High Evolutionary Potential Maintained in Common Frog (Rana temporaria) Populations Inhabiting Urban Drainage Ponds
Abstract
:1. Introduction
2. Methods
2.1. Field Sampling
2.2. Laboratory Work
2.3. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Douglas, I.; James, P. Urban Ecology: An Introduction; Routledge: London, UK, 2014. [Google Scholar]
- Johnson, M.T.J.; Munshi-South, J. Evolution of life in urban environments. Science 2017, 358, eaam8327. [Google Scholar] [CrossRef] [Green Version]
- Schilthuizen, M. Darwin Comes to Town: How the Urban Jungle Drives Evolution; Picador: New York, NY, USA, 2019. [Google Scholar]
- JNCC. Available online: https://jncc.gov.uk/our-work/blue-green-infrastructure/ (accessed on 11 April 2023).
- Niemelä, J. Urban Ecology: Patterns, Processes and Applications; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Gaston, K.J. Urban Ecology; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- O’Brien, C.D. Sustainable drainage system (SuDS) ponds in Inverness, UK and the favourable conservation status of amphibians. Urban Ecosyst. 2015, 18, 321–331. [Google Scholar] [CrossRef]
- Alberti, M.; Correa, C.; Marzluff, J.M.; Zhou, Y. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl. Acad. Sci. USA 2017, 114, 8951–8956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, R.I.; Mansur, A.V.; Ascensão, F.; Colbert, M.; Crossman, K.; Elmqvist, T.; Gonzalez, A.; Güneralp, B.; Haase, D.; Hamann, M.; et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 2020, 3, 16–24. [Google Scholar] [CrossRef]
- Caspi, T.; Johnson, J.R.; Lambert, M.R.; Schell, C.J.; Sih, A. Behavioral plasticity can facilitate evolution in urban environments. Trends Ecol. Evol. 2022, 37, 1092–1103. [Google Scholar] [CrossRef]
- Hahs, A.K.; Fournier, B.; Aronson, M.F.J.; Nilon, C.H.; Herrera-Montes, A.; Salisbury, A.; Threlfall, C.G.; Rega-Brodsky, C.C.; Lepczyk, C.A.; Carpenter, E.S.; et al. The global effects of urbanisation on functional diversity across multiple taxa. Nat. Comm. 2023, in press.
- Convention on Biological Diversity. Available online: https://www.cbd.int/ (accessed on 11 April 2023).
- Hassall, C. The ecology and biodiversity of urban ponds. WIREs Water 2014, 1, 187–206. [Google Scholar] [CrossRef]
- Hill, M.J.; Biggs, J.; Thornhill, I.; Briers, R.A.; Gledhill, D.G.; White, J.C.; Wood, P.J.; Hassall, C. Urban ponds as an aquatic biodiversity resource in modified landscapes. Glob. Chang. Biol. 2017, 23, 986–999. [Google Scholar] [CrossRef] [Green Version]
- Oertli, B.; Parris, K.M. Review: Toward management of urban ponds for freshwater biodiversity. Ecosphere 2019, 10, e02810. [Google Scholar] [CrossRef] [Green Version]
- Hyseni, C.; Heino, J.; Binic, L.M.; Bjelked, U.; Johansson, F. The importance of blue and green landscape connectivity for biodiversity in urban ponds. Basic Appl. Ecol. 2021, 57, 129–145. [Google Scholar] [CrossRef]
- Parris, K.M. Urban amphibian assemblages as metacommunities. J. Anim. Ecol. 2006, 75, 757–764. [Google Scholar] [CrossRef]
- Hamer, A.J.; McDonnell, M.J. Amphibian ecology and conservation in the urbanising world: A review. Biol. Cons. 2008, 141, 2432–2449. [Google Scholar] [CrossRef]
- Hamer, A.J.; Parris, K.M. Local and landscape determinants of amphibian communities in urban ponds. Ecol. Appl. 2011, 21, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Hutto, D., Jr.; Barrett, K. Do urban open spaces provide refugia for frogs in urban environments? PLoS ONE 2021, 16, e0244932. [Google Scholar] [CrossRef]
- Lee, T.S.; Randall, L.A.; Kahal, N.L.; Kinas, H.L.; Carney, V.A.; Rudd, H.; Baker, T.M.; Sanderson, K.; Creed, I.F.; Moehrenschlager, A.; et al. A framework to identify priority wetland habitats and movement corridors for urban amphibian conservation. Ecol. Solut. Evid. 2022, 3, e12139. [Google Scholar] [CrossRef]
- Sauer, E.L.; Cruz, J.; Crone, E.; Lewis, C.; Plumier, E.; Cwynar, B.; Drake, D.; Herrick, B.M.; Preston, D.L. Multiscale drivers of amphibian community occupancy in urban ponds. Urban Ecosyst. 2022, 25, 1469–1479. [Google Scholar] [CrossRef]
- Cushman, S.A. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Cons. 2006, 128, 231–240. [Google Scholar] [CrossRef]
- Schmidt, C.; Munshi-South, J.; Dray, S.; Garroway, C.J. Determinants of genetic diversity and species richness of North American amphibians. J. Biogeogr. 2022, 49, 2005–2015. [Google Scholar] [CrossRef]
- Landler, L.; Burgstaller, S.; Schweiger, S. Land-use preferences of the European green toad (Bufotes viridis) in the city of Vienna (Austria): The importance of open land in urban environments. Front. Zool. 2023, 20, 3. [Google Scholar] [CrossRef]
- Schmidt, C.; Garroway, C.J. The population genetics of urban and rural amphibians in North America. Mol. Ecol. 2021, 30, 3918–3929. [Google Scholar] [CrossRef]
- Teacher, A.G.F.; Garner, T.W.J.; Nichols, R.A. European phylogeography of the common frog (Rana temporaria): Routes of postglacial colonization into the British Isles, and evidence for an Irish glacial refugium. Heredity 2009, 102, 490–496. [Google Scholar] [CrossRef] [Green Version]
- Vences, M.; Hauswaldt, J.S.; Steinfartz, S.; Rupp, O.; Goesmann, A.; Künzel, S.; Orozco-terWengel, P.; Vieites, D.R.; Nieto-Roman, S.; Haas, S.; et al. Radically different phylogeographies and patterns of genetic variation in two European brown frogs, genus Rana. Mol. Phylogenet. Evol. 2013, 68, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Cummins, C.P. Temporal and spatial variation in egg size and fecundity in Rana temporaria. J. Anim. Ecol. 1996, 55, 303–316. [Google Scholar] [CrossRef]
- Miaud, C.; Guyétant, R.; Elmberg, J. Variations in life-history traits in the common frog Rana temporaria (Amphibia: Anura): A literature review and new data from the French Alps. J. Zool. 1999, 249, 61–73. [Google Scholar] [CrossRef]
- Brede, E.G.; Beebee, T.J.C. Consistently different levels of genetic variation across the European ranges of two anurans, Bufo bufo and Rana temporaria. Herpetol. J. 2006, 16, 265–271. [Google Scholar]
- Brede, E.G.; Beebee, T.J.C. Large variations in the ratio of effective breeding and census population sizes between two species of pond-breeding anurans. Biol. J. Linn. Soc. 2006, 89, 365–372. [Google Scholar] [CrossRef]
- Reh, W.; Seitz, A. The influence of land use on the genetic structure of populations of the common frog Rana temporaria. Biol. Cons. 1990, 54, 239–249. [Google Scholar] [CrossRef]
- Hitchings, S.P.; Beebee, T.J.C. Genetic substructuring as a result of barriers to gene flow in urban Rana temporaria (common frog) populations: Implications for biodiversity conservation. Heredity 1997, 79, 117–127. [Google Scholar] [CrossRef]
- Johansson, M.; Primmer, C.R.; Merilä, J. History vs. current demography: Explaining the genetic population structure of the common frog (Rana temporaria). Mol. Ecol. 2006, 15, 975–983. [Google Scholar] [CrossRef]
- Johansson, M.; Primmer, C.R.; Sahlsten, J.; Merilä, J. The influence of landscape structure on occurrence, abundance and genetic diversity of the common frog, Rana temporaria. Glob. Chang. Biol. 2005, 11, 1664–1679. [Google Scholar] [CrossRef]
- Lenhardt, P.P.; Brühl, C.A.; Leeb, C.; Theissinger, K. Amphibian population genetics in agricultural landscapes: Does viniculture drive the population structuring of the European common frog (Rana temporaria)? PeerJ 2017, 5, e3520. [Google Scholar] [CrossRef] [Green Version]
- Safner, T.; Miaud, C.; Gaggiotti, O.; Decout, S.; Rioux, D.; Zundel, S.; Manel, S. Combining demography and genetic analysis to assess the population structure of an amphibian in a human-dominated landscape. Conserv. Genet. 2011, 12, 161–173. [Google Scholar] [CrossRef]
- Saarikivi, J.; Knopp, T.; Granroth, A.; Merilä, J. The role of golf courses in maintaining genetic connectivity between common frog (Rana temporaria) populations in an urban setting. Conserv. Genet. 2013, 14, 1057–1064. [Google Scholar] [CrossRef]
- Sagvik, J.; Uller, T.; Olsson, M. Outbreeding depression in the common frog, Rana temporaria. Conserv. Genet. 2005, 6, 205–211. [Google Scholar] [CrossRef]
- Johansson, M.; Primmer, C.R.; Merilä, J. Does habitat fragmentation reduce fitness and adaptability? A case study of the common frog (Rana temporaria). Mol. Ecol. 2007, 16, 2693–2700. [Google Scholar] [CrossRef]
- Davies, C.E.; Moss, D.; O’Hill, M. EUNIS Habitat Classification. Revision 2004; European Environment Agency, European Topic Centre on Nature Protection and Biodiversity: Copenhagen, Denmark, 2004.
- O’Brien, C.D.; O’Brien, D.M.; Hall, J. Rana temporaria (European common frog), British altitudinal range extension. Herp. Bull. 2014, 129, 26. [Google Scholar]
- McInerny, C.; Minting, P. The Amphibians & Reptiles of Scotland; The Glasgow Natural History Society: Glasgow, Scotland, 2016. [Google Scholar]
- Woods-Ballard, B.; Wilson, S.; Udale-Clarke, H.; Illman, S.; Scott, T.; Ashley, R.; Kellagher, R. The SUDS Manual; CIRIA report C753; CIRIA: London, UK, 2015. [Google Scholar]
- Miró, A.; Hall, J.; Rae, M.; O’Brien, D. Links between ecological and human wealth in drainage ponds in a fast-expanding city, and proposals for design and management. Landsc. Urban Plan. 2018, 180, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Rae, M.; Miró, A.; Hall, J.; O’Brien, K.; O’Brien, D. Evaluating the validity of a simple citizen science index for assessing the ecological status of urban drainage ponds. Ecol. Indic. 2019, 98, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pesaresi, M.; Politis, P. GHS Built-Up Surface Grid, Derived from Sentinel2 Composite and Landsat, Multitemporal (1975–2030); European Commission Joint Research Centre (JRC): Seville, Spain, 2022. [Google Scholar]
- O’Brien, C.D.; Hall, J.E.; Miró, A.; O’Brien, K.; Jehle, R. A co-development approach to conservation leads to informed habitat design and rapid establishment of amphibian communities. Ecol. Solut. Evid. 2021, 2, e12038. [Google Scholar] [CrossRef]
- Davies, L.; Bell, J.N.B.; Bone, J.; Head, M.; Hill, L.; Howard, C.; Hobbs, S.J.; Jones, D.T.; Power, S.A.; Rose, N.; et al. Open Air Laboratories (OPAL): A community-driven research programme. Environ. Pollut. 2011, 159, 2203–2210. [Google Scholar] [CrossRef]
- Matsuba, C.; Merilä, J. Isolation and characterization of 145 polymorphic microsatellite loci for the common frog (Rana temporaria). Mol. Ecol. Res. 2009, 9, 555–562. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Jehle, R.; Burke, T.; Arntzen, J.W. Delineating fine-scale genetic units in amphibians: Probing the primacy of ponds. Conserv. Genet. 2005, 6, 227–234. [Google Scholar] [CrossRef]
- Jehle, R.; Wilson, G.A.; Arntzen, J.W.; Burke, T. Contemporary gene flow and the spatio-temporal genetic structure of subdivided newt populations (Triturus cristatus, T. marmoratus). J. Evol. Biol. 2005, 18, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Rousset, F. Genepop’007: A complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Res. 2008, 8, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Goudet, J. FSTAT (Version 1.2): A computer program to calculate F-statistics. J. Hered. 1995, 86, 485–486. [Google Scholar] [CrossRef]
- Cheng, L.; Connor, T.R.; Sirén, J.; Aanensen, D.M.; Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 2013, 30, 1224–1228. [Google Scholar] [CrossRef]
- Corander, J.; Waldmann, P.; Sillanpää, M.J. Bayesian analysis of genetic differentiation between populations. Genetics 2003, 163, 367–374. [Google Scholar] [CrossRef]
- Bohonak, A.J. IBD (Isolation by Distance): A program for analysis of isolation by distance. J. Hered. 2002, 93, 153–154. [Google Scholar] [CrossRef]
- Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 1997, 145, 1219–1228. [Google Scholar] [CrossRef]
- Muir, A.P.; Thomas, R.; Biek, R.; Mable, B.K. Using genetic variation to infer associations with climate in the common frog, Rana temporaria. Mol. Ecol. 2013, 22, 3737–3751. [Google Scholar] [CrossRef]
- Rausch, A.; Sztatecsny, M.; Jehle, R.; Ringler, E.; Hödl, W. Male body size and parental relatedness but not nuptial colouration influence paternity success during scramble competition in Rana arvalis. Behaviour 2014, 151, 1869–1884. [Google Scholar] [CrossRef] [Green Version]
- Lesbarrères, D.; Primmer, C.R.; Laurila, A.; Merilä, J. Environmental and population dependency of genetic variability-fitness correlations in Rana temporaria. Mol. Ecol. 2005, 14, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Wahlund, S. Zusammensetzung von Populationen und Korrelationerscheinungen vom Standpunkt der Vererbungslehre aus betrachtet. Hereditas 1928, 11, 65–106. [Google Scholar] [CrossRef]
- Yannic, G.; Helfer, V.; Sermier, R.; Schmidt, B.R.; Fumagalli, L. Fine scale genetic structure in fire salamanders (Salamandra salamandra) along a rural-to-urban gradient. Conserv. Genet. 2021, 22, 275–292. [Google Scholar] [CrossRef]
- Roth, S.; Jehle, R. High genetic diversity of common toad (Bufo bufo) populations under strong natural fragmentation on a northern archipelago. Ecol. Evol. 2016, 6, 1626–1636. [Google Scholar] [CrossRef] [Green Version]
- Houston, W.W.K. The food of the common frog, Rana temporaria, on high moorland in northern England. J. Zool. 1973, 171, 153–165. [Google Scholar] [CrossRef]
- Loman, J. Breeding phenology in Rana temporaria. Local variation is due to pond temperature and population size. Ecol. Evol. 2016, 6, 6202–6209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lind, M.I.; Persbo, F.; Johansson, F. Pool desiccation and developmental thresholds in the common frog, Rana temporaria. Proc. Roy. Soc. B 2008, 275, 1073–1080. [Google Scholar] [CrossRef] [Green Version]
- Richter-Boix, A.; Teplitsky, C.; Rogell, B.; Laurila, A. Local selection modifies phenotypic divergence among Rana temporaria populations in the presence of gene flow. Mol. Ecol. 2010, 19, 716–731. [Google Scholar] [CrossRef]
- O’Brien, D.; Hall, J.E.; Miró, A.; O’Brien, K.; Falaschi, M.; Jehle, R. Reversing a downward trend in threatened peripheral amphibian (Triturus cristatus) populations through interventions combining species, habitat and genetic information. J. Nat. Conserv. 2021, 64, 126007. [Google Scholar] [CrossRef]
- Castric, V.; Bernatchez, L. The rise and fall of isolation by distance in the anadromous brook charr (Salvelinus fontinalis Mitchill). Genetics 2003, 163, 983–996. [Google Scholar] [CrossRef] [PubMed]
- Hoban, S.; Bruford, M.W.; Funk, W.C.; Galbusera, P.; Griffith, M.P.; Grueber, C.E.; Heuertz, M.; Hunter, M.E.; Hvilsom, C.; Stroil, B.K.; et al. Global commitments to conserving and monitoring genetic diversity are now necessary and feasible. BioScience 2021, 71, 964–976. [Google Scholar] [CrossRef] [PubMed]
- Kimble, S.J.A.; Unger, S.D.; Williams, R.N. Genetically derived effective population size estimates of herpetofaunal species should be used with caution. J. Wildl. Manag. 2023, 87, e22340. [Google Scholar] [CrossRef]
- Price, S.J.; Garner, T.W.J.; Balloux, F.; Ruis, C.; Paszkiewicz, K.H.; Moore, K.; Griffiths, A.G.F. A de novo assembly of the Common Frog (Rana temporaria) transcriptome and comparison of transcription following exposure to Ranavirus and Batrachochytrium dendrobatidis. PLoS ONE 2015, 10, e0130500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streicher, J.W.; Wellcome Sanger Institute Tree of Life Programme. The genome sequence of the common frog, Rana temporaria Linnaeus 1758. Wellcome Open Res. 2021, 6, 286. [Google Scholar] [CrossRef] [PubMed]
- Arntzen, J.W.; Abrahams, C.; Meilink, W.R.M.; Iosif, R.; Zuiderwijk, A. Amphibian decline, pond loss and reduced population connectivity under agricultural intensification over a 38 year period. Biodiv. Conserv. 2017, 26, 1411–1430. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, B.; Shu, X.; Pei, E.; Yuan, X.; Sun, Y.; Wang, T.; Wang, Z. Responses of anuran communities to rapid urban growth in Shanghai, China. Urban For. Urban Green. 2016, 20, 365–374. [Google Scholar] [CrossRef]
- Scottish Biodiversity Strategy to 2045: Tackling the Nature Emergency in Scotland. Available online: https://www.gov.scot/publications/scottish-biodiversity-strategy-2045-tackling-nature-emergency-scotland/ (accessed on 11 April 2023).
- Downey, H.; Bretagnolle, V.; Brick, C.; Bulman, C.R.; Cooke, S.J.; Dean, M.; Edmonds, B.; Frick, W.F.; Friedman, K.; McNicol, C.; et al. Principles for the production of evidence-based guidance for conservation actions. Conserv. Sci. Pract. 2022, 4, e12663. [Google Scholar] [CrossRef]
- Moor, H.; Bergamini, A.; Vorburger, C.; Holdegger, R.; Bühler, C.; Egger, S.; Schmidt, B.R. Bending the curve: Simple but massive conservation action leads to landscape-scale recovery of amphibians. Proc. Natl. Acad. Sci. USA 2023, 119, 2123070119. [Google Scholar] [CrossRef]
Sampling Site | National Grid Reference | n (2015/2019) | Ho | He | AL | PA |
---|---|---|---|---|---|---|
Urban: | ||||||
AA | NH 67100 42136 | 13 (0/13) | 0.68 | 0.77 | 5.57 | 0 |
BA | NH 69000 44010 | 10 (0/10) | 0.95 | 0.81 | 5.86 | 0 |
BB | NH 69017 44011 | 16 (5/11) | 0.77 | 0.75 | 6.57 | 1 |
BD | NH 71372 45055 | 15 (7/8) | 0.78 | 0.74 | 6.29 | 0 |
IP | NH 68782 43278 | 14 (0/14) | 0.56 | 0.57 | 4.29 | 0 |
SD | NH 64398 44565 | 11 (0/11) | 0.63 | 0.64 | 4.33 | 0 |
SP | NH 67295 42107 | 27 (18/9) | 0.77 | 0.81 | 9.86 | 0 |
TA | NH 71708 44979 | 10 (10/0) | 0.82 | 0.78 | 6.14 | 0 |
WC | NH71519 45111 | 17 (8/9) | 0.67 | 0.70 | 6.43 | 0 |
WF | NH 71820 44732 | 9 (9/0) | 0.91 | 0.78 | 5.57 | 1 |
WH | NH 71904 44662 | 22 (10/12) | 0.79 | 0.81 | 10.14 | 2 |
WHR | NH 66834 42423 | 22 (10/12) | 0.78 | 0.81 | 8.43 | 0 |
WP | NH 71646 45212 | 8 (8/0) | 0.84 | 0.75 | 7.00 | 0 |
WO | NH 68917 44160 | 14 (14/0) | 0.94 | 0.81 * | 7.29 | 0 |
Suburban: | ||||||
BAA | NH 70069 42351 | 10 (10/0) | 0.69 | 0.76 | 5.57 | 1 |
DV | NH 67281 41847 | 10 (10/0) | 0.91 | 0.81 | 6.57 | 0 |
FA | NH 67159 41965 | 10 (10/0) | 0.89 | 0.81 | 6.57 | 0 |
GR | NH 69399 42517 | 10 (0/10) | 0.71 | 0.68 | 4.29 | 1 |
HFR | NH 66477 41715 | 10 (10/0) | 0.84 | 0.82 | 7.00 | 1 |
HH | NH 69068 45577 | 22 (9/13) | 0.75 | 0.80 * | 9.57 | 2 |
IC | NH 69221 45070 | 10 (10/0) | 0.93 | 0.83 | 7.14 | 0 |
MN | NH 66968 41605 | 21 (10/11) | 0.82 | 0.81 * | 6.71 | 1 |
Rural: | ||||||
AWH | NH 59220 43830 | 21 (9/12) | 0.78 | 0.77 | 6.14 | 0 |
BW | NH 47930 57240 | 9 (9/0) | 0.74 | 0.68 | 5.40 | 0 |
DC | NH 63190 42000 | 11 (11/0) | 0.77 | 0.73 | 4.57 | 1 |
HP | NH 59120 53680 | 21 (11/10) | 0.79 | 0.76 | 7.57 | 2 |
KM | NH 60120 44180 | 27 (14/13) | 0.80 | 0.77 | 10.14 | 1 |
LL | NH 53590 49720 | 9 (9/0) | 0.90 | 0.79 | 5.43 | 0 |
NSE | NH 64320 42650 | 15 (5/10) | 0.78 | 0.80 | 7.43 | 3 |
NSW | NH 64270 42540 | 21 (10/11) | 0.76 | 0.74 | 7.29 | 0 |
PH | NH 86420 50310 | 20 (8/12) | 0.74 | 0.75 | 6.86 | 0 |
RO | NH 6376044270 | 23 (8/15) | 0.70 | 0.71 | 8.43 | 1 |
SN | NH 63894 44129 | 9 (0/9) | 0.75 | 0.66 | 4.43 | 0 |
TH | NH 57620 54430 | 24 (11/13) | 0.84 | 0.77 | 9.57 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jehle, R.; Hall, J.; Hook, S.A.; King, S.; MacArthur, K.; Miró, A.; Rae, M.; O’Brien, D. High Evolutionary Potential Maintained in Common Frog (Rana temporaria) Populations Inhabiting Urban Drainage Ponds. Diversity 2023, 15, 738. https://doi.org/10.3390/d15060738
Jehle R, Hall J, Hook SA, King S, MacArthur K, Miró A, Rae M, O’Brien D. High Evolutionary Potential Maintained in Common Frog (Rana temporaria) Populations Inhabiting Urban Drainage Ponds. Diversity. 2023; 15(6):738. https://doi.org/10.3390/d15060738
Chicago/Turabian StyleJehle, Robert, Jeanette Hall, Samantha A. Hook, Sarenta King, Kirsty MacArthur, Alexandre Miró, Marcia Rae, and David O’Brien. 2023. "High Evolutionary Potential Maintained in Common Frog (Rana temporaria) Populations Inhabiting Urban Drainage Ponds" Diversity 15, no. 6: 738. https://doi.org/10.3390/d15060738