Dead Shells Bring to Life Baselines for Conservation: Case Studies from The Bahamas, Southern California, and Wisconsin, USA
Abstract
:1. Introduction
Death Assemblages: Tools for Conservation
2. Materials and Methods
2.1. Study Settings
2.1.1. The Bahamas
2.1.2. Wisconsin, USA
2.1.3. Southern California, USA
2.2. Sampling Methods
2.2.1. Ostracods
2.2.2. Bivalves
2.3. Data Analysis
3. Results
4. Discussion
4.1. Live–Dead Discordance in Impacted Ecosystems
4.2. Live–Dead Discordance in Remediated Ecosystems
4.3. Time–Averaging in Death Assemblages
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnosky, A.D.; Matzke, N.; Tomiya, S.; Wogan, G.O.U.; Swartz, B.; Quental, T.B.; Marshall, C.; McGuire, J.L.; Lindsey, E.L.; Maguire, K.C.; et al. Has the Earth’s sixth mass extinction already arrived? Nature 2011, 471, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, G.; Ehrlich, P.R.; Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. USA 2017, 114, E6089–E6096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilman, D.; May, R.; Lehman, C.; Nowak, M.A. Habitat destruction and the extinction debt. Nature 1994, 371, 65–66. [Google Scholar] [CrossRef]
- Kuussaari, M.; Bommarco, R.; Heikkinen, R.K.; Helm, A.; Krauss, J.; Lindborg, R.; Öckinger, E.; Pärtel, M.; Pino, J.; Rodà, F.; et al. Extinction debt: A challenge for biodiversity conservation. Trends Ecol. Evol. 2009, 24, 564–571. [Google Scholar] [CrossRef]
- Halley, J.M.; Monokrousos, N.; Mazaris, A.D.; Newmark, W.D.; Vokou, D. Dynamics of extinction debt across five taxonomic groups. Nat. Commun. 2016, 7, 12283. [Google Scholar] [CrossRef] [Green Version]
- Spalding, C.; Hull, P.M. Towards quantifying the mass extinction debt of the Anthropocene. Proc. R. Soc. B 2021, 288, 20202332. [Google Scholar] [CrossRef]
- Ceballos, G.; Ehrlich, P.R.; Raven, P.H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc. Natl. Acad. Sci. USA 2020, 117, 13596–13602. [Google Scholar] [CrossRef]
- Ceballos, G.; Ehrlich, P.R.; Barnosky, A.D.; García, A.; Pringle, R.M.; Palmer, T.M. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 2015, 1, e1400253. [Google Scholar] [CrossRef] [Green Version]
- Dirzo, R.; Young, H.S.; Galetti, M.; Ceballos, G.; Isaac, N.J.B.; Collen, B. Defaunation in the Anthropocene. Science 2014, 345, 401–406. [Google Scholar] [CrossRef]
- Erwin, D.H. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago; Princeton University Press: Princeton, NJ, USA, 2006. [Google Scholar]
- Cardinale, B. Impacts of biodiversity loss. Science 2012, 336, 552–553. [Google Scholar] [CrossRef] [PubMed]
- Naeem, S.; Duffy, J.E.; Zavaleta, E. The Functions of Biological Diversity in an Age of Extinction. Science 2012, 336, 1401–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estes, J.A.; Terborgh, J.; Brashares, J.S.; Power, M.E.; Berger, J.; Bond, W.J.; Carpenter, S.R.; Essington, T.E.; Holt, R.D.; Jackson, J.B.C.; et al. Trophic Downgrading of Planet Earth. Science 2011, 333, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Reidy Lierman, C.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collen, B.; Böhm, M.; Kemp, R.; Baillie, J.E.M. Spineless: Status and Trends of the World’s Invertebrates; Zoological Society: London, UK, 2012; p. 88. [Google Scholar]
- Macadam, C.R.; Stockan, J.A. More than just fish food: Ecosystem services provided by freshwater insects. Ecol. Entomol. 2015, 40, 113–123. [Google Scholar] [CrossRef]
- Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.T.; Aizen, M.A.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J.; et al. Safeguarding pollinators and their values to human well-being. Nature 2016, 540, 220–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soliveres, S.; Van Der Plas, F.; Manning, P.; Prati, D.; Gossner, M.M.; Renner, S.C.; Alt, F.; Arndt, H.; Baumgartner, V.; Binkenstein, J.; et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 2016, 536, 456–459. [Google Scholar] [CrossRef]
- Greenop, A.; Woodcock, B.A.; Outhwaite, C.L.; Carvell, C.; Pywell, R.F.; Mancini, F.; Edwards, F.K.; Johnson, A.C.; Isaac, N.J. Patterns of invertebrate functional diversity highlight the vulnerability of ecosystem services over a 45-year period. Curr. Biol. 2021, 31, 4627–4634. [Google Scholar] [CrossRef]
- Schipper, J.; Chanson, J.S.; Chiozza, F.; Cox, N.A.; Hoffmann, M.; Katariya, V.; Lamoreux, J.; Rodrigues, A.S.; Stuart, S.N.; Temple, H.J.; et al. The status of the world’s land and marine mammals: Diversity, threat, and knowledge. Science 2008, 322, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Régnier, C.; Bouchet, P.; Hayes, K.A.; Yeung, N.W.; Christensen, C.C.; Chung, D.J.D.; Fontaine, B.; Cowie, R.H. Extinction in a hyperdiverse endemic Hawaiian land snail family and implications for the underestimation of invertebrate extinction. Conserv. Biol. 2015, 29, 1715–1723. [Google Scholar] [CrossRef]
- Ricciardi, A.; Rasmussen, J.B. Extinction rates of North American freshwater fauna. Conserv. Biol. 1999, 13, 1220–1222. [Google Scholar] [CrossRef]
- McKinney, M.L. High rates of extinction and threat in poorly studied taxa. Conserv. Biol. 1999, 13, 1273–1281. [Google Scholar] [CrossRef]
- Hallman, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.A.; Telfer, M.G.; Roy, D.B.; Preston, C.D.; Greenwood, J.J.D.; Asher, J.; Fox, R.; Clarke, R.T.; Lawton, J.H. Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 2004, 303, 1879–1881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto, D.; Stiassny, M.L.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Wilson, E.O. The little things that run the world (the importance and conservation of invertebrates). Conserv. Biol. 1987, 1, 344–346. [Google Scholar] [CrossRef]
- Stuart, S.N.; Wilson, E.O.; McNeely, J.A.; Mittermeier, R.A.; Rodríguez, J.P. Response: Barometer of Life. Science 2010, 329, 141–142. [Google Scholar] [CrossRef]
- Régnier, C.; Fontaine, B.; Bouchet, P. Not knowing, not recording, not listing: Numerous unnoticed mollusk extinctions. Conserv. Biol. 2009, 23, 1214–1221. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Bonn, A.A.; Guerra, C. Recognizing the quiet extinction of invertebrates. Nat. Commun. 2019, 10, 50. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, J.; Samways, M.J.; Hochkirch, A.; Seddon, M.; Cardoso, P.; Clausnitzer, V.; Cumberlidge, N.; Daniel, B.A.; Black, S.H.; Ott, J.; et al. Prioritizing non-marine invertebrate taxa for Red Listing. J. Insect Conserv. 2014, 18, 573–586. [Google Scholar] [CrossRef]
- McClenachan, L. Historical declines of goliath grouper populations in South Florida, USA. Endang. Species Res. 2009, 7, 175–181. [Google Scholar] [CrossRef]
- McClenachan, L.; Cooper, A.B. Extinction rate, historical population structure and ecological role of the Caribbean monk seal. Proc. Biol. Sci. 2008, 275, 1351–1358. [Google Scholar] [CrossRef] [Green Version]
- McClenachan, L.; Jackson, J.B.C.; Newman, M.J.H. Conservation implications of historic sea turtle nesting beach loss. Front. Ecol. Environ. 2006, 4, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, A.A.; Bolster, W.J.; Alexander, K.E.; Leavenworth, W.B.; Cooper, A.B.; McKenzie, M.G. The history of ocean resources: Modeling cod biomass using historical records. Front. Ecol. Environ. 2005, 3, 78–84. [Google Scholar] [CrossRef]
- McClenachan, L.; Ferretti, F.; Baum, J.K. From archives to conservation: Why historical data are needed to set baselines for marine animals and ecosystems. Conserv. Lett. 2012, 5, 349–359. [Google Scholar] [CrossRef]
- Jackson, J.B.; Kirby, M.X.; Berger, W.H.; Bjorndal, K.A.; Botsford, L.W.; Bourque, B.J.; Bradbury, R.H.; Cooke, R.; Erlandson, J.; Estes, J.A.; et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 2001, 293, 629–637. [Google Scholar] [CrossRef] [Green Version]
- Kidwell, S.M.; Tomašových, A. Implications of Time-Averaged Death Assemblages for Ecology and Conservation Biology. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 539–563. [Google Scholar] [CrossRef] [Green Version]
- Kidwell, S.M. Time-averaging and the fidelity of modern death assemblages: Building a taphonomic framework for conservation paleobiology. Palaeontology 2013, 56, 487–522. [Google Scholar] [CrossRef]
- Best, M.M.; Kidwell, S.M. Bivalve taphonomy in tropical mixed siliciclastic-carbonate settings. I. Environmental variation in shell condition. Paleobiology 2000, 26, 80–102. [Google Scholar] [CrossRef]
- Behrensmeyer, A.K.; Kidwell, S.M.; Gastaldo, R.A. Taphonomy and paleobiology. Paleobiology 2000, 26 (Suppl. S4), 103–147. [Google Scholar] [CrossRef]
- Flessa, K.W.; Cutler, A.H.; Meldahl, K.H. Time and taphonomy: Quantitative estimates of time-averaging and stratigraphic disorder in a shallow marine habitat. Paleobiology 1993, 19, 266–286. [Google Scholar] [CrossRef]
- Kidwell, S.M.; Bosence, D.W.J. Taphonomy and Time-averaging of Marine Shelly Faunas. In Taphonomy: Releasing the Data Locked in the Fossil Record; Kidwell, S.M., Bosence, D.W., Allison, P.A., Briggs, D.E.G., Eds.; Plenum: New York, NY, USA, 1991; pp. 115–209. [Google Scholar]
- Behrensmeyer, A.K. Taphonomic and ecologic information from bone weathering. Paleobiology 1978, 4, 150–162. [Google Scholar] [CrossRef] [Green Version]
- Meadows, C.A.; Grebmeier, J.M.; Kidwell, S.M. High-latitude benthic bivalve biomass and recent climate change: Testing the power of live-dead discordance in the Pacific Arctic. Deep-Sea Res. II 2019, 162, 152–163. [Google Scholar] [CrossRef]
- Leonard-Pingel, J.S.; Kidwell, S.M.; Tomašových, A.; Alexander, C.R.; Cadien, D.B. Gauging benthic recovery from 20th century pollution on the southern California continental shelf using bivalves from sediment cores. Mar. Ecol. Prog. Ser. 2019, 615, 101–119. [Google Scholar] [CrossRef] [Green Version]
- Michelson, A.V.; Kidwell, S.M.; Park Boush, L.E.; Ash, J.E. Testing for human impacts in the mismatch of living and dead ostracode assemblages at nested spatial scales in subtropical lakes from the Bahamian archipelago. Paleobiology 2018, 44, 758–782. [Google Scholar] [CrossRef]
- Tomašových, A.; Kidwell, S.M. Ninteenth-century collapse of a benthic marine ecosystem on the open continental shelf. Proc. R. Soc. B 2017, 284, 20170328. [Google Scholar] [CrossRef] [Green Version]
- Kidwell, S.M. Discordance between living and death assemblages as evidence for anthropogenic ecological change. Proc. Natl. Acad. Sci. USA 2007, 104, 17701–17706. [Google Scholar] [CrossRef] [Green Version]
- Tomašových, A.; Kidwell, S.M.; Alexander, C.R.; Kaufman, D.S. Millennial-scale age offsets within fossil assemblages: Result of bioturbation below the taphonomic active zone and out-of-phase production. Paleoceano. Paleoclim. 2019, 34, 954–977. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, J.G.; Kosnik, M.A.; Allen, A.P.; Hua, Q.; Jacob, D.E.; Kaufman, D.S.; Whitacre, K. Time-averaging and stratigraphic resolution in death assemblages and Holocene deposits: Sydney Harbour’s molluscan record. Palaios 2016, 31, 564–575. [Google Scholar] [CrossRef]
- Krause, R.A.; Barbour, S.L.; Kowalewski, M.; Kaufman, D.S.; Romanek, C.S.; Simoes, M.G.; Wehmiller, J.F. Quantitative comparisons and models of time-averaging in bivalve and brachiopod shell accumulations. Paleobiology 2010, 36, 428–452. [Google Scholar] [CrossRef]
- Kosnik, M.A.; Hua, Q.; Kaufman, D.S.; Wüst, R.A. Taphonomic bias and time-averaging in tropical molluscan death assemblages: Differential shell half-lives in Great Barrier Reef sediment. Paleobiology 2009, 35, 565–586. [Google Scholar] [CrossRef]
- Hull, P.M.; Darroch, S.A.; Erwin, D.H. Rarity in mass extinctions and the future of ecosystems. Nature 2015, 528, 345–351. [Google Scholar] [CrossRef]
- Tomašových, A.; Kidwell, S.M. Fidelity of variation in species composition and diversity partitioning by death assemblages: Time-averaging transfers diversity from beta to alpha levels. Paleobiology 2009, 35, 94–118. [Google Scholar] [CrossRef]
- Tomašových, A.; Kidwell, S.M. Predicting the effects of increasing temporal scale on species composition, diversity, and rank-abundance distributions. Paleobiology 2010, 36, 672–695. [Google Scholar] [CrossRef]
- Tomašových, A.; Kidwell, S.M. Accounting for the effects of biological variability and temporal autocorrelation in assessing the preservation of species abundance. Paleobiology 2011, 37, 332–354. [Google Scholar] [CrossRef]
- Van Leeuwen, J.F.; Froyd, C.A.; van der Knaap, W.O.; Coffey, E.E.; Tye, A.; Willis, K.J. Fossil pollen as a guide to conservation in the Galápagos. Science 2008, 322, 1206. [Google Scholar] [CrossRef]
- Wynn, L. 2021 Water Quality Monitoring Results. Clean Lakes Alliance. Available online: https://www.cleanlakesalliance.org/2021-water-quality-monitoring-results/ (accessed on 30 August 2022).
- Stein, E.D.; Cadien, D. Ecosystem response to regulatory and management actions: The southern California experience in log-term monitoring. Mar. Pollut. Bull. 2009, 59, 91–100. [Google Scholar] [CrossRef]
- Stull, J.K.; Swift, D.J.P.; Niedoroda, A.W. Contaminant dispersal on the Palos Verdes continental margin: I. Sediments and biota near a major California wastewater discharge. Sci. Total Environ. 1996, 179, 73–90. [Google Scholar] [CrossRef]
- Schafer, H. Improving Southern California’s Coastal Waters. J. Water Pollut. Control. Fed. 1989, 61, 1394–1401. [Google Scholar]
- Lyon, G.S.; Stein, E.D. How effective has the Clean Water Act been at reducing pollutant mass emissions to the Southern California Bight over the past 35 years? Environ. Monit. Assess. 2009, 154, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Corrège, T. The relationship between water masses and benthic ostracod assemblages in the western Coral Sea, southwest Pacific. Palaeogeo. Palaeoclim. Palaeoeco. 1993, 105, 245–266. [Google Scholar] [CrossRef]
- Brandão, S.N.; Angel, M.V.; Karanovic, I.; Perrier, V.; Yasuhara, M. 2021. World Ostracoda Database. World Register of Marine Species. Available online: http://www.marinespecies.org/aphia.php?p=taxdetails&id=1078 (accessed on 26 May 2023).
- SCAMIT (Southern California Association of Marine Invertebrate Taxonomists). A Taxonomic Listing of benthic Macro- and Megainvertebrates from Infaunal and Epifaunal Monitoring and Research Programs in the Southern California Bight, 8th ed.; SCAMIT: San Diego, CA, USA, 2013. [Google Scholar]
- Chao, A.; Chazdon, R.L.; Colwell, R.K.; Shen, T.-J. A new statistical approach for assessing compositional similarity based on incidence and abundance data. Ecol. Lett. 2005, 8, 148–159. [Google Scholar] [CrossRef]
- Kidwell, S.M. Biology in the Anthropocene: Challenges and insights from young fossils records. Proc. Natl. Acad. Sci. USA 2015, 112, 4922–4929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casey, M.M.; Dietl, G.P.; Post, D.M.; Briggs, D.E. The impact of eutrophication and commercial fishing on molluscan communities in Long Island Sound, USA. Biol. Cons. 2014, 170, 137–144. [Google Scholar] [CrossRef]
- Smith, J.A.; Dietl, G.P. The value of geohistorical data in identifying a recent human-inducved range expansion of a predatory gastropod in the Colorado River delta, Mexico. J. Biogeogr. 2016, 43, 791–800. [Google Scholar] [CrossRef]
- Smith, J.A.; Dietl, G.P.; Durham, S.R. Increasing the salience of marine live-dead data in the Anthropocene. Paleobiology 2020, 46, 279–287. [Google Scholar] [CrossRef]
- Michelson, A.V.; Park, L.E. Taphonomic dynamics of lacustrine ostracodes on San Salvador Island, Bahamas: High fidelity and evidence of anthropogenic modification. Palaios 2013, 28, 129–135. [Google Scholar] [CrossRef]
- Leonard-Pingel, J.; Bua-Iam, S.; Kaufman, D.S.; Tomašových, A. Extensive time-averaging in lacustrine gastropod assemblages from Shadow Lake, Waupaca, Wisconsin. In Proceedings of the Geological Society of America Annual Meeting, Phoenix, AZ, USA, 22–25 September 2019; Geological Society of America (GSA): Boulder, CO, USA, 2019; Volume 51. No. 5; paper 285-15; Abstracts with Programs 2019. [Google Scholar]
- Leonard-Pingel, J.S.; Michelson, A.V.; Wittmer, J.M.; Bhattacharya, A.; Arora, G.; Ray, R. Closing the science-society gap by engaging community partners in conservation paleobiology field studies. In Proceedings of the Geological Society of America Annual Meeting, Denver, CO, USA, 9–12 October 2022; Geological Society of America (GSA): Boulder, CO, USA, 2022; Volume 54. No. 5 paper 132-4; Abstracts with programs 2022. [Google Scholar]
Geographic Location | Taxonomic Group | Environment | n, Points | n, Habitats | Current Condition | Total Shells | Species Richness |
---|---|---|---|---|---|---|---|
Southern California | Bivalves | continental shelf | 1 | 1 | remediated | 228 | 31 |
The Bahamas | Ostracods | marginal marine | 80 | 10 | impacted | 15,001 | 23 |
The Bahamas | Ostracods | marginal marine | 88 | 11 | pristine | 35,508 | 16 |
Wisconsin | Ostracods | freshwater, lacustrine | 15 | 3 | impacted | 311 | 4 |
Wisconsin | Ostracods | freshwater, lacustrine | 18 | 2 | remediated | 1028 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michelson, A.V.; Spergel, J.J.; Kimball, K.C.; Park Boush, L.; Leonard-Pingel, J.S. Dead Shells Bring to Life Baselines for Conservation: Case Studies from The Bahamas, Southern California, and Wisconsin, USA. Diversity 2023, 15, 788. https://doi.org/10.3390/d15060788
Michelson AV, Spergel JJ, Kimball KC, Park Boush L, Leonard-Pingel JS. Dead Shells Bring to Life Baselines for Conservation: Case Studies from The Bahamas, Southern California, and Wisconsin, USA. Diversity. 2023; 15(6):788. https://doi.org/10.3390/d15060788
Chicago/Turabian StyleMichelson, Andrew V., Julian J. Spergel, Katalina C. Kimball, Lisa Park Boush, and Jill S. Leonard-Pingel. 2023. "Dead Shells Bring to Life Baselines for Conservation: Case Studies from The Bahamas, Southern California, and Wisconsin, USA" Diversity 15, no. 6: 788. https://doi.org/10.3390/d15060788
APA StyleMichelson, A. V., Spergel, J. J., Kimball, K. C., Park Boush, L., & Leonard-Pingel, J. S. (2023). Dead Shells Bring to Life Baselines for Conservation: Case Studies from The Bahamas, Southern California, and Wisconsin, USA. Diversity, 15(6), 788. https://doi.org/10.3390/d15060788