Updates on Scleroderma: Four New Species of Section Scleroderma from Southwestern China
Abstract
1. Introduction
2. Materials and Methods
2.1. Collections Studied
2.2. Morphological Analysis
2.3. Phylogenetic Analysis
3. Results
3.1. Phylogenetic Analysis
3.2. Taxonomy
- 1 Basidiospores echinulate; neither subreticulate nor reticulate.............................................2
- 1 Basidiospores subreticulate or reticulate................................................................................13
- 2 Basidiomata with well-developed stipe....................................................................................3
- 2 Basidiomata sessile or short pseudostipitate...........................................................................7
- 3 Peridium turns to vinaceous, reddish purple to blackish red when bruised........................4
- 3 Peridium does not change color when bruised......................................................................5
- 4 Clamp connections present; peridium turns to reddish purple to blackish red when bruised..........................................................................................................................S. erubescens
- 4 Clamp connections absent, peridium turns to vinaceous when bruised............S. vinaceum
- 5 Clamp connections present........................................................................................................6
- 5 Clamp connections absent..................................................................................S. squamulosum
- 6 Basidiomata whitish to yellowish, with large squamules.................................S. yunnanense
- 6 Basidiomata tan to ochraceous brown, with warty and peelable squamules...S. separatum
- 7 Peridium does not change color when bruised......................................................................8
- 7 Peridium turns to pale pink, pale pinkish brown to pale brown when bruised.........S. cepa
- 8 Peridium thick, usually >1 mm..................................................................................S. flavidum
- 8 Peridium thin, usually <1 mm....................................................................................................9
- 9 Basidiomata pseudostipitate....................................................................................................10
- 9 Basidiomata sessile....................................................................................................................11
- 10 Basidiospores (8.0–) 9.0–12.0 (–14.0) µm in diam..............................................S. verrucosum
- 10 Basidiospores (6.0–) 7.0–11.0 (–12.0) µm in diam....................................................S. nitidum
- 11 Gleba brownish violet to dark olivaceous with abundant yellowish trama veins; basidiospores 11.0–17.0 µm in diam....................................................................................S. areolatum
- 11 Gleba ash grey, grey to dark grey without yellowish trama veins; basidiospores 9.0–16.0 µm...........................................................................................................................................12
- 12 Basidiospores 9.0–13.0 µm in diam............................................S. venenatum var. venenatum
- 12 Basidiospores 12.0–16.0 µm in diam.....................................S. venenatum var. macrosporum
- 13 Basidiospores subreticulate....................................................................................................14
- 13 Basidiospores reticulate..........................................................................................................18
- 14 Peridium thin, usually <1 mm, about 0.5–0.6 mm thick.....................................S. suthepense
- 14 Peridium thick, usually >1 mm..............................................................................................15
- 15 Basidiomata sessile..................................................................................................................16
- 15 Basidiomata with well-developed stipe................................................................................17
- 16 Basidiomata with imbricate scales and tomentose surface; basidiospores 10.4–13.6 µm in diam.........................................................................................................................S. floridanum
- 16 Basidiomata without imbricate scales and tomentose surface; basidiospores (6.0–) 7.0–11.0 (–12.0) µm in diam....................................................................................................S. texense
- 17 Dehiscence stilliform, basidiospores 5.0–13.0 µm in diam..............................S. polyrhizum
- 17 Irregularly dehiscent at the top; basidiospores 2.5–7.5 µm in diam...........S. sinnamariense
- 18 Peridium thick, usually >1 mm..............................................................................................19
- 18 Peridium thin, usually ≤1 mm...............................................................................................20
- 19 Peridium 2–5 mm thick, yellowish brown to pale orangish yellow, coarsely scaly; endoperidium rubescent when bruised; basidiospores (9.0–) 11.0–14.0 (–17.0) µm in diam.................................................................................................................................S. citrinum
- 19 Peridium 1.5–2.5 mm thick, light yellow, endoperidium does not change colour when bruised, basidiospores 9.0–16.0 µm in diam...........................................................S. paradoxum
- 20 Sessile or with a short-pseudostipe or a short-fasciculate base formed by compact mycelia; basidiospores (10.0–)11.0–13.0 (–15.0) µm in diam.; clamp connections present……………..................................................................................................................S. bovista
- 20 With a short or thick pseudostipe; basidiospores 5.5–9.0 µm in diam.; clamp connections absent..............................................................................................................S. dictyosporum
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guzmán, G. Monografía del género Scleroderma Pers. emend. Fr.(Fungi-Basidiomycetes). Darwiniana 1970, 16, 233–407. [Google Scholar]
- van der Heijden, M.G.A.; Klironomos, J.N.; Ursic, M.; Moutoglis, P.; Streitwolf-Engel, R.; Boller, T.; Wiemken, A.; Sanders, I.R. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 1998, 396, 69–72. [Google Scholar] [CrossRef]
- Read, D.J.; Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems—A journey towards relevance? New Phytol. 2003, 157, 475–492. [Google Scholar] [CrossRef] [PubMed]
- Kernaghan, G. Mycorrhizal diversity: Cause and effect? Pedobiologia 2005, 49, 511–520. [Google Scholar] [CrossRef]
- Kumla, J.; Suwannarach, N.; Bussaban, B.; Lumyong, S. Scleroderma suthepense, a new ectomycorrhizal fungus from Thailand. Mycotaxon 2013, 123, 1–7. [Google Scholar] [CrossRef]
- Danielson, R.M. Ectomycorrhizal associations in jack pine stands in northeastern Alberta. Can. J. Bot. 1984, 62, 932–939. [Google Scholar] [CrossRef]
- Sanon, K.B.; Bâ, A.M.; Delaruelle, C.; Duponnois, R.; Martin, F. Morphological and molecular analyses in Scleroderma species associated with some Caesalpinioid legumes, Dipterocarpaceae and Phyllanthaceae trees in southern Burkina Faso. Mycorrhiza 2009, 19, 571–584. [Google Scholar] [CrossRef]
- Corrales, A.; Koch, R.A.; Vasco-Palacios, A.M.; Smith, M.E.; Ge, Z.-W.; Henkel, T.W. Diversity and distribution of tropical ectomycorrhizal fungi. Mycologia 2022, 114, 919–933. [Google Scholar] [CrossRef]
- Ge, Z.-W.; Brenneman, T.; Bonito, G.; Smith, M.E. Soil pH and mineral nutrients strongly influence truffles and other ectomycorrhizal fungi associated with commercial pecans (Carya illinoinensis). Plant Soil 2017, 418, 493–505. [Google Scholar] [CrossRef]
- Marx, D.H.; Bryan, W.C.; Cordell, C.E. Survival and growth of pine seedlings with Pisolithus ectomycorrhizae after two years on reforestation sites in North Carolina and Florida. For. Sci. 1977, 23, 363–373. [Google Scholar]
- Phosri, C.; Martín, M.P.; Watling, R.; Jeppson, M.; Sihanonth, P. Molecular phylogeny and re-assessment of some Scleroderma spp. (Gasteromycetes). An. Jardín Botánico Madr. 2009, 66, 83–91. [Google Scholar] [CrossRef]
- Wilson, A.W.; Binder, M.; Hibbett, D.S. Diversity and evolution of ectomycorrhizal host associations in the Sclerodermatineae (Boletales, Basidiomycota). New Phytol. 2012, 194, 1079–1095. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Z.; Sun, C.-Y.; Sun, J.; Zhang, K.-P.; Zhang, H.-S.; Guo, X.; Zhou, Y.-J.; Zheng, D.-S.; Li, H.-J. Scleroderma venenatum sp. nov., S. venenatum var. macrosporum var. nov. and S. suthepense new to China. Phytotaxa 2020, 438, 107–118. [Google Scholar] [CrossRef]
- Li, J.-Z. Studies of Scleroderma from China. J. Nat. Sci. Hunan Norm. Univ. 2003, 26, 60–64. [Google Scholar]
- Liu, B.; Fan, I.; Li, J.; Li, T.; Song, B.; Liu, J. Sclerodermatales, Tulostomatales, Phallales et Podaxales. In Flora Fungorum Sinicorum; Science Press: Beijing, China, 2005; Volume 23, pp. 30–31. (In Chinese) [Google Scholar]
- Zhang, C.; Xu, X.-E.; Liu, J.; He, M.; Wang, W.; Wang, Y.; Ji, K. Scleroderma yunnanense, a new species from South China. Mycotaxon 2013, 125, 193–200. [Google Scholar] [CrossRef]
- Li, Y.; Li, T.H.; Yang, Z.L.; Bau, T.; Dai, Y.C. Atlas of Chinese Macrofungal Resources; Central China Farmers’ Publishing House: Zhengzhou, China, 2015; pp. 1194–1198. (In Chinese) [Google Scholar]
- Dai, Y.C.; Yang, Z.L.; Wen, H.A.; Bau, T.; Li, T.H. A revised checklist of edible fungi in China. Mycosystema 2010, 29, 1–21. [Google Scholar] [CrossRef]
- Dai, Y.C.; Yang, Z.L. A revised checklist of medicinal fungi in China. Mycosystema 2008, 27, 801–824. [Google Scholar] [CrossRef]
- Montagner, D.; Coelho, G.; Silveira, A.; Baldoni, D.; Antoniolli, Z. Morphological and molecular analyses in Scleroderma (Basidiomycota) associated with exotic forests in Pampa biome, southern Brazil. Mycosphere 2015, 6, 337–344. [Google Scholar] [CrossRef]
- Brock, P.; Döring, H.; Bidartondo, M.I. How to know unknown fungi: The role of a herbarium. New Phytol. 2009, 181, 719–724. [Google Scholar] [CrossRef]
- Rusevska, K.; Karadelev, M.; Phosri, C.; Dueñas, M.; Watling, R.; Martín, M.P. Rechecking of the genus Scleroderma (Gasteromycetes) from Macedonia using barcoding approach. Turk. J. Bot. 2014, 38, 375–385. [Google Scholar] [CrossRef]
- Mrak, T.; Kühdorf, K.; Grebenc, T.; Štraus, I.; Münzenberger, B.; Kraigher, H. Scleroderma areolatum ectomycorrhiza on Fagus sylvatica L. Mycorrhiza 2017, 27, 283–293. [Google Scholar] [CrossRef]
- Ortiz-Rivero, J.; Watling, R.; Guzmán-Dávalos, L.; Martín, M.P. The many-rooted earthball—Scleroderma geaster and S. polyrhizum revisited, with the description of a new species. Phytotaxa 2021, 510, 1–17. [Google Scholar] [CrossRef]
- Crous, P.W.; Wingfield, M.J.; Richardson, D.; Leroux, J.; Strasberg, D.; Edwards, J.; Roets, F.; Hubka, V.; Taylor, P.; Hey-koop, M. Fungal Planet description sheets: 400–468. Persoonia 2016, 36, 316–458. [Google Scholar] [CrossRef]
- Baseia, I.G.; Silva, B.D.B.; Ishikawa, N.K.; Soares, J.V.C.; França, I.F.; Ushijima, S.; Maekawa, N.; Martín, M.P. Discovery or Extinction of New Scleroderma Species in Amazonia? PLoS ONE 2016, 11, e0167879. [Google Scholar] [CrossRef] [PubMed]
- Raut, J.; Basukala, O.; Shrestha, R.; Poudel, R. Scleroderma nastii sp. nov., a gasteroid mushroom from Phulchoki hill, Nepal. Stud. Fungi 2020, 5, 50–58. [Google Scholar] [CrossRef]
- Kumla, J.; Suwannarach, N.; Bussaban, B.; Matsui, K.; Lumyong, S. Indole-3-acetic acid production, solubilization of insoluble metal minerals and metal tolerance of some sclerodermatoid fungi collected from northern Thailand. Ann. Microbiol. 2014, 64, 707–720. [Google Scholar] [CrossRef]
- Rebriev, Y.A.; Zvyagina, E.A. Scleroderma furfuraceum (Boletales, Agaricomycetes)—A new species from the Russian Far East. Phytotaxa 2022, 555, 169–177. [Google Scholar] [CrossRef]
- Hosaka, K. Phylogeography of the genus Pisolithus revisited with some additional taxa from New Caledonia and Japan. Bull. Natl. Mus. Nat. Sci. Ser. B 2009, 35, 151–167. [Google Scholar]
- Kornerup, A.; Wanscher, J. Methuen Handbook of Colour Fletcher; Fletcher & Son: Norwich, UK, 1981; pp. 1–252. [Google Scholar]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Academic Press: San Diego, CA, USA, 1990; Volume 18, pp. 315–322. [Google Scholar]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Swindell, S.R.; Plasterer, T. Sequence Data Analysis Guidebook; Springer: Berlin/Heidelberg, Germany, 1997; pp. 75–89. [Google Scholar]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Larsson, A. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 2014, 30, 3276–3278. [Google Scholar] [CrossRef] [PubMed]
- Nylander, J. MrAIC. pl. Program Distributed by the Author; Evolutionary Biology Centre, Uppsala University: Uppsala, Sweden, 2004. [Google Scholar]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree 1.4. 4 (Computer Program). 2018. Available online: http://tree.bio.ed.ac.uk (accessed on 7 August 2021).
- Guzmán, G.; Cortés-Pérez, A.; Guzmán-Dávalos, L.; Ramírez-Guillén, F.; del Refugio Sánchez-Jácome, M. An emendation of Scleroderma, new records, and review of the known species in Mexico. Rev. Mex. Biodivers. 2013, 84, S173–S191. [Google Scholar] [CrossRef]
- Jeppson, M. Scleroderma cepa Pers. brief notes on its taxonomy, ecology and distribution. Windhalia 1986, 16, 123–126. [Google Scholar]
- Nouhra, E.R.; Caffot, M.L.H.; Pastor, N.; Crespo, E.M. The species of Scleroderma from Argentina, including a new species from the Nothofagus forest. Mycologia 2012, 104, 488–495. [Google Scholar] [CrossRef]
- Bruns, T.D.; Bidartondo, M.I.; Taylor, D.L. Host specificity in ectomycorrhizal communities: What do the exceptions tell us? Integr. Comp. Biol. 2002, 42, 352–359. [Google Scholar] [CrossRef]
- Lofgren, L.; Nguyen, N.H.; Kennedy, P.G. Ectomycorrhizal host specificity in a changing world: Can legacy effects explain anomalous current associations? New Phytol. 2018, 220, 1273–1284. [Google Scholar] [CrossRef]
- Miller, O.K., Jr. The Gomphidiaceae Revisited: A Worldwide Perspective. Mycologia 2003, 95, 176. [Google Scholar] [CrossRef] [PubMed]
Taxa | Vouchers | GenBank Acc. No. | Locality | References |
---|---|---|---|---|
Scleroderma albidum | SMDB14.507 | KJ676521 | Brazil: Barrado Quaraí | [20] |
S. albidum | SMDB14.517 | KJ676523 | Brazil: Bororé | [20] |
S. albidum | SMDB14.513 | KJ676527 | Brazil: Pinhal Grande | [20] |
S. albidum | ICN154608 | KJ676532 | Brazil: Santa Maria | [20] |
S. areolatum | RBG/KewK(M)125392 | EU784407 | UK: South Northumberland | [21] |
S. areolatum | K(M)54413 | EU784416 | UK | [21] |
S. areolatum | MCF02/4202 | HF933231 | Macedonia | [22] |
S. bermudense | Ecu482 | KJ209672 | Senegal | [23] |
S. bermudense | Ecu504 | KJ209674 | France: Reunión Island | [24] |
S. bovista | MCF05/788 | HF933235 | Macedonia | [22] |
S. bovista | MCF09/11184 | HF933242 | Serbia | [22] |
S. capeverdeanum | MA-Fungi 87406 | KU747111 | Cape Verde: Santiago Island | [25] |
S. capeverdeanum | M.P. Martin 3238 | NR164545 | Cape Verde | [25] |
S. cepa | CEPSCL_5 | FM213355 | USA | [11] |
S. cepa | K(M)133179 | EU784411 | UK: East Sussex | [21] |
S. cepa | ASIS24596 | KP004932 | Republic of Korea | [13] |
S. citrinum | SMDB: 14.500 | KJ679575 | Brazil: Santa Maria | [20] |
S. citrinum | SMDB: 14.499 | KJ679576 | Brazil: Santa Maria | [20] |
S. dictyosporum | IR215 | FJ840443 | Burkina Faso | [7] |
S. dictyosporum | SD-4901 | FJ840449 | Burkina Faso | [7] |
S. dunense | UFRN: Fungi2033 | KU747112 | Brazil | [13] |
S. dunense | UFRN: Fungi2551 | KU747116 | Brazil | [13] |
S. dunense | UFRN: Fungi 1359 | KU747113 | Brazil | [26] |
S. dunense | UFRN: Fungi1361 | KU747114 | Brazil | [13] |
S. erubescens | X. T. Zhu 363 | OQ554977 | China: Yunnan | This study |
S. erubescens | Z. W. Ge 4828 | OQ554978 | China: Yunnan | This study |
S. erubescens | Z. W. Ge 4356 | OQ554976 | China: Yunnan | This study |
S. nastii | NAST-FB11 | KJ740390 | Nepal | [27] |
S. nitidum | UFRN: Fungos2034 | KU759904 | Brazil | [27] |
S. nitidum | UFRN: Fungos2550 | KU759906 | Brazil | [27] |
S. nitidum | UFRN: Fungos1759 | KU759907 | Brazil | [27] |
S. nitidum | UFRN: Fungos2219 | KU759908 | Brazil | [27] |
S. nitidum | UFRN: Fungos2500 | KU759909 | Brazil | [27] |
S. polyrhizum | ILLS56824 | MT270661 | Spain: Zaragoza | [24] |
S. polyrhizum | MA–Fungi39352 | MT270662 | USA: Illinois | [24] |
S. separatum | Z. W. Ge 4148 | OQ554973 | China: Yunnan | This study |
S. separatum | L. R. Zhou 31 | OQ554974 | China: Yunnan | This study |
S. separatum | Z. W. Ge 5394 | OQ554975 | China: Yunnan | This study |
S. sinnamariense | SINSCL_3 | FM213358 | Thailand | [11] |
S. sinnamariense | CMU53–210–2 | HQ687222 | Thailand | [28] |
S. squamulosum | X. B. Liu 464 | OQ554981 | China: Yunnan | This study |
S. squamulosum | L. P. Tang 821 | OQ554980 | China: Yunnan | This study |
S. squamulosum | Y. J. Hao 373 | OQ554979 | China: Yunnan | This study |
S. squamulosum | Z. W. Ge 2935 | OQ554983 | China: Yunnan | This study |
S. squamulosum | L. P. Tang 342 | OQ554982 | China: Yunnan | This study |
S. texense | F–C0296202F | MT270649 | USA: North Carolina | [24] |
S. texense | VPIF–0004156 | MT270650 | USA: Virginia | [24] |
S. venenatum | EMF38 | JF273540 | China: Sichuan | [13] |
S. venenatum | GO-2008-154 | KC152225 | Mexico: Michoacan | [13] |
S. venenatum | MLMY20160808-016 | MH513630 | China: Yunnan | [13] |
S. venenatum | GZ170619-01 | MH513631 | China: Guizhou | [13] |
S. venenatum var. macrosporum | MLMY20160808-009 | MH513632 | China: Yunnan | [13] |
S. venenatum var. macrosporum | Li150829-04 | MH513634 | China: Yunnan | [13] |
S. venenatum | LEF-342311 | OM874611 | Russian Federation | [29] |
S. venenatum | LEF-342312 | OM874613 | Russian Federation | [29] |
S. verrucosum | K(M)30670 | EU784415 | UK | [23] |
S. verrucosum | MCF07/7984 | HF933232 | China: Sichuan | [27] |
S. verrucosum | MCF08/10124 | HF933233 | Macedonia | [22] |
S. verrucosum | MCF06/7265 | HF933241 | Macedonia | [22] |
S. verrucosum | A4 | JX434678 | China | [23] |
S. vinaceum | Z. W. Ge 2789 | OQ554986 | China: Yunnan | This study |
S. vinaceum | X. T. Zhu 387 | OQ554988 | China: Yunnan | This study |
S. vinaceum | J. Qin 197 | OQ554985 | China: Yunnan | This study |
S. vinaceum | X. T. Zhu 346 | OQ554987 | China: Yunnan | This study |
S. vinaceum | Z. W. Ge 5651 | OQ554989 | China: Yunnan | This study |
S. vinaceum | T. Guo 63 | OQ554984 | China: Yunnan | This study |
S. yunnanense | Ji001A | JQ639040 | China: Yunnan | [16] |
S. yunnanense | Ji001B | JQ639041 | China: Yunnan | [16] |
Pisolithus albus | T25070 | AF440868 | Australia | [30] |
P. arhizus | PISOLI3 | FM213365 | Spain | [11] |
P. tinctorius | MARX270 | AF374652 | Australia | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, R.; Zhou, L.; Qu, H.; Ge, Z.-W. Updates on Scleroderma: Four New Species of Section Scleroderma from Southwestern China. Diversity 2023, 15, 775. https://doi.org/10.3390/d15060775
Wu R, Zhou L, Qu H, Ge Z-W. Updates on Scleroderma: Four New Species of Section Scleroderma from Southwestern China. Diversity. 2023; 15(6):775. https://doi.org/10.3390/d15060775
Chicago/Turabian StyleWu, Rui, Lvrong Zhou, Hua Qu, and Zai-Wei Ge. 2023. "Updates on Scleroderma: Four New Species of Section Scleroderma from Southwestern China" Diversity 15, no. 6: 775. https://doi.org/10.3390/d15060775
APA StyleWu, R., Zhou, L., Qu, H., & Ge, Z.-W. (2023). Updates on Scleroderma: Four New Species of Section Scleroderma from Southwestern China. Diversity, 15(6), 775. https://doi.org/10.3390/d15060775