Updates on Scleroderma: Four New Species of Section Scleroderma from Southwestern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collections Studied
2.2. Morphological Analysis
2.3. Phylogenetic Analysis
3. Results
3.1. Phylogenetic Analysis
3.2. Taxonomy
- 1 Basidiospores echinulate; neither subreticulate nor reticulate.............................................2
- 1 Basidiospores subreticulate or reticulate................................................................................13
- 2 Basidiomata with well-developed stipe....................................................................................3
- 2 Basidiomata sessile or short pseudostipitate...........................................................................7
- 3 Peridium turns to vinaceous, reddish purple to blackish red when bruised........................4
- 3 Peridium does not change color when bruised......................................................................5
- 4 Clamp connections present; peridium turns to reddish purple to blackish red when bruised..........................................................................................................................S. erubescens
- 4 Clamp connections absent, peridium turns to vinaceous when bruised............S. vinaceum
- 5 Clamp connections present........................................................................................................6
- 5 Clamp connections absent..................................................................................S. squamulosum
- 6 Basidiomata whitish to yellowish, with large squamules.................................S. yunnanense
- 6 Basidiomata tan to ochraceous brown, with warty and peelable squamules...S. separatum
- 7 Peridium does not change color when bruised......................................................................8
- 7 Peridium turns to pale pink, pale pinkish brown to pale brown when bruised.........S. cepa
- 8 Peridium thick, usually >1 mm..................................................................................S. flavidum
- 8 Peridium thin, usually <1 mm....................................................................................................9
- 9 Basidiomata pseudostipitate....................................................................................................10
- 9 Basidiomata sessile....................................................................................................................11
- 10 Basidiospores (8.0–) 9.0–12.0 (–14.0) µm in diam..............................................S. verrucosum
- 10 Basidiospores (6.0–) 7.0–11.0 (–12.0) µm in diam....................................................S. nitidum
- 11 Gleba brownish violet to dark olivaceous with abundant yellowish trama veins; basidiospores 11.0–17.0 µm in diam....................................................................................S. areolatum
- 11 Gleba ash grey, grey to dark grey without yellowish trama veins; basidiospores 9.0–16.0 µm...........................................................................................................................................12
- 12 Basidiospores 9.0–13.0 µm in diam............................................S. venenatum var. venenatum
- 12 Basidiospores 12.0–16.0 µm in diam.....................................S. venenatum var. macrosporum
- 13 Basidiospores subreticulate....................................................................................................14
- 13 Basidiospores reticulate..........................................................................................................18
- 14 Peridium thin, usually <1 mm, about 0.5–0.6 mm thick.....................................S. suthepense
- 14 Peridium thick, usually >1 mm..............................................................................................15
- 15 Basidiomata sessile..................................................................................................................16
- 15 Basidiomata with well-developed stipe................................................................................17
- 16 Basidiomata with imbricate scales and tomentose surface; basidiospores 10.4–13.6 µm in diam.........................................................................................................................S. floridanum
- 16 Basidiomata without imbricate scales and tomentose surface; basidiospores (6.0–) 7.0–11.0 (–12.0) µm in diam....................................................................................................S. texense
- 17 Dehiscence stilliform, basidiospores 5.0–13.0 µm in diam..............................S. polyrhizum
- 17 Irregularly dehiscent at the top; basidiospores 2.5–7.5 µm in diam...........S. sinnamariense
- 18 Peridium thick, usually >1 mm..............................................................................................19
- 18 Peridium thin, usually ≤1 mm...............................................................................................20
- 19 Peridium 2–5 mm thick, yellowish brown to pale orangish yellow, coarsely scaly; endoperidium rubescent when bruised; basidiospores (9.0–) 11.0–14.0 (–17.0) µm in diam.................................................................................................................................S. citrinum
- 19 Peridium 1.5–2.5 mm thick, light yellow, endoperidium does not change colour when bruised, basidiospores 9.0–16.0 µm in diam...........................................................S. paradoxum
- 20 Sessile or with a short-pseudostipe or a short-fasciculate base formed by compact mycelia; basidiospores (10.0–)11.0–13.0 (–15.0) µm in diam.; clamp connections present……………..................................................................................................................S. bovista
- 20 With a short or thick pseudostipe; basidiospores 5.5–9.0 µm in diam.; clamp connections absent..............................................................................................................S. dictyosporum
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guzmán, G. Monografía del género Scleroderma Pers. emend. Fr.(Fungi-Basidiomycetes). Darwiniana 1970, 16, 233–407. [Google Scholar]
- van der Heijden, M.G.A.; Klironomos, J.N.; Ursic, M.; Moutoglis, P.; Streitwolf-Engel, R.; Boller, T.; Wiemken, A.; Sanders, I.R. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 1998, 396, 69–72. [Google Scholar] [CrossRef]
- Read, D.J.; Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems—A journey towards relevance? New Phytol. 2003, 157, 475–492. [Google Scholar] [CrossRef] [PubMed]
- Kernaghan, G. Mycorrhizal diversity: Cause and effect? Pedobiologia 2005, 49, 511–520. [Google Scholar] [CrossRef]
- Kumla, J.; Suwannarach, N.; Bussaban, B.; Lumyong, S. Scleroderma suthepense, a new ectomycorrhizal fungus from Thailand. Mycotaxon 2013, 123, 1–7. [Google Scholar] [CrossRef]
- Danielson, R.M. Ectomycorrhizal associations in jack pine stands in northeastern Alberta. Can. J. Bot. 1984, 62, 932–939. [Google Scholar] [CrossRef]
- Sanon, K.B.; Bâ, A.M.; Delaruelle, C.; Duponnois, R.; Martin, F. Morphological and molecular analyses in Scleroderma species associated with some Caesalpinioid legumes, Dipterocarpaceae and Phyllanthaceae trees in southern Burkina Faso. Mycorrhiza 2009, 19, 571–584. [Google Scholar] [CrossRef]
- Corrales, A.; Koch, R.A.; Vasco-Palacios, A.M.; Smith, M.E.; Ge, Z.-W.; Henkel, T.W. Diversity and distribution of tropical ectomycorrhizal fungi. Mycologia 2022, 114, 919–933. [Google Scholar] [CrossRef]
- Ge, Z.-W.; Brenneman, T.; Bonito, G.; Smith, M.E. Soil pH and mineral nutrients strongly influence truffles and other ectomycorrhizal fungi associated with commercial pecans (Carya illinoinensis). Plant Soil 2017, 418, 493–505. [Google Scholar] [CrossRef]
- Marx, D.H.; Bryan, W.C.; Cordell, C.E. Survival and growth of pine seedlings with Pisolithus ectomycorrhizae after two years on reforestation sites in North Carolina and Florida. For. Sci. 1977, 23, 363–373. [Google Scholar]
- Phosri, C.; Martín, M.P.; Watling, R.; Jeppson, M.; Sihanonth, P. Molecular phylogeny and re-assessment of some Scleroderma spp. (Gasteromycetes). An. Jardín Botánico Madr. 2009, 66, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.W.; Binder, M.; Hibbett, D.S. Diversity and evolution of ectomycorrhizal host associations in the Sclerodermatineae (Boletales, Basidiomycota). New Phytol. 2012, 194, 1079–1095. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Z.; Sun, C.-Y.; Sun, J.; Zhang, K.-P.; Zhang, H.-S.; Guo, X.; Zhou, Y.-J.; Zheng, D.-S.; Li, H.-J. Scleroderma venenatum sp. nov., S. venenatum var. macrosporum var. nov. and S. suthepense new to China. Phytotaxa 2020, 438, 107–118. [Google Scholar] [CrossRef]
- Li, J.-Z. Studies of Scleroderma from China. J. Nat. Sci. Hunan Norm. Univ. 2003, 26, 60–64. [Google Scholar]
- Liu, B.; Fan, I.; Li, J.; Li, T.; Song, B.; Liu, J. Sclerodermatales, Tulostomatales, Phallales et Podaxales. In Flora Fungorum Sinicorum; Science Press: Beijing, China, 2005; Volume 23, pp. 30–31. (In Chinese) [Google Scholar]
- Zhang, C.; Xu, X.-E.; Liu, J.; He, M.; Wang, W.; Wang, Y.; Ji, K. Scleroderma yunnanense, a new species from South China. Mycotaxon 2013, 125, 193–200. [Google Scholar] [CrossRef]
- Li, Y.; Li, T.H.; Yang, Z.L.; Bau, T.; Dai, Y.C. Atlas of Chinese Macrofungal Resources; Central China Farmers’ Publishing House: Zhengzhou, China, 2015; pp. 1194–1198. (In Chinese) [Google Scholar]
- Dai, Y.C.; Yang, Z.L.; Wen, H.A.; Bau, T.; Li, T.H. A revised checklist of edible fungi in China. Mycosystema 2010, 29, 1–21. [Google Scholar] [CrossRef]
- Dai, Y.C.; Yang, Z.L. A revised checklist of medicinal fungi in China. Mycosystema 2008, 27, 801–824. [Google Scholar] [CrossRef]
- Montagner, D.; Coelho, G.; Silveira, A.; Baldoni, D.; Antoniolli, Z. Morphological and molecular analyses in Scleroderma (Basidiomycota) associated with exotic forests in Pampa biome, southern Brazil. Mycosphere 2015, 6, 337–344. [Google Scholar] [CrossRef]
- Brock, P.; Döring, H.; Bidartondo, M.I. How to know unknown fungi: The role of a herbarium. New Phytol. 2009, 181, 719–724. [Google Scholar] [CrossRef] [Green Version]
- Rusevska, K.; Karadelev, M.; Phosri, C.; Dueñas, M.; Watling, R.; Martín, M.P. Rechecking of the genus Scleroderma (Gasteromycetes) from Macedonia using barcoding approach. Turk. J. Bot. 2014, 38, 375–385. [Google Scholar] [CrossRef]
- Mrak, T.; Kühdorf, K.; Grebenc, T.; Štraus, I.; Münzenberger, B.; Kraigher, H. Scleroderma areolatum ectomycorrhiza on Fagus sylvatica L. Mycorrhiza 2017, 27, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Rivero, J.; Watling, R.; Guzmán-Dávalos, L.; Martín, M.P. The many-rooted earthball—Scleroderma geaster and S. polyrhizum revisited, with the description of a new species. Phytotaxa 2021, 510, 1–17. [Google Scholar] [CrossRef]
- Crous, P.W.; Wingfield, M.J.; Richardson, D.; Leroux, J.; Strasberg, D.; Edwards, J.; Roets, F.; Hubka, V.; Taylor, P.; Hey-koop, M. Fungal Planet description sheets: 400–468. Persoonia 2016, 36, 316–458. [Google Scholar] [CrossRef] [Green Version]
- Baseia, I.G.; Silva, B.D.B.; Ishikawa, N.K.; Soares, J.V.C.; França, I.F.; Ushijima, S.; Maekawa, N.; Martín, M.P. Discovery or Extinction of New Scleroderma Species in Amazonia? PLoS ONE 2016, 11, e0167879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raut, J.; Basukala, O.; Shrestha, R.; Poudel, R. Scleroderma nastii sp. nov., a gasteroid mushroom from Phulchoki hill, Nepal. Stud. Fungi 2020, 5, 50–58. [Google Scholar] [CrossRef]
- Kumla, J.; Suwannarach, N.; Bussaban, B.; Matsui, K.; Lumyong, S. Indole-3-acetic acid production, solubilization of insoluble metal minerals and metal tolerance of some sclerodermatoid fungi collected from northern Thailand. Ann. Microbiol. 2014, 64, 707–720. [Google Scholar] [CrossRef]
- Rebriev, Y.A.; Zvyagina, E.A. Scleroderma furfuraceum (Boletales, Agaricomycetes)—A new species from the Russian Far East. Phytotaxa 2022, 555, 169–177. [Google Scholar] [CrossRef]
- Hosaka, K. Phylogeography of the genus Pisolithus revisited with some additional taxa from New Caledonia and Japan. Bull. Natl. Mus. Nat. Sci. Ser. B 2009, 35, 151–167. [Google Scholar]
- Kornerup, A.; Wanscher, J. Methuen Handbook of Colour Fletcher; Fletcher & Son: Norwich, UK, 1981; pp. 1–252. [Google Scholar]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Academic Press: San Diego, CA, USA, 1990; Volume 18, pp. 315–322. [Google Scholar]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Swindell, S.R.; Plasterer, T. Sequence Data Analysis Guidebook; Springer: Berlin/Heidelberg, Germany, 1997; pp. 75–89. [Google Scholar]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, A. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 2014, 30, 3276–3278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nylander, J. MrAIC. pl. Program Distributed by the Author; Evolutionary Biology Centre, Uppsala University: Uppsala, Sweden, 2004. [Google Scholar]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A. FigTree 1.4. 4 (Computer Program). 2018. Available online: http://tree.bio.ed.ac.uk (accessed on 7 August 2021).
- Guzmán, G.; Cortés-Pérez, A.; Guzmán-Dávalos, L.; Ramírez-Guillén, F.; del Refugio Sánchez-Jácome, M. An emendation of Scleroderma, new records, and review of the known species in Mexico. Rev. Mex. Biodivers. 2013, 84, S173–S191. [Google Scholar] [CrossRef] [Green Version]
- Jeppson, M. Scleroderma cepa Pers. brief notes on its taxonomy, ecology and distribution. Windhalia 1986, 16, 123–126. [Google Scholar]
- Nouhra, E.R.; Caffot, M.L.H.; Pastor, N.; Crespo, E.M. The species of Scleroderma from Argentina, including a new species from the Nothofagus forest. Mycologia 2012, 104, 488–495. [Google Scholar] [CrossRef] [Green Version]
- Bruns, T.D.; Bidartondo, M.I.; Taylor, D.L. Host specificity in ectomycorrhizal communities: What do the exceptions tell us? Integr. Comp. Biol. 2002, 42, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Lofgren, L.; Nguyen, N.H.; Kennedy, P.G. Ectomycorrhizal host specificity in a changing world: Can legacy effects explain anomalous current associations? New Phytol. 2018, 220, 1273–1284. [Google Scholar] [CrossRef] [Green Version]
- Miller, O.K., Jr. The Gomphidiaceae Revisited: A Worldwide Perspective. Mycologia 2003, 95, 176. [Google Scholar] [CrossRef] [PubMed]
Taxa | Vouchers | GenBank Acc. No. | Locality | References |
---|---|---|---|---|
Scleroderma albidum | SMDB14.507 | KJ676521 | Brazil: Barrado Quaraí | [20] |
S. albidum | SMDB14.517 | KJ676523 | Brazil: Bororé | [20] |
S. albidum | SMDB14.513 | KJ676527 | Brazil: Pinhal Grande | [20] |
S. albidum | ICN154608 | KJ676532 | Brazil: Santa Maria | [20] |
S. areolatum | RBG/KewK(M)125392 | EU784407 | UK: South Northumberland | [21] |
S. areolatum | K(M)54413 | EU784416 | UK | [21] |
S. areolatum | MCF02/4202 | HF933231 | Macedonia | [22] |
S. bermudense | Ecu482 | KJ209672 | Senegal | [23] |
S. bermudense | Ecu504 | KJ209674 | France: Reunión Island | [24] |
S. bovista | MCF05/788 | HF933235 | Macedonia | [22] |
S. bovista | MCF09/11184 | HF933242 | Serbia | [22] |
S. capeverdeanum | MA-Fungi 87406 | KU747111 | Cape Verde: Santiago Island | [25] |
S. capeverdeanum | M.P. Martin 3238 | NR164545 | Cape Verde | [25] |
S. cepa | CEPSCL_5 | FM213355 | USA | [11] |
S. cepa | K(M)133179 | EU784411 | UK: East Sussex | [21] |
S. cepa | ASIS24596 | KP004932 | Republic of Korea | [13] |
S. citrinum | SMDB: 14.500 | KJ679575 | Brazil: Santa Maria | [20] |
S. citrinum | SMDB: 14.499 | KJ679576 | Brazil: Santa Maria | [20] |
S. dictyosporum | IR215 | FJ840443 | Burkina Faso | [7] |
S. dictyosporum | SD-4901 | FJ840449 | Burkina Faso | [7] |
S. dunense | UFRN: Fungi2033 | KU747112 | Brazil | [13] |
S. dunense | UFRN: Fungi2551 | KU747116 | Brazil | [13] |
S. dunense | UFRN: Fungi 1359 | KU747113 | Brazil | [26] |
S. dunense | UFRN: Fungi1361 | KU747114 | Brazil | [13] |
S. erubescens | X. T. Zhu 363 | OQ554977 | China: Yunnan | This study |
S. erubescens | Z. W. Ge 4828 | OQ554978 | China: Yunnan | This study |
S. erubescens | Z. W. Ge 4356 | OQ554976 | China: Yunnan | This study |
S. nastii | NAST-FB11 | KJ740390 | Nepal | [27] |
S. nitidum | UFRN: Fungos2034 | KU759904 | Brazil | [27] |
S. nitidum | UFRN: Fungos2550 | KU759906 | Brazil | [27] |
S. nitidum | UFRN: Fungos1759 | KU759907 | Brazil | [27] |
S. nitidum | UFRN: Fungos2219 | KU759908 | Brazil | [27] |
S. nitidum | UFRN: Fungos2500 | KU759909 | Brazil | [27] |
S. polyrhizum | ILLS56824 | MT270661 | Spain: Zaragoza | [24] |
S. polyrhizum | MA–Fungi39352 | MT270662 | USA: Illinois | [24] |
S. separatum | Z. W. Ge 4148 | OQ554973 | China: Yunnan | This study |
S. separatum | L. R. Zhou 31 | OQ554974 | China: Yunnan | This study |
S. separatum | Z. W. Ge 5394 | OQ554975 | China: Yunnan | This study |
S. sinnamariense | SINSCL_3 | FM213358 | Thailand | [11] |
S. sinnamariense | CMU53–210–2 | HQ687222 | Thailand | [28] |
S. squamulosum | X. B. Liu 464 | OQ554981 | China: Yunnan | This study |
S. squamulosum | L. P. Tang 821 | OQ554980 | China: Yunnan | This study |
S. squamulosum | Y. J. Hao 373 | OQ554979 | China: Yunnan | This study |
S. squamulosum | Z. W. Ge 2935 | OQ554983 | China: Yunnan | This study |
S. squamulosum | L. P. Tang 342 | OQ554982 | China: Yunnan | This study |
S. texense | F–C0296202F | MT270649 | USA: North Carolina | [24] |
S. texense | VPIF–0004156 | MT270650 | USA: Virginia | [24] |
S. venenatum | EMF38 | JF273540 | China: Sichuan | [13] |
S. venenatum | GO-2008-154 | KC152225 | Mexico: Michoacan | [13] |
S. venenatum | MLMY20160808-016 | MH513630 | China: Yunnan | [13] |
S. venenatum | GZ170619-01 | MH513631 | China: Guizhou | [13] |
S. venenatum var. macrosporum | MLMY20160808-009 | MH513632 | China: Yunnan | [13] |
S. venenatum var. macrosporum | Li150829-04 | MH513634 | China: Yunnan | [13] |
S. venenatum | LEF-342311 | OM874611 | Russian Federation | [29] |
S. venenatum | LEF-342312 | OM874613 | Russian Federation | [29] |
S. verrucosum | K(M)30670 | EU784415 | UK | [23] |
S. verrucosum | MCF07/7984 | HF933232 | China: Sichuan | [27] |
S. verrucosum | MCF08/10124 | HF933233 | Macedonia | [22] |
S. verrucosum | MCF06/7265 | HF933241 | Macedonia | [22] |
S. verrucosum | A4 | JX434678 | China | [23] |
S. vinaceum | Z. W. Ge 2789 | OQ554986 | China: Yunnan | This study |
S. vinaceum | X. T. Zhu 387 | OQ554988 | China: Yunnan | This study |
S. vinaceum | J. Qin 197 | OQ554985 | China: Yunnan | This study |
S. vinaceum | X. T. Zhu 346 | OQ554987 | China: Yunnan | This study |
S. vinaceum | Z. W. Ge 5651 | OQ554989 | China: Yunnan | This study |
S. vinaceum | T. Guo 63 | OQ554984 | China: Yunnan | This study |
S. yunnanense | Ji001A | JQ639040 | China: Yunnan | [16] |
S. yunnanense | Ji001B | JQ639041 | China: Yunnan | [16] |
Pisolithus albus | T25070 | AF440868 | Australia | [30] |
P. arhizus | PISOLI3 | FM213365 | Spain | [11] |
P. tinctorius | MARX270 | AF374652 | Australia | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, R.; Zhou, L.; Qu, H.; Ge, Z.-W. Updates on Scleroderma: Four New Species of Section Scleroderma from Southwestern China. Diversity 2023, 15, 775. https://doi.org/10.3390/d15060775
Wu R, Zhou L, Qu H, Ge Z-W. Updates on Scleroderma: Four New Species of Section Scleroderma from Southwestern China. Diversity. 2023; 15(6):775. https://doi.org/10.3390/d15060775
Chicago/Turabian StyleWu, Rui, Lvrong Zhou, Hua Qu, and Zai-Wei Ge. 2023. "Updates on Scleroderma: Four New Species of Section Scleroderma from Southwestern China" Diversity 15, no. 6: 775. https://doi.org/10.3390/d15060775
APA StyleWu, R., Zhou, L., Qu, H., & Ge, Z. -W. (2023). Updates on Scleroderma: Four New Species of Section Scleroderma from Southwestern China. Diversity, 15(6), 775. https://doi.org/10.3390/d15060775