea Virome: Diversity and Transcriptional Activity of DNA and RNA Viruses. mSystems 2017, 2, e00125-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexyuk, M.; Bogoyavlenskiy, A.; Alexyuk, P.; Moldakhanov, Y.; Berezin, V.; Digel, I. Epipelagic Microbiome of the Small Aral Sea: Metagenomic Structure and Ecological Diversity. MicrobiologyOpen 2020, 10, e1142. [Google Scholar] [CrossRef]
- Fernández-Gómez, B.; Richter, M.; Schüler, M.; Pinhassi, J.; Acinas, S.G.; González, J.M.; Pedrós-Alió, C. Ecology of Marine Bacteroidetes: A Comparative Genomics Approach. ISME J. 2013, 7, 1026–1037. [Google Scholar] [CrossRef] [Green Version]
- Gong, C.; Zhang, W.; Zhou, X.; Wang, H.; Sun, G.; Xiao, J.; Pan, Y.; Yan, S.; Wang, Y. Novel Virophages Discovered in a Freshwater Lake in China. Front. Microbiol. 2016, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Sun, D.; Childers, A.; McDermott, T.R.; Wang, Y.; Liles, M.R. Three Novel Virophage Genomes Discovered from Yellowstone Lake Metagenomes. J. Virol. 2014, 89, 1278–1285. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Zhang, W.; Yan, S.; Xiao, J.; Zhang, Y.; Li, B.; Pan, Y.; Wang, Y. Diversity of Virophages in Metagenomic Data Sets. J. Virol. 2013, 87, 4225–4236. [Google Scholar] [CrossRef] [Green Version]
- Ural River Delta, Kazakhstan. Available online: https://earthobservatory.nasa.gov/images/5551/ural-river-delta-kazakhstan (accessed on 8 June 2023).
- Heydari, N.; Fatemi, S.M.R.; Mashinchian, A.; Nadushan, R.M.; Raeisi, B. Seasonal Species Diversity and Abundance of Phytoplankton from the Southwestern Caspian Sea. Int. Aquat. Res. 2018, 10, 375–390. [Google Scholar] [CrossRef] [Green Version]
- Sorokin, D. Sulfitobacter Pontiacus Gen. Nov., Sp. Nov.—A New Heterotrophic Bacterium from the Black Sea, Specialized on Sulfite Oxidation. Microbiology 1995, 64, 295–305. [Google Scholar]
- Amin, S.A.; Hmelo, L.R.; van Tol, H.M.; Durham, B.P.; Carlson, L.T.; Heal, K.R.; Morales, R.L.; Berthiaume, C.T.; Parker, M.S.; Djunaedi, B.; et al. Interaction and Signalling between a Cosmopolitan Phytoplankton and Associated Bacteria. Nature 2015, 522, 98–101. [Google Scholar] [CrossRef]
- Barak-Gavish, N.; Frada, M.J.; Ku, C.; Lee, P.A.; DiTullio, G.R.; Malitsky, S.; Aharoni, A.; Green, S.J.; Rotkopf, R.; Kartvelishvily, E.; et al. Bacterial Virulence against an Oceanic Bloom-Forming Phytoplankter Is Mediated by Algal DMSP. Sci. Adv. 2018, 4, eaau5716. [Google Scholar] [CrossRef] [Green Version]
- Holligan, P.M.; Fernández, E.; Aiken, J.; Balch, W.M.; Boyd, P.; Burkill, P.H.; Finch, M.; Groom, S.B.; Malin, G.; Muller, K.; et al. A Biogeochemical Study of the Coccolithophore, Emiliania Huxleyi, in the North Atlantic. Glob. Biogeochem. Cycles 1993, 7, 879–900. [Google Scholar] [CrossRef]
- Mikhailov, I.S.; Zakharova, Y.R.; Bukin, Y.S.; Galachyants, Y.P.; Petrova, D.P.; Sakirko, M.V.; Likhoshway, Y.V. Co-Occurrence Networks Among Bacteria and Microbial Eukaryotes of Lake Baikal During a Spring Phytoplankton Bloom. Microb. Ecol. 2019, 77, 96–109. [Google Scholar] [CrossRef]
- Meiring, T.L.; Marla Tuffin, I.; Cary, C.; Cowan, D.A. Genome Sequence of Temperate Bacteriophage Psymv2 from Antarctic Dry Valley Soil Isolate Psychrobacter Sp. MV2. Extremophiles 2012, 16, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Romanenko, L.A.; Schumann, P.; Rohde, M.; Lysenko, A.M.; Mikhailov, V.V.; Stackebrandt, E. Psychrobacter submarinus Sp. Nov. and Psychrobacter marincola Sp. Nov., Psychrophilic Halophiles from Marine Environments. Int. J. Syst. Evol. Microbiol. 2002, 52, 1291–1297. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Temperton, B.; Thrash, J.C.; Schwalbach, M.S.; Vergin, K.L.; Landry, Z.C.; Ellisman, M.; Deerinck, T.; Sullivan, M.B.; Giovannoni, S.J. Abundant SAR11 Viruses in the Ocean. Nature 2013, 494, 357–360. [Google Scholar] [CrossRef]
- Krüger, K.; Chafee, M.; Ben Francis, T.; Glavina del Rio, T.; Becher, D.; Schweder, T.; Amann, R.I.; Teeling, H. In Marine Bacteroidetes the Bulk of Glycan Degradation during Algae Blooms Is Mediated by Few Clades Using a Restricted Set of Genes. ISME J. 2019, 13, 2800–2816. [Google Scholar] [CrossRef] [Green Version]
- Bischoff, V.; Zucker, F.; Moraru, C. Marine Bacteriophages. In Encyclopedia of Virology, 4th ed.; Bamford, D.H., Zuckerman, M., Eds.; Academic Press: Oxford, UK, 2021; pp. 322–341. ISBN 978-0-12-814516-6. [Google Scholar]
- Madsen, E.L. 6.10—Biodegradability of Recalcitrant Aromatic Compounds. In Comprehensive Biotechnology, 2nd ed.; Moo-Young, M., Ed.; Academic Press: Burlington, ON, Canada, 2011; pp. 95–103. ISBN 978-0-08-088504-9. [Google Scholar]
- Bagheri, S.; Turkoglu, M.; Abedini, A. Phytoplankton and Nutrient Variations in the Iranian Waters of the Caspian Sea (Guilan Region) during 2003–2004. Turk. J. Fish. Aquat. Sci. 2014, 14, 231–245. [Google Scholar] [CrossRef]
- Irwin, N.A.T.; Pittis, A.A.; Richards, T.A.; Keeling, P.J. Systematic Evaluation of Horizontal Gene Transfer between Eukaryotes and Viruses. Nat. Microbiol. 2022, 7, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Lindell, D.; Jaffe, J.D.; Johnson, Z.I.; Church, G.M.; Chisholm, S.W. Photosynthesis Genes in Marine Viruses Yield Proteins during Host Infection. Nature 2005, 438, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Dammeyer, T.; Bagby, S.C.; Sullivan, M.B.; Chisholm, S.W.; Frankenberg-Dinkel, N. Efficient Phage-Mediated Pigment Biosynthesis in Oceanic Cyanobacteria. Curr. Biol. 2008, 18, 442–448. [Google Scholar] [CrossRef]
- Sullivan, M.B.; Lindell, D.; Lee, J.A.; Thompson, L.R.; Bielawski, J.P.; Chisholm, S.W. Prevalence and Evolution of Core Photosystem II Genes in Marine Cyanobacterial Viruses and Their Hosts. PLoS Biol. 2006, 4, e234. [Google Scholar] [CrossRef] [Green Version]
- Bick, J.A.; Dennis, J.J.; Zylstra, G.J.; Nowack, J.; Leustek, T. Identification of a New Class of 5’-Adenylylsulfate (APS) Reductases from Sulfate-Assimilating Bacteria. J. Bacteriol. 2000, 182, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Haverkamp, T.; Schwenn, J.D. Structure and Function of a CysBJIH Gene Cluster in the Purple Sulphur Bacterium Thiocapsa Roseopersicina. Microbiology 1999, 145 Pt 1, 115–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hesketh-Best, P.J.; Bosco-Santos, A.; Garcia, S.L.; O’Beirne, M.D.; Werne, J.P.; Gilhooly, W.P.; Silveira, C.B. Viruses of Sulfur Oxidizing Phototrophs Encode Genes for Pigment, Carbon, and Sulfur Metabolisms. Commun. Earth Environ. 2023, 4, 126. [Google Scholar] [CrossRef]
- Kieft, K.; Zhou, Z.; Anderson, R.E.; Buchan, A.; Campbell, B.J.; Hallam, S.J.; Hess, M.; Sullivan, M.B.; Walsh, D.A.; Roux, S.; et al. Ecology of Inorganic Sulfur Auxiliary Metabolism in Widespread Bacteriophages. Nat. Commun. 2021, 12, 3503. [Google Scholar] [CrossRef]
- Magnúsdóttir, S.; Ravcheev, D.; de Crécy-Lagard, V.; Thiele, I. Systematic Genome Assessment of B-Vitamin Biosynthesis Suggests Co-Operation among Gut Microbes. Front. Genet. 2015, 6, 148. [Google Scholar] [CrossRef] [Green Version]
- Bali, S.; Lawrence, A.D.; Lobo, S.A.; Saraiva, L.M.; Golding, B.T.; Palmer, D.J.; Howard, M.J.; Ferguson, S.J.; Warren, M.J. Molecular Hijacking of Siroheme for the Synthesis of Heme and D1 Heme. Proc. Natl. Acad. Sci. USA 2011, 108, 18260–18265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchenau, B.; Kahnt, J.; Heinemann, I.U.; Jahn, D.; Thauer, R.K. Heme Biosynthesis in Methanosarcina Barkeri via a Pathway Involving Two Methylation Reactions. J. Bacteriol. 2006, 188, 8666–8668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Layer, G.; Reichelt, J.; Jahn, D.; Heinz, D.W. Structure and Function of Enzymes in Heme Biosynthesis. Protein Sci. Publ. Protein Soc. 2010, 19, 1137–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heyerhoff, B.; Engelen, B.; Bunse, C. Auxiliary Metabolic Gene Functions in Pelagic and Benthic Viruses of the Baltic Sea. Front. Microbiol. 2022, 13, 863620. [Google Scholar] [CrossRef] [PubMed]
- Kieft, K.; Zhou, Z.; Anantharaman, K. VIBRANT: Automated Recovery, Annotation and Curation of Microbial Viruses, and Evaluation of Viral Community Function from Genomic Sequences. Microbiome 2020, 8, 90. [Google Scholar] [CrossRef]
- Enav, H.; Mandel-Gutfreund, Y.; Béjà, O. Comparative Metagenomic Analyses Reveal Viral-Induced Shifts of Host Metabolism towards Nucleotide Biosynthesis. Microbiome 2014, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Albesa-Jové, D.; Giganti, D.; Jackson, M.; Alzari, P.M.; Guerin, M.E. Structure–Function Relationships of Membrane-Associated GT-B Glycosyltransferases. Glycobiology 2014, 24, 108. [Google Scholar] [CrossRef] [Green Version]
- Berg, S.; Kaur, D.; Jackson, M.; Brennan, P.J. The Glycosyltransferases of Mycobacterium Tuberculosis—Roles in the Synthesis of Arabinogalactan, Lipoarabinomannan, and Other Glycoconjugates. Glycobiology 2007, 17, 35R–56R. [Google Scholar] [CrossRef]
- Berg, S.; Edman, M.; Li, L.; Wikström, M.; Wieslander, Å. Sequence Properties of the 1,2-Diacylglycerol 3-Glucosyltransferase from Acholeplasma LaidlawiiMembranes: Recognition of a Large Group of Lipid Glycosyltransferases in Eubacteria and Archaea. J. Biol. Chem. 2001, 276, 22056–22063. [Google Scholar] [CrossRef] [Green Version]
- Lind, J.; Rämö, T.; Klement, M.L.R.; Bárány-Wallje, E.; Epand, R.M.; Epand, R.F.; Mäler, L.; Wieslander, A. High Cationic Charge and Bilayer Interface-Binding Helices in a Regulatory Lipid Glycosyltransferase. Biochemistry 2007, 46, 5664–5677. [Google Scholar] [CrossRef]
- Esin, N.V.; Yanko-Hombach, V.V.; Esin, N.I. Evolutionary Mechanisms of the Paratethys Sea and Its Separation into the Black Sea and Caspian Sea. Quat. Int. 2018, 465, 46–53. [Google Scholar] [CrossRef]
- Mangerud, J.; Jakobsson, M.; Alexanderson, H.; Astakhov, V.; Clarke, G.K.C.; Henriksen, M.; Hjort, C.; Krinner, G.; Lunkka, J.-P.; Möller, P.; et al. Ice-Dammed Lakes and Rerouting of the Drainage of Northern Eurasia during the Last Glaciation. Quat. Sci. Rev. 2004, 23, 1313–1332. [Google Scholar] [CrossRef]
- Zimnitskaya, H.; von Geldern, J. Is the Caspian Sea a Sea; and Why Does It Matter? J. Eurasian Stud. 2011, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Dmitrievich, F.O. Rus: The Way From the Varangians to the Persians. Humanitarian Paradigm 2018, 2, 27–36. (In Russian) [Google Scholar]
- Danovaro, R.; Corinaldesi, C.; Dell’anno, A.; Fuhrman, J.A.; Middelburg, J.J.; Noble, R.T.; Suttle, C.A. Marine Viruses and Global Climate Change. FEMS Microbiol. Rev. 2011, 35, 993–1034. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, C.L.; Saunders, M.; Selbmann, L.; Delgado-Baquerizo, M.; Donati, C.; Albanese, D.; Roux, S.; Tringe, S.; Pennacchio, C.; del Rio, T.G.; et al. Highly Diverse and Unknown Viruses May Enhance Antarctic Endoliths’ Adaptability. Microbiome 2022, 11, 103. [Google Scholar] [CrossRef]
Sample | Location | Experiment | Project | Isolation Source | Fraction | Date | Latitude and Longitude | Depth, m | Salinity | Temperature | Platform | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|
North.I.sw | North Sea | ERX2062849 | PRJEB21210 | pelagic water | <0.2 µm | 09.08.2014 | “55.8355, 3.5624” | 0 | 34.2 | 18.7 | Illumina MiSeq | [33] |
North.II.sw | North Sea | ERX2062850 | PRJEB21210 | pelagic water | <0.2 µm | 07.08.2014 | “52.1498, 2.8427” | 0 | 34.87 | 18.4 | Illumina MiSeq | [33] |
North.III.sw | English Channel | ERX2062851 | PRJEB21210 | pelagic water | <0.2 µm | 06.08.2014 | “50.4967, 1.1655” | 0 | 34.99 | 18.3 | Illumina MiSeq | [33] |
North.IV.sw | North Sea | ERX2062852 | PRJEB21210 | pelagic water | <0.2 µm | 05.08.2014 | “51.5395, 3.1823” | 0 | 32.75 | 20.7 | Illumina MiSeq | [33] |
Baltic.sw | Sweden: Baltic Sea | SRX10076843 | PRJNA700881 | coastal water | “viral” | 01.05.2014 | “57.25, 16.45” | 0 | NA | NA | NovaSeq 6000 | - |
Med.I.sw | Spain: Mediterranean Sea | SRX5385342 | PRJNA522695 | coastal water | “viral” | 12.07.2016 | “42.2974, 3.2890” | 3 | NA | 23.3 | Illumina HiSeq 2500 | - |
Med.II.sw | Spain: Mediterranean Sea | SRX5385341 | PRJNA522695 | coastal water | “viral” | 12.07.2016 | “42.2974, 3.2890” | 3 | NA | 23.3 | Illumina HiSeq 2500 | - |
Med.III.sw | Spain: Mediterranean Sea | SRX4501872 | PRJNA484012 | pelagic water | 5-0.22 µm | 14.10.2015 | “37.3536, 0.2862” | 15 | NA | NA | Illumina HiSeq 4000 | [43] |
Med.IV.sw | Ionian Sea | ERX552354 | PRJNA477650 | pelagic water | <0.22 µm | 23.11.2009 | “39.3888, 19.3905” | 5 | 38.18 | 18.3 | Illumina HiSeq 2000 | [27] |
Red.I.sw | Red Sea | ERX552335 | PRJNA477650 | pelagic water | <0.22 µm | 20.01.2010 | “18.3967, 39.875” | 5 | 38.65 | 27.6 | Illumina HiSeq 2000 | [27] |
Arab.I.sw | Indian Ocean, Arabian Sea | ERX552363 | PRJNA477650 | pelagic water | <0.22 µm | 15.03.2010 | “19.0393, 64.4913” | 5 | 36.62 | 26.2 | Illumina HiSeq 2000 | [27] |
Baikal.6C.fw | Russia: Lake Baikal | SRX3096544 | PRJNA398439 | coastal water | <0.2 µm | 08.11.2013 | “51.8994, 105.0638” | 0 | NA | NA | Illumina MiSeq | [44] |
Baikal.V3.fw | Russia: Lake Baikal | SRX8913968 | PRJNA398439 | pelagic water | <0.2 µm | 03.09.2014 | “53.01517, 106.9196” | 0–25 | NA | NA | Illumina MiSeq | [45] |
Baikal.4G.fw | Russia: Lake Baikal | SRX9228319 | PRJNA577390 | coastal water | <0.2 µm | 25.05.2018 | “51.9023, 105.1028” | 15 | NA | NA | Illumina MiSeq | [46] |
Water Property | MSC | SUR | SBI |
---|---|---|---|
Water temperature (°C) | 26.2 | 25.1 | 26.4 |
pH | 7.9 | 7.9 | 8.1 |
N total (mg/L) | 2.6 | 2.3 | 2.7 |
P total (mg/L) | 0.001 | 0.003 | 0.003 |
NO2 (mg/L) | 0.005 | 0.012 | 0.023 |
NO3 (mg/L) | 2.5 | 2.1 | 2.6 |
O2 (mg/L) | 8.1 | 7.8 | 7.9 |
PO43− (mg/L) | 0.48 | 0.4 | 0.53 |
Samples | Number of Reads after Quality Control | Number of Viral Reads | Percentage of Viral Reads | α-Diversity (Number of Virotype) | S.chao1 | S.ACE | Shannon | Simpson |
---|---|---|---|---|---|---|---|---|
SUR | 1,970,178 | 471,151 | 11.96 | 622 | 622 | 622 | 4.988 | 0.982 |
MSC | 1,882,933 | 480,703 | 12.76 | 632 | 632 | 632 | 5.040 | 0.982 |
SBI | 1,942,399 | 1,677,937 | 43.19 | 613 | 613 | 613 | 3.459 | 0.803 |
Baikal.6C.fw | 1,381,914 | 299,633 | 10.84 | 613 | 613 | 613 | 4.803 | 0.973 |
Baikal.V3.fw | 1,145,473 | 554,694 | 24.21 | 560 | 560 | 560 | 4.684 | 0.978 |
Baikal.4G.fw | 3,579,080 | 1,022,562 | 14.29 | 585 | 587 | 587 | 4.821 | 0.973 |
North.I.sw | 1,363,716 | 121,920 | 4.47 | 410 | 410 | 410 | 3.972 | 0.939 |
North.II.sw | 2,935,736 | 1,418,322 | 24.16 | 545 | 548 | 550 | 2.824 | 0.769 |
North.III.sw | 1,804,114 | 302,345 | 8.38 | 498 | 498 | 498 | 3.650 | 0.925 |
North.IV.sw | 3,449,551 | 738,113 | 10.70 | 571 | 571 | 571 | 4.591 | 0.971 |
Baltic.sw | 3,611,676 | 799,147 | 11.06 | 615 | 615 | 616 | 4.868 | 0.981 |
Med.I.sw | 1,795,165 | 757,291 | 21.09 | 522 | 522 | 523 | 4.230 | 0.958 |
Med.II.sw | 856,737 | 700,585 | 40.89 | 439 | 439 | 439 | 3.019 | 0.784 |
Med.III.sw | 3,596,948 | 1,999,608 | 27.80 | 535 | 541 | 546 | 3.211 | 0.813 |
Med.IV.sw | 5,362,488 | 1,349,568 | 12.58 | 620 | 625 | 627 | 3.923 | 0.942 |
Red.I. sw | 5,491,797 | 1,842,571 | 16.78 | 613 | 628 | 628 | 3.447 | 0.889 |
Arab.I. sw | 5,470,618 | 2,273,647 | 20.78 | 671 | 697 | 695 | 4.057 | 0.949 |
Family | Type | Known Hosts | SUR | MSC | SBI |
---|---|---|---|---|---|
Myoviridae | dsDNA | bacteria | 16.87 * | 20.78 | 9.98 |
Siphoviridae | dsDNA | bacteria | 49.78 | 46.24 | 30.50 |
Podoviridae | dsDNA | bacteria | 22.93 | 21.80 | 55.39 |
unclassified | mainly dsDNA | - | 7.61 | 7.61 | 2.86 |
Phycodnaviridae | dsDNA | algae | 1.22 | 1.45 | 0.42 |
Lavidaviridae | dsDNA | protists infected by mimivirus | 0.70 | 0.86 | 0.26 |
Herelleviridae | dsDNA | bacteria of the phylum Firmicutes | 0.09 | 0.20 | 0.07 |
unknown | - | - | 0.55 | 0.65 | 0.37 |
Haloviruses | dsDNA | archaea | 0.01 | 0.02 | 0.01 |
Ackermannviridae | dsDNA | bacteria | 0.02 | 0.04 | 0.01 |
Mimiviridae | dsDNA | protists | 0.03 | 0.14 | 0.06 |
Iridoviridae | dsDNA | amphibia, insects, fish | 0.02 | 0.05 | 0.01 |
Sphaerolipoviridae | dsDNA | bacteria, archaea | 0.08 | 0.03 | 0.02 |
Marseillevirus | dsDNA | protists | 0.06 | 0.11 | 0.03 |
Inoviridae | ssDNA | bacteria | 0.02 | 0.01 | 0.01 |
Bicaudaviridae | dsDNA | archaea | 0.01 | 0.01 | 0.01 |
Scaffolds | Length | Detected/Predicted ORFs | Max Similarity | Average Similarity | Virotype | SUR | MSC | SBI |
---|---|---|---|---|---|---|---|---|
k141_561861 | 62,327 | 31/2 | 82.6 * | 42.2 ** | Paracoccus phage Shpa | 4644 | 3700 | 1056 |
k141_540989 | 57,017 | 25/8 | 71.8 | 35 | Bacillus phage BCD7 | 1821 | 5479 | 1688 |
k141_3238893 | 51,202 | 28/2 | 70.7 | 39.7 | Bacillus virus Spbeta | 4734 | 2507 | 1440 |
k141_2605433 | 43,836 | 7/1 | 40.8 | 31.5 | Escherichia phage PA2 | 13,500 | 3824 | 1526 |
k141_2739484 | 49,163 | 13/1 | 60.9 | 41.6 | Mycobacterium phage Gaia | 1597 | 3038 | 701 |
k141_1342719 | 43,505 | 32/3 | 67.7 | 42.4 | Idiomarinaceae phage Phi1M2-2 | 142 | 3882 | 29,027 |
k141_3196554 | 39,462 | 28/4 | 74.3 | 44.3 | Marinomonas phage P12026 | 0 | 0 | 18,080 |
k141_3133183 | 34,942 | 14/4 | 70 | 39.5 | Sulfitobacter phage pCB2047-A | 13 | 11 | 1,271,919 |
k141_951171 | 25,693 | 13/5 | 72.2 | 40.5 | Dunaliella viridis virus SI2 | 3675 | 2976 | 1102 |
k141_901516 | 23,381 | 7/1 | 50.3 | 35.7 | Cyanophage KBS-S-2A | 3571 | 1621 | 632 |
k141_2614875 | 21,747 | 16/2 | 70.5 | 32.8 | Sulfitobacter phage pCB2047-A | 0 | 0 | 23,616 |
k141_3192492 | 15,033 | 11/5 | 69.3 | 47 | Pseudoalteromonas phage H103 | 637 | 8 | 9379 |
k141_3094011 | 14,478 | 8/6 | 40.3 | 32.3 | Cellulophaga phage phi38:1 | 1923 | 6218 | 1574 |
k141_2823432 | 14,268 | 11/1 | 63.6 | 40.4 | Acinetobacter phage Loki | 230 | 8 | 7971 |
k141_2750614 | 13,418 | 13/5 | 48.8 | 32.8 | Salicola phage CGphi29 | 331 | 3 | 17,120 |
k141_1428325 | 12,744 | 12/1 | 75.2 | 47.4 | Pseudoalteromonas phage BS5 | 865 | 8 | 10,626 |
k141_3152013 | 10,986 | 9/2 | 60.7 | 39.5 | Pseudomonas phage PS-1 | 97 | 11 | 7776 |
k141_1766657 | 10,510 | 8/2 | 48.5 | 35.9 | Prochlorococcus phage MED4-184 | 3823 | 3066 | 1104 |
k141_1497533 | 8196 | 4/1 | 53.8 | 42.5 | Ralstonia phage RP12 | 0 | 0 | 8339 |
k141_2718434 | 6625 | 7/4 | 68.4 | 53.9 | Synechococcus phage S-CBS4 | 3909 | 4021 | 1370 |
k141_1814893 | 5436 | 4/1 | 76 | 53.4 | Synechococcus phage S-CBP3 | 3152 | 3262 | 1052 |
k141_3168875 | 4180 | 1/1 | 36.7 | 36.7 | Cellulophaga phage phi38:1 | 6521 | 3034 | 1518 |
k141_86617 | 2836 | 3/1 | 45.7 | 38.5 | Psychrobacter phage Psymv2 | 6818 | 2871 | 1725 |
k141_1441527 | 2540 | 6/6 | 83.8 | 64.4 | Synechococcus phage S-CBS4 | 3525 | 3730 | 1276 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexyuk, M.S.; Bukin, Y.S.; Butina, T.V.; Alexyuk, P.G.; Berezin, V.E.; Bogoyavlenskiy, A.P. Viromes of Coastal Waters of the North Caspian Sea: Initial Assessment of Diversity and Functional Potential. Diversity 2023, 15, 813. https://doi.org/10.3390/d15070813
Alexyuk MS, Bukin YS, Butina TV, Alexyuk PG, Berezin VE, Bogoyavlenskiy AP. Viromes of Coastal Waters of the North Caspian Sea: Initial Assessment of Diversity and Functional Potential. Diversity. 2023; 15(7):813. https://doi.org/10.3390/d15070813
Chicago/Turabian StyleAlexyuk, Madina S., Yurij S. Bukin, Tatyana V. Butina, Pavel G. Alexyuk, Vladimir E. Berezin, and Andrey P. Bogoyavlenskiy. 2023. "Viromes of Coastal Waters of the North Caspian Sea: Initial Assessment of Diversity and Functional Potential" Diversity 15, no. 7: 813. https://doi.org/10.3390/d15070813
APA StyleAlexyuk, M. S., Bukin, Y. S., Butina, T. V., Alexyuk, P. G., Berezin, V. E., & Bogoyavlenskiy, A. P. (2023). Viromes of Coastal Waters of the North Caspian Sea: Initial Assessment of Diversity and Functional Potential. Diversity, 15(7), 813. https://doi.org/10.3390/d15070813