Plant and Growth Condition Interactions on the Phenolic Compound Contents and Antioxidant Activity in Salvia circinata Cav., a Medicinal Sage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Design and Sampling
2.3. Determination of Phenolic Compounds and Antioxidant Activity by Spectrophotometry
2.3.1. Sample Preparation
2.3.2. Total Polyphenols
2.3.3. Flavonoids
2.3.4. Antioxidant Activity Evaluated by DPPH and FRAP
2.4. Determination of Phenolic Acids and Flavonoids by HPLC–DAD
2.5. Statistical Analysis
3. Results
3.1. Total Phenolic Compounds and Antioxidant Activity
3.2. Profile of Phenolic Acids and Flavonoids by HPLC–DAD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jenks, A.A.; Kim, S.-C. Medicinal plant complexes of Salvia subgenus Calosphace: An ethnobotanical study of new world sages. J. Ethnopharmacol. 2013, 146, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gordillo, M.; Bedolla-García, B.; Cornejo-Tenorio, G.; Fragoso-Martínez, I.; García-Peña, M.R.; González-Gallegos, J.G.; Lara-Cabrera, S.I.; Zamudio, S. Lamiaceae de México. Bot. Sci. 2017, 95, 780–806. [Google Scholar] [CrossRef]
- González-Gallegos, J.G.; Bedolla-García, B.Y.; Cornejo-Tenorio, G.; Fernández-Alonso, J.L.; Fragoso-Martínez, I.; García-Peña, M.D.R.; Harley, R.M.; Klitgaard, B.; Martínez-Gordillo, M.J.; Wood, J.R.I.; et al. Richness and distribution of Salvia subg. Calosphace (Lamiaceae). Int. J. Plant Sci. 2020, 181, 831–856. [Google Scholar] [CrossRef]
- Ortiz-Mendoza, N.; Aguirre-Hernández, E.; Fragoso-Martínez, I.; González-Trujano, M.E.; Basurto-Peña, F.A.; Martínez-Gordillo, M.J. A review on the ethnopharmacology and phytochemistry of the Neotropical sages (Salvia subgenus Calosphace; Lamiaceae) emphasizing Mexican species. Front. Pharmacol. 2022, 13, 867892. [Google Scholar] [CrossRef] [PubMed]
- Hernández-León, A.; Moreno-Pérez, G.F.; Martínez-Gordillo, M.; Aguirre-Hernández, E.; Valle-Dorado, M.G.; Díaz-Reval, M.I.; González-Trujano, M.E.; Pellicer, F. Lamiaceae in Mexican species, a great but scarcely explored source of secondary metabolites with potential pharmacological effects in pain relief. Molecules 2021, 26, 7632. [Google Scholar] [CrossRef]
- Kamatou, G.P.P.; Makunga, N.P.; Ramogola, W.P.N.; Viljoen, A.M. South African Salvia species: A review of biological activities and phytochemistry. J. Ethnopharmacol. 2008, 119, 664–672. [Google Scholar] [CrossRef]
- Mrabti, H.N.; El-Menyiy, N.; Charfi, S.; Saber, M.; Bakrim, S.; Alyamani, R.A.; Rauf, A.; Ali, A.M.H.; Abdallah, E.M.; El-Omari, N.; et al. Phytochemistry and biological properties of Salvia verbenaca L.: A comprehensive review. Biomed Res. Int. 2022, 2022, 3787818. [Google Scholar] [CrossRef] [PubMed]
- Jedidi, S.; Selmi, H.; Aloui, F.; Rtibi, K.; Sammari, H.; Abbes, C.; Sebai, H. Antioxidant properties, phytoactive compounds and potential protective action of Salvia officinalis flowers against combined gastro-intestinal ulcer and diarrhea experimentally induced in rat. Dose-Response Int. J. 2022, 20, 15593258221102313. [Google Scholar] [CrossRef]
- Randjelović, M.; Branković, S.; Miladinović, B.; Milutinović, M.; Živanović, S.; Mihajilov-Krstev, T.; Kitić, D. The benefits of Salvia sclarea L. ethanolic extracts on gastrointestinal and respiratory spasms. S. Afr. J. Bot. 2022, 150, 621–632. [Google Scholar] [CrossRef]
- Calzada, F.; Bautista, E.; Barbosa, E.; Salazar-Olivo, L.A.; Alvidrez-Armendáriz, E.; Yepez-Mulia, L. Antiprotozoal activity of secondary metabolites from Salvia circinata. Rev. Bras. Farmacogn. 2020, 30, 593–596. [Google Scholar] [CrossRef]
- Flores-Bocanegra, L.; González-Andrade, M.; Bye, R.; Linares, E.; Mata, R. α Glucosidase inhibitors from Salvia circinata. J. Nat. Prod. 2017, 80, 1584–1593. [Google Scholar] [CrossRef] [PubMed]
- Mata, R.; Figueroa, M.; Navarrete, A.; Rivero-Cruz, I. Chemistry and biology of selected Mexican medicinal plants. In Progress in the Chemistry of Organic Natural Products; Kinghorn, A., Falk, H., Gibbons, S., Kobayashi, J., Asakawa, Y., Liu, J.K., Eds.; Springer: Cham, Switzerland, 2019; Volume 108. [Google Scholar] [CrossRef]
- Moreno-Pérez, G.F.; González-Trujano, M.E.; Martínez-Gordillo, M.J.; Miguel-Chávez, R.S.; Basurto-Peña, F.A.; Dorazco-González, A.; Aguirre-Hernández, E. Amarisolide A and pedalitin as bioactive compounds in the antinociceptive effects of Salvia circinata (Lamiaceae). Bot. Sci. 2019, 97, 355–365. [Google Scholar] [CrossRef]
- Moreno-Pérez, G.F.; Hernández-León, A.; Valle-Dorado, M.G.; Cano-Martínez, A.; Narváez-González, F.; Aguirre-Hernández, E.; Salgado-Ceballos, H.; González-Trujano, M.E. Neo-clerodane diterpenic influence in the antinociceptive and anti-inflammatory properties of Salvia circinnata Cav. J. Ethnopharmacol. 2021, 268, 113550. [Google Scholar] [CrossRef]
- Salinas-Arellano, E.; Pérez-Vásquez, A.; Rivero-Cruz, I.; Torres-Colin, R.; González-Andrade, M.; Rangel-Grimaldo, M.; Mata, R. Flavonoids and terpenoids with PTP-1B inhibitory properties from the infusion of Salvia amarissima Ortega. Molecules 2020, 25, 3530. [Google Scholar] [CrossRef]
- Nurzyńska-Wierdak, R. Phenolic compounds from new natural sources–plant genotype and ontogenetic variation. Molecules 2023, 28, 1731. [Google Scholar] [CrossRef] [PubMed]
- Bautista, I.; Boscaiu, M.; Lidón, A.; Llinares, J.V.; Lull, C.; Donat, M.P.; Vicente, O. Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiol. Plant. 2016, 38, 9. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Bettaieb, I.; Hamrouni-Sellami, I.; Bourgou, S.; Limam, F.; Marzouk, B. Drought effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L. Acta Physiol. Plant. 2011, 33, 1103–1111. [Google Scholar] [CrossRef]
- Tavakoli, M.; Esfahani, M.T.; Soltani, S.; Karamian, R.; Aliarabi, H. Effects of ecological factors on phenolic compounds in Salvia multicaulis Vahl (Lamiaceae). Biochem. Syst. Ecol. 2022, 104, 104484. [Google Scholar] [CrossRef]
- de Rzedowski, G.C.; Rzedowski, J. Flora Fanerogámica del Valle de México; Instituto de Ecología, A.C. y Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad: Pátzcuaro, Mexico, 2005. [Google Scholar] [CrossRef]
- Lara-Cabrera, S.I.; Bedolla-García, B.Y.; Zamudio, S.; Domínguez-Vázquez, G. Diversidad de Lamiaceae en el estado de Michoacán, México. Acta Bot. Mex. 2016, 116, 107–149. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Geografía (INEGI). Compendio de Información Geográfica Municipal 2010; San Martín Huamelulpam: Oaxaca, Mexico; INEGI: Aguascalientes, Mexico, 2010; Available online: https://www.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/20/20239.pdf (accessed on 1 April 2023).
- Norma Oficial Mexicana (NOM). NOM-021-RECNAT-2000; Especificaciones de Fertilidad, Salinidad y Clasificación de Suelos. Estudios, Muestreo y Análisis; Diario Oficial de la Federación: Ciudad de Mexico, Mexico, 31 December 2002; Volume 73, p. 2000. Available online: https://catalogonacional.gob.mx/FichaRegulacion?regulacionId=22947 (accessed on 1 April 2023).
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Tang, C.-Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007, 101, 140–147. [Google Scholar] [CrossRef]
- Pękal, A.; Pyrzynska, K. Evaluation of aluminum complexation reaction for flavonoid content assay. Food Anal. Meth. 2014, 7, 1776–1782. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef]
- Pająk, P.; Socha, R.; Broniek, J.; Królikowska, K.; Fortuna, T. Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chem. 2019, 275, 69–76. [Google Scholar] [CrossRef]
- Pérez-Ochoa, M.L.; Vera-Guzmán, A.M.; Mondragón-Chaparro, D.M.; Sandoval-Torres, S.; Carrillo-Rodríguez, J.C.; Chavez-Servia, J.L. Effects of growth conditions on phenolic composition and antioxidant activity in the medicinal plant Ageratina petiolaris (Asteraceae). Diversity 2022, 14, 595. [Google Scholar] [CrossRef]
- SAS Institute Inc. (SAS) Base SAS® 9.1.3 Procedures Guide, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2006; Volume 1. [Google Scholar]
- Arbona, V.; Manzi, M.; de Ollas, C.; Gómez-Cadenas, A. Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 4885–4911. [Google Scholar] [CrossRef]
- Verma, N.; Shukla, S. Impact of various factors responsible for fluctuations in plant secondary metabolites. J. Appl. Res. Med. Aromat. Plants 2015, 2, 105–113. [Google Scholar] [CrossRef]
- Yang, X.; Lu, M.; Wang, Y.; Wang, Y.; Liu, Z.; Chen, S. Response mechanism of plants to drought stress. Horticulturae 2021, 7, 50. [Google Scholar] [CrossRef]
- Farhat, M.B.; Landoulsi, A.; Chaouch-Hamada, R.; Sotomayor, J.A.; Jordán, M.J. Characterization and quantification of phenolic compounds and antioxidant properties of Salvia species growing in different habitats. Ind. Crop. Prod. 2013, 49, 904–914. [Google Scholar] [CrossRef]
- Sarrou, E.; Martens, S.; Chatzopoulou, P. Metabolite profiling and antioxidative activity of sage (Salvia fruticosa Mill.) under the influence of genotype and harvesting period. Ind. Crop. Prod. 2016, 94, 240–250. [Google Scholar] [CrossRef]
- Linch, M.; Walsh, B. Genetics and Analysis of Quantitative Traits; Sinauer Associates, Inc.: Sunderland, MA, USA, 1998; pp. 107–129. [Google Scholar]
- Trivellini, A.; Lucchesini, M.; Maggini, R.; Mosadegh, H.; Villamarin, T.S.S.; Vernieri, P.; Mensuali-Sodi, A.; Pardossi, A. Lamiaceae phenols as multifaceted compounds: Bioactivity, industrial prospects and role of “positive-stress”. Ind. Crop. Prod. 2016, 83, 241–254. [Google Scholar] [CrossRef]
- Shojaeifard, Z.; Hemmatinejad, B.; Jassbi, A.R. Chemometrics-based LC-UV-ESIMS analyses of 50 Salvia species for detecting their antioxidant constituents. J. Pharm. Biomed. Anal. 2021, 193, 113745. [Google Scholar] [CrossRef]
- Zengin, G.; Llorent-Martínez, E.J.; Fernández-de Córdova, M.L.; Bahadori, M.B.; Mocan, A.; Locatelli, M.; Aktumsek, A. Chemical composition and biological activities of extracts from three Salvia species: S. blepharochlaena, S. uphratica var. leiocalycina, and S. veticillata subsp. amasica. Ind. Crop. Prod. 2018, 111, 11–21. [Google Scholar] [CrossRef]
- Cheynier, V.; Comte, G.; Davies, K.D.; Mattanzion, V.; Martens, S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 2013, 72, 1–20. [Google Scholar] [CrossRef] [PubMed]
Geographic and Environmental Growing Conditions of S. circinata | Natural Conditions (In Situ) | Ex Situ Cultivation | |
---|---|---|---|
San Martin Huamelulpam | Santa Cruz Xoxocotlan | ||
Reforma | La Union | ||
Locality descriptors: | |||
Altitude (m) | 2151 | 2238 | 1530 |
Latitude (N) | 17°24′24.0″ | 17°23′30.8″ | 17°02′64.6″ |
Longitude (W) | 97°37′11.5″ | 97°37′26.3″ | 96°71′95.3″ |
Annual average temperature (°C) a | 14–18 | 18–20 | |
Annual average rainfall (mm) | 700–1000 | 600–700 | |
Solar radiation (W/m2, maximum) | 1155–1308 | 1297–1349 | |
Climate (predominant) | Temperate subhumid with precipitation from June to November | Semidry to semiwarm | |
Soil chemical analysis b: | |||
Organic matter (%) | 4.67 | 7.15 | 9.41 |
pH (in H2O) | 7.76 | 7.86 | 7.48 |
P-Olsen (mg kg−1) | 9.52 | 12.30 | 271.40 |
B-Olsen (mg kg−1) | 0.52 | 0.83 | 2.00 |
K (cmol kg−1) | 0.51 | 0.86 | 3.86 |
Ca (cmol kg−1) | 38.00 | 44.20 | 27.10 |
Mg (cmol kg−1) | 1.14 | 1.52 | 7.99 |
Na (cmol kg−1) | 0.16 | 0.35 | 1.83 |
Fe (mg kg−1) | 8.48 | 8.54 | 26.59 |
Zn (mg kg−1) | 2.02 | 2.40 | 56.22 |
Mn (mg kg−1) | 15.65 | 18.25 | 18.09 |
Cu (mg kg−1) | 0.59 | 0.70 | 1.75 |
Inorganic N (mg kg−1) | 6.78 | 16.80 | 283.15 |
Electric conductivity | 0.27 | 0.40 | 2.28 |
Cation exchange capacity (cmol kg−1) | 41.00 | 48.00 | 41.50 |
Sources of Variation | Total Polyphenols | Flavonoids | Antioxidant Activity | ||
---|---|---|---|---|---|
Quercetin | Catechin | DPPH | FRAP | ||
Growth environment (E) | 2113.8 ** | 420.4 ** | 2797.9 ** | 193,044.6 ** | 349,462.7 ** |
Locality of origin (Po) | 8230.3 ** | 421.7 ** | 4991.2 ** | 439,294.9 ** | 711,823.6 ** |
E × Po | 31.8 ns | 0.02 ns | 78.9 ns | 4928.2 ns | 38,766.0 ** |
Sampling (S) | 154.7 ns | 9.0 ns | 18.9 ns | 831.1 ns | 18,120.1 * |
Lab. replicate/S 1 | 37.0 ns | 3.0 ns | 16.6 ns | 42.2 ns | 1012.3 ns |
Error | 9.6 | 0.8 | 2.7 | 163.7 | 828.2 |
Coeff. of variation (%) | 4.3 | 5.9 | 3.2 | 3.0 | 4.0 |
Study Factors | Levels | Total Polyphenols (mg GAE g−1 dw) | Flavonoids (mg g−1 dw) | Antioxidant Activity (µmol TE g−1 dw) | ||
---|---|---|---|---|---|---|
QE 1 | CE 1 | DPPH | FRAP | |||
Growth environment (E) | In situ | 78.0 ± 12.6 a 2 | 17.8 ± 3.3 a | 58.9 ± 8.5 a | 486.5 ± 62.5 a | 806.4 ± 121.2 a |
Ex situ | 69.1 ± 11.8 b | 13.9 ± 3.8 b | 48.7 ± 8.4 b | 402.0 ± 88.3 b | 692.6 ± 99.3 b | |
Localities of origin (Po) | Reforma | 79.8 ± 10.4 a 2 | 16.8 ± 4.4 a | 57.6 ± 8.6 a | 490.3 ± 69.2 a | 792.7 ± 101.4 a |
La Union | 62.9 ± 7.9 b | 12.9 ± 2.3 b | 44.9 ± 4.8 b | 356.0 ± 49.5 b | 649.3 ± 79.4 b | |
Environment–locality (E × Po) interactions: | ||||||
Reforma | In situ | 87.2 ± 8.3 a 2 | 19.8 ± 3.4 a | 66.5 ± 2.7 a | 543.6 ± 23.4 a | 906.5 ± 52.8 a |
Ex situ | 77.3 ± 9.9 a | 15.8 ± 4.3 a | 54.6 ± 7.9 a | 472.5 ± 70.4 a | 754.8 ± 83.8 b | |
La Union | In situ | 68.7 ± 8.5 a | 15.8 ± 1.5 a | 51.2 ± 4.1 a | 429.5 ± 24.8 a | 706.2 ± 78.9 b |
Ex situ | 60.9 ± 6.7 a | 11.9 ± 1.5 a | 42.7 ± 2.7 a | 331.5 ± 25.3 a | 630.3 ± 70.7 c |
Sources of Variation | Chlorogenic Acid | Rosmarinic Acid | Isoquercitrin | Rutin |
---|---|---|---|---|
Growth environment (E) | 79.0 ns | 900.9 * | 1046.9 ** | 178,322,423 ** |
Localities of origin (Po) | 7711.8 ** | 41.8 ns | 3389.9 ** | 80,878,246 ** |
E × Po | 2993.4 * | 953.5 * | 270.2 ** | 42,704,363 ** |
Sampling (S) | 1995.4 ** | 103.5 ns | 46.1 ns | 21,168,781 ** |
Rep./S 1 | <0.01 ns | 117.8 ns | 0.04 ns | 161,649 ns |
Error | 527.4 | 168.4 | 12.6 | 367,122.3 |
Coeff. variation (%) | 23.2 | 13.6 | 16.8 | 12.9 |
Compounds Evaluated (µg g−1 dw) | Growth Environments (E) | Localities of Origin (Po) | Locality–Environment Interactions (Po × E) | |||||
---|---|---|---|---|---|---|---|---|
Reforma | La Union | |||||||
In Situ | Ex Situ | Reforma | La Union | In Situ | Ex Situ | In Situ | Ex Situ | |
Chlorogenic acid | 100.8 a 1 | 98.0 a | 112.5 a 1 | 85.2 b | 105.6 a 1 | 117.1 a | 95.6 b | 78.9 b |
Rosmarinic acid | 10,451.1 a | 8690.4 b | 9546.5 a | 9242.8 a | 11,677.5 a | 8125.8 b | 9224.7 b | 9254.9 b |
Isoquercitrin | 797.5 a | 353.4 b | 198.7 b | 863.5 a | 272.2 c | 149.7 c | 1322.8 a | 557.2 b |
Rutin | 7668.4 a | 2775.8 b | 5697.4 a | 3633.8 b | 9585.5 a | 3105.4 c | 5577.1 b | 2446.2 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Ochoa, M.L.; Vera-Guzmán, A.M.; Mondragón-Chaparro, D.M.; Sandoval-Torres, S.; Carrillo-Rodríguez, J.C.; Hernández-Delgado, S.; Chávez-Servia, J.L. Plant and Growth Condition Interactions on the Phenolic Compound Contents and Antioxidant Activity in Salvia circinata Cav., a Medicinal Sage. Diversity 2023, 15, 656. https://doi.org/10.3390/d15050656
Pérez-Ochoa ML, Vera-Guzmán AM, Mondragón-Chaparro DM, Sandoval-Torres S, Carrillo-Rodríguez JC, Hernández-Delgado S, Chávez-Servia JL. Plant and Growth Condition Interactions on the Phenolic Compound Contents and Antioxidant Activity in Salvia circinata Cav., a Medicinal Sage. Diversity. 2023; 15(5):656. https://doi.org/10.3390/d15050656
Chicago/Turabian StylePérez-Ochoa, Mónica L., Araceli M. Vera-Guzmán, Demetria M. Mondragón-Chaparro, Sadoth Sandoval-Torres, José C. Carrillo-Rodríguez, Sanjuana Hernández-Delgado, and José L. Chávez-Servia. 2023. "Plant and Growth Condition Interactions on the Phenolic Compound Contents and Antioxidant Activity in Salvia circinata Cav., a Medicinal Sage" Diversity 15, no. 5: 656. https://doi.org/10.3390/d15050656
APA StylePérez-Ochoa, M. L., Vera-Guzmán, A. M., Mondragón-Chaparro, D. M., Sandoval-Torres, S., Carrillo-Rodríguez, J. C., Hernández-Delgado, S., & Chávez-Servia, J. L. (2023). Plant and Growth Condition Interactions on the Phenolic Compound Contents and Antioxidant Activity in Salvia circinata Cav., a Medicinal Sage. Diversity, 15(5), 656. https://doi.org/10.3390/d15050656