Genetic Variability and Family Relationships in a Reintroduced Osprey (Pandion haliaetus) Population: A Field-Lab Integrated Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Study Area
2.2. Criterion of the Marker Choice
2.3. DNA Extraction and Amplification
2.4. Dataset Identification
2.5. Genetic Variability
2.6. Analysis of the Genetic Structure
2.7. Family Relationship Confirmation
3. Results
3.1. Genetic Variability in the Long Term
3.2. Structure Analysis
3.3. Family Relationship Confirmation
4. Discussion
4.1. Genetic Variability
4.2. Genetic Structure
4.3. Family Relationships
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pereira, H.M.; Leadley, P.W.; Proença, V.; Alkemade, R.; Scharlemann, J.P.; Fernandez-Manjarrés, J.F.; Araújo, M.B.; Balvanera, P.; Biggs, R.; Cheung, W.W. Scenarios for global biodiversity in the 21st century. Science 2010, 330, 1496–1501. [Google Scholar] [CrossRef] [PubMed]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar]
- Seddon, P.J. From reintroduction to assisted colonization: Moving along the conservation translocation spectrum. Restor. Ecol. 2010, 18, 796–802. [Google Scholar] [CrossRef]
- Jones, C.G. Conservation management of endangered birds. Bird Ecol. Conserv. Handb. Tech. 2004, 1, 269–302. [Google Scholar]
- Ivanovski, V. Construction of artificial nests as conservation measure for rare birds of prey. Buteo 2000, 11, 131–138. [Google Scholar]
- Ewen, J.G.; Armstrong, D.P.; Parker, K.A.; Seddon, P.J. Reintroduction Biology: Integrating Science and Management; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Blanco, J.M.; Wildt, D.E.; Höfle, U.; Voelker, W.; Donoghue, A.M. Implementing artificial insemination as an effective tool for ex situ conservation of endangered avian species. Theriogenology 2009, 71, 200–213. [Google Scholar] [CrossRef]
- Kuehler, C.; Lieberman, A.; Harrity, P.; Kuhn, M.; Kuhn, J.; McIlraith, B.; Turner, J. Restoration techniques for Hawaiian forest birds: Collection of eggs, artificial incubation and hand-rearing of chicks, and release to the wild. Stud. Avian Biol. 2001, 22, 354–358. [Google Scholar]
- IUCN/SSC. Guidelines for Reintroductions and Other Conservation Translocations; International Union for Conservation of Nature/Species Survival Commission: Gland, Switzerland, 2013. [Google Scholar]
- IUCN. IUCN Position Statement on the Translocation of Living Organisms: Introductions, Re-Introductions, and Restocking; IUCN: Gland, Switzerland, 1987. [Google Scholar]
- Sarrazin, F.; Barbault, R. Reintroduction: Challenges and lessons for basic ecology. Trends Ecol. Evol. 1996, 11, 474–478. [Google Scholar] [CrossRef]
- Jamieson, I.G. Founder effects, inbreeding, and loss of genetic diversity in four avian reintroduction programs. Conserv. Biol. 2011, 25, 115–123. [Google Scholar] [CrossRef]
- Frankham, R. Conservation genetics. Encycl. Ecol. 2018, 1, 382–390. [Google Scholar]
- Szűcs, M.; Melbourne, B.A.; Tuff, T.; Hufbauer, R.A. The roles of demography and genetics in the early stages of colonization. Proc. R. Soc. B Biol. Sci. 2014, 281, 20141073. [Google Scholar] [CrossRef]
- Szűcs, M.; Melbourne, B.A.; Tuff, T.; Weiss-Lehman, C.; Hufbauer, R.A. Genetic and demographic founder effects have long-term fitness consequences for colonising populations. Ecol. Lett. 2017, 20, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, W.J.; Armstrong, D.; Butchart, S.H.M.; Earnhardt, J.M.; Ewen, J.; Jamieson, I.; Jones, C.G.; Lee, R.; Newbery, P.; Nichols, J.D. Standards for documenting and monitoring bird reintroduction projects. Conserv. Lett. 2010, 3, 229–235. [Google Scholar] [CrossRef]
- Coiffait, L.; Redfern, C.P.; Bevan, R.M.; Newton, J.; Wolff, K. The use of intrinsic markers to study bird migration. Ringing Migr. 2009, 24, 169–174. [Google Scholar] [CrossRef]
- Newton, I. The Migration Ecology of Birds; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Margalida, A.; Ecolan, S.; Boudet, J.; Bertran, J.; Martinez, J.M.; Heredia, R. A solar-powered transmitting video camera for monitoring cliff-nesting raptors. J. Field Ornithol. 2006, 77, 7–12. [Google Scholar] [CrossRef]
- Ribic, C.A. Video Surveillance of Nesting Birds; University of California Press: Berkeley, CA, USA, 2012. [Google Scholar]
- Skujina, I.; Ougham, H.; Evans, E.; Monti, F.; Kalvāns, A.; Cross, T.; Macarie, N.A.; Hegarty, M.; Shaw, P.W.; McKeown, N.J. Ecological and Genetic Monitoring of a Recently Established Osprey (Pandion haliaetus) Population in Wales. J. Raptor Res. 2021, 55, 635–643. [Google Scholar] [CrossRef]
- Kaiser, S.A.; Taylor, S.A.; Chen, N.; Sillett, T.S.; Bondra, E.R.; Webster, M.S. A comparative assessment of SNP and microsatellite markers for assigning parentage in a socially monogamous bird. Mol. Ecol. Resour. 2017, 17, 183–193. [Google Scholar] [CrossRef]
- Monti, F.; Delfour, F.; Arnal, V.; Zenboudji, S.; Duriez, O.; Montgelard, C. Genetic connectivity among osprey populations and consequences for conservation: Philopatry versus dispersal as key factors. Conserv. Genet. 2018, 19, 839–851. [Google Scholar] [CrossRef]
- Vignal, A.; Milan, D.; SanCristobal, M.; Eggen, A. A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Sel. Evol. 2002, 34, 275–305. [Google Scholar] [CrossRef]
- Uller, T.; Olsson, M. Multiple paternity in reptiles: Patterns and processes. Mol. Ecol. 2008, 17, 2566–2580. [Google Scholar] [CrossRef]
- Poole, A.F. Ospreys: The Revival of a Global Raptor; JHU Press: Baltimore, MD, USA, 2019. [Google Scholar]
- Lohmus, A. Habitat selection in a recovering Osprey Pandion haliaetus population. Ibis 2001, 143, 651–657. [Google Scholar] [CrossRef]
- Schmidt-Rothmund, D.; Dennis, R.; Saurola, P. The Osprey in the Western Palearctic: Breeding population size and trends in the early 21st century. J. Raptor Res. 2014, 48, 375–386. [Google Scholar] [CrossRef]
- Bretagnolle, V.; Mougeot, F.; Thibault, J.-C. Density dependence in a recovering osprey population: Demographic and behavioural processes. J. Anim. Ecol. 2008, 77, 998–1007. [Google Scholar] [CrossRef] [PubMed]
- Garrido, J.; Numa, C.; Barrios, V.; Qninba, A.; Riad, A.; Haitham, O.; Benmammar Hasnaoui, H.; Buirzayqah, S.; Onrubia, A.; Fellous-Djardini, A. The Conservation Status and Distribution of the Breeding Birds of Prey of North Africa; IUCN: Gland, Switzerland, 2021; xvi + 102p. [Google Scholar]
- Helbig, A.; Schmidt, D.; Seibold, I. Mitochondrial DNA sequences reveal differentiation between Nearctic and Palearctic Osprey (Pandion haliaetus) populations. Biol Cons Fauna 1998, 102, 224. [Google Scholar]
- Monti, F.; Montgelard, C.; Robert, A.; Sforzi, A.; Triay, R.; Sarrazin, F.; Duriez, O. Evolutionary risks of osprey translocations. Science 2022, 376, 468–469. [Google Scholar] [CrossRef]
- Dennis, R. In Plan for the Recovery and Conservation of Ospreys (Pandion haliaetus) in Europe and the Mediterranean Region. In Proceedings of the Convention on the Conservation of European Wildlife and Natural Habitats. Standing Committee, 36th Meeting Strasbourg, Strasbourg, France, 15–18 November 2016. [Google Scholar]
- Muriel, R.; Ferrer, M.; Casado, E.; Calabuig, C.P. First successful breeding of reintroduced ospreys Pandion haliaetus in mainland Spain. Ardeola Int. J. Ornithol. 2010, 57, 175–180. [Google Scholar]
- Palma, L.; Beja, P. Reintroduction of the osprey (Pandion haliaetus) in Portugal. Annu. Rep. 2011, 27, 21–31. [Google Scholar]
- Monti, F.; Dominici, J.M.; Choquet, R.; Duriez, O.; Sammuri, G.; Sforzi, A. The Osprey reintroduction in Central Italy: Dispersal, survival and first breeding data. Bird Study 2014, 61, 465–473. [Google Scholar] [CrossRef]
- Bulgarini, F.; Calvario, E.; Fraticelli, F.; Petretti, F.; Sarrocco, S. Libro Rosso degli Animali d’Italia: Vertebrati; WWF Italia: Rome, Italy, 1998. [Google Scholar]
- Brichetti, P.; Fracasso, G. The Birds of Italy: Anatidae-Alcidae; Edizioni Belvedere: Vicenza, Italy, 2018. [Google Scholar]
- Melotti, P.; Spagnesi, M. Analisi Delle Riprese Di Falco Pescatore (Pandion h. haliaetus L.) Avvenute in Italia nel Periodo 1939–1977; Istituto Nazionale Di Biologia Della Selvaggina Alessandro Ghigi: Bologna, Italy, 1979. [Google Scholar]
- Pezzo, F. Falco Pescatore. In Atlante degli Uccelli Nidificanti in Italia; Histotia Naturae, Lardelli, R., Bogliani, G., Brichetti, P., Caprio, E., Selada, C., Conca, G., Fraticelli, F., Gustin, M., Janni, O., Pedrini, P., et al., Eds.; Edizioni Belvedere: Latina, Italy, 2022; pp. 266–267. [Google Scholar]
- Sforzi, A.; Sammuri, G.; Monti, F. From a regional reintroduction project to a country-wide conservation approach: Scaling up results to promote osprey conservation in Italy. Avocetta J. Ornithol. 2019, 43, 81–85. [Google Scholar]
- Poole, A.F. Ospreys: A Natural and Unnatural History; Cambridge University Press: Cambridge, UK, 1989; Volume 246. [Google Scholar]
- Englund, J.V.; Greene, V.L. Two-year-old nesting behavior and extra-pair copulation in a reintroduced Osprey population. J. Raptor Res. 2008, 42, 119–124. [Google Scholar] [CrossRef]
- Wahl, R.; Barbraud, C. The demography of a newly established Osprey Pandion haliaetus population in France. Ibis 2014, 156, 84–96. [Google Scholar] [CrossRef]
- Widén, P.; Richardson, M. Copulation behavior in the Osprey in relation to breeding density. Condor 2000, 102, 349–354. [Google Scholar] [CrossRef]
- Longmire, J.; Maltbie, M.; Baker, R. Use of “LysisBuffer” in DNA Isolation and Its Implication for Museum Collections; Museum of Texas Tech University: Lubbock, TX, USA, 1997. [Google Scholar]
- Dawson, D.A.; Kleven, O.; Dos Remedios, N.; Horsburgh, G.J.; Kroglund, R.T.; Santos, T.; Hewitt, C.R. A multiplex microsatellite set for non-invasive genotyping and sexing of the osprey (Pandion haliaetus). Conserv. Genet. Resour. 2015, 7, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Mucci, N.; Mengoni, C.; Randi, E. Discrimination of PCR products by colour and size improves the accuracy of sex-typing in avian species. Conserv. Genet. Resour. 2016, 9, 73–77. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed]
- Goudet, J. FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices, version 2.9.3; ScienceOpen: Burlington, MA, USA, 2001. [Google Scholar]
- Hammer, Ø.; Harper, D.; Ryan, P. PAST-palaeontological statistics, ver. 1.89. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Raymond, M.; Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 1995, 86, 248–249. [Google Scholar] [CrossRef]
- Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 2008, 8, 103–106. [Google Scholar] [CrossRef]
- Cornuet, J.M.; Luikart, G. Description and Power Analysis of Two Tests for Detecting Recent Population Bottlenecks from Allele Frequency Data. Genetics 1996, 144, 2001–2014. [Google Scholar] [CrossRef]
- Piry, S.; Luikart, G.; Cornuet, J.M. Computer note. Bottleneck: A computer program for detecting recent reductions in the effective size using allele frequency data. J. Hered. 1999, 90, 502–503. [Google Scholar] [CrossRef]
- Belkhir, K. GENETIX, Logiciel Sous WindowsTM Pour La Génétique des Populations. 1999. Available online: http://www.univmontp2.fr/~genetix (accessed on 28 February 2023).
- Pritchard, J.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Wen, X.; Falush, D. Documentation for Structure Software; Version 2.3; University of Chicago: Chicago, IL, USA, 2010; pp. 1–37. [Google Scholar]
- Falush, D.; Stephens, M.; Pritchard, J. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 2003, 164, 1567–1587. [Google Scholar] [CrossRef] [PubMed]
- Garnier, S.; Alibert, P.; Audiot, P.; Prieur, B.; Rasplus, J.-Y. Isolation by distance and sharp discontinuities in gene frequencies: Implications for the phylogeography of an alpine insect species, Carabus solieri. Mol. Ecol. 2004, 13, 1883–1897. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.A.; Vonholdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef]
- Jones, O.R.; Wang, J. COLONY: A program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 2010, 10, 551–555. [Google Scholar] [CrossRef]
- Le Gouar, P.; Rigal, F.; Boisselier-Dubayle, M.; Sarrazin, F.; Arthur, C.; Choisy, J.; Hatzofe, O.; Henriquet, S.; Lécuyer, P.; Tessier, C. Genetic variation in a network of natural and reintroduced populations of Griffon vulture (Gyps fulvus) in Europe. Conserv. Genet. 2008, 9, 349–359. [Google Scholar] [CrossRef]
- Loercher, F.; Keller, L.F.; Hegglin, D. Low genetic diversity of the reintroduced bearded vulture (Gypaetus barbatus) population in the Alps calls for further releases. In Proceedings of the 5th Symposium for Research in Protected Areas, Mittersill, Austria, 10–12 June 2013. [Google Scholar]
- Alcaide, M.; Negro, J.J.; Serrano, D.; Antolín, J.L.; Casado, S.; Pomarol, M. Captive breeding and reintroduction of the lesser kestrel Falco naumanni: A genetic analysis using microsatellites. Conserv. Genet. 2010, 11, 331–338. [Google Scholar] [CrossRef]
- Ewing, S.R.; Nager, R.G.; Nicoll, M.A.C.; Aumjaud, A.; Jones, C.G.; Keller, L.F. Inbreeding and loss of genetic variation in a reintroduced population of Mauritius Kestrel. Conserv. Biol. 2008, 22, 395–404. [Google Scholar] [CrossRef]
- Morandini, V.; Dietz, S.; Newton, I.; Ferrer, M. The role of age of first breeding in modeling raptor reintroductions. Ecol. Evol. 2019, 9, 2978–2985. [Google Scholar] [CrossRef]
- Johnson, J.A.; Stock, A.; Juergens, P.; Mutch, B.; McClure, C.J. Temporal genetic diversity and effective population size of the reintroduced aplomado falcon (Falco femoralis) population in coastal south texas. J. Raptor Res. 2021, 55, 169–180. [Google Scholar] [CrossRef]
- Jacobsen, F.; Nesje, M.; Bachmann, L.; Lifjeld, J.T. Significant genetic admixture after reintroduction of peregrine falcon (Falco peregrinus) in Southern Scandinavia. Conserv. Genet. 2008, 9, 581–591. [Google Scholar] [CrossRef]
- Champagnon, J.; Elmberg, J.; Guillemain, M.; Gauthier-Clerc, M.; Lebreton, J.-D. Conspecifics can be aliens too: A review of effects of restocking practices in vertebrates. J. Nat. Conserv. 2012, 20, 231–241. [Google Scholar] [CrossRef]
- Englund, J.V. An urban Osprey population established by translocation. J. Raptor Res. 2002, 36, 91–96. [Google Scholar]
- Rymon, L.M. The Restoration of Ospreys Pandion haliaetus to Breeding Status in Pennsylvania by Hacking (1980–1986). In Raptors in the Modern World; World Working Group on Birds of Prey (WWGBP): Berlin, Germany; London, UK; Paris, France, 1989; pp. 359–362. [Google Scholar]
- Dennis, R.; Dixon, H. The experimental reintroduction of Ospreys Pandion haliaetus from Scotland to England. Vogelwelt 2001, 122, 147–154. [Google Scholar]
- Zelano, B.; Edwards, S.V. An MHC component to kin recognition and mate choice in birds: Predictions, progress, and prospects. Am. Nat. 2002, 160, S225–S237. [Google Scholar] [CrossRef]
- Griggio, M.; Biard, C.; Penn, D.J.; Hoi, H. Female house sparrows “count on” male genes: Experimental evidence for MHC-dependent mate preference in birds. BMC Evol. Biol. 2011, 11, 44. [Google Scholar] [CrossRef]
- Strandh, M.; Westerdahl, H.; Pontarp, M.; Canbäck, B.; Dubois, M.-P.; Miquel, C.; Taberlet, P.; Bonadonna, F. Major histocompatibility complex class II compatibility, but not class I, predicts mate choice in a bird with highly developed olfaction. Proc. R. Soc. B Biol. Sci. 2012, 279, 4457–4463. [Google Scholar] [CrossRef]
- Westerdahl, H. No evidence of an MHC-based female mating preference in great reed warblers. Mol. Ecol. 2004, 13, 2465–2470. [Google Scholar] [CrossRef]
- Stervander, M.; Dierickx, E.G.; Thorley, J.; Brooke, M.d.L.; Westerdahl, H. High MHC gene copy number maintains diversity despite homozygosity in a Critically Endangered single-island endemic bird, but no evidence of MHC-based mate choice. Mol. Ecol. 2020, 29, 3578–3592. [Google Scholar] [CrossRef]
- Bazzi, G.; Cecere, J.G.; Caprioli, M.; Gatti, E.; Gianfranceschi, L.; Podofillini, S.; Possenti, C.D.; Ambrosini, R.; Saino, N.; Spina, F. Clock gene polymorphism, migratory behaviour and geographic distribution: A comparative study of trans-Saharan migratory birds. Mol. Ecol. 2016, 25, 6077–6091. [Google Scholar] [CrossRef]
- Bossu, C.M.; Heath, J.A.; Kaltenecker, G.S.; Helm, B.; Ruegg, K.C. Clock-linked genes underlie seasonal migratory timing in a diurnal raptor. Proc. R. Soc. B 2022, 289, 20212507. [Google Scholar] [CrossRef] [PubMed]
Pop | Na | Ar | Ho | He | P (HWE) |
---|---|---|---|---|---|
POP_1 (n = 33) | 3.4 ± 0.4 | 3.4 ± 0.4 | 0.451 ± 0.066 | 0.444 ± 0.056 | - |
POP_2 (n = 49) | 3.0 ± 0.4 | 3.0 ± 0.4 | 0.462 ± 0.072 | 0.433 ± 0.060 | <1.33 × 10−10 |
WSS (n = 81) | 3.4 ± 0.4 | 3.4 ± 0.4 | 0.458 ± 0.068 | 0.445 ± 0.058 | <1.61 × 10−7 |
Family Cluster 1 Prob (inc) 1.00 NEST_1 | Family Cluster 2 Prob (inc) 0.96 NEST_2 | Family Cluster 3 Prob (inc) 1.00 NEST_3 | Family Cluster 4 Prob (inc) 1.00 NEST_4 | Family Cluster 5 Prob (inc) 1.00 NEST_5 | Family Cluster 6 Prob (inc) 1.00 NEST_1 |
---|---|---|---|---|---|
1-B7-E3270 | 2-IAD-E1051 | 3-E4739 | 4-ICE-E4742 | 5-IBB-E4750 | 1-IBS-E2428 |
1-IAP-E1055 | 2-E4738 | 3-E4740 | 4-ICV-E4743 | 5-IBC-E2421 | 1-IBM-E2427 |
1-IAT-E1056 | 2-E4737 | 3-IAH-E1054 | 4-ICI-E4744 | 5-IBD-E2422 | |
1-IAZ-E1057 | 2-A7-E4736 | 3-IBE-E1058 | 4-ICT-E4748 | 5-IFJ-E2439 | |
1-IBA-E1066 | 2-IAK-E1060 | 3-IBI-E1059 | 4-ICZ-E4749 | 5-IFH-E2438 | |
2-IAV-E1061 | 3-IAM-E1063 | 4-IBV-E2429 | |||
2-IAO-E1064 | 3-IAB-E1062 | 4-IFC-E2434 | |||
2-IAS-E1065 | 3-IDA-E4745 | 4-IFF-E2437 | |||
2-IAU-E4747 | 3-IDB-E4746 | 4-IFD-E2436 | |||
2-IBZ-E2426 | 3-IBK-E2425 | ||||
3-IBH-E2424 | |||||
3-IFA-E2431 | |||||
3-IFB-E2432 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monti, F.; Mengoni, C.; Sforzi, A.; Pezzo, F.; Serra, L.; Sammuri, G.; Mucci, N. Genetic Variability and Family Relationships in a Reintroduced Osprey (Pandion haliaetus) Population: A Field-Lab Integrated Approach. Diversity 2023, 15, 622. https://doi.org/10.3390/d15050622
Monti F, Mengoni C, Sforzi A, Pezzo F, Serra L, Sammuri G, Mucci N. Genetic Variability and Family Relationships in a Reintroduced Osprey (Pandion haliaetus) Population: A Field-Lab Integrated Approach. Diversity. 2023; 15(5):622. https://doi.org/10.3390/d15050622
Chicago/Turabian StyleMonti, Flavio, Chiara Mengoni, Andrea Sforzi, Francesco Pezzo, Lorenzo Serra, Giampiero Sammuri, and Nadia Mucci. 2023. "Genetic Variability and Family Relationships in a Reintroduced Osprey (Pandion haliaetus) Population: A Field-Lab Integrated Approach" Diversity 15, no. 5: 622. https://doi.org/10.3390/d15050622
APA StyleMonti, F., Mengoni, C., Sforzi, A., Pezzo, F., Serra, L., Sammuri, G., & Mucci, N. (2023). Genetic Variability and Family Relationships in a Reintroduced Osprey (Pandion haliaetus) Population: A Field-Lab Integrated Approach. Diversity, 15(5), 622. https://doi.org/10.3390/d15050622