Threat Analysis of Forest Fragmentation and Degradation for Peruvian Primates
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IUCN. IUCN Red List of Threatened Species. Available online: https://www.redlist.org (accessed on 1 September 2021).
- Estrada, A.; Garber, P.A.; Chaudhary, A. Expanding global commodities trade and consumption place the world’s primates at risk of extinction. PeerJ 2019, 7, e7068. [Google Scholar] [CrossRef] [Green Version]
- Estrada, A.; Garber, P.A.; Rylands, A.B.; Roos, C.; Fernández-Duque, E.; Di Fiore, A.; Nekaris, K.A.-I.; Nijman, V.; Heymann, E.W.; Lambert, J.E.; et al. Impending extinction crisis of the world’s primates: Why primates matter. Sci. Adv. 2017, 3, e1600946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crooks, K.R.; Burdett, C.L.; Theobald, D.M.; King, S.R.B.; Di Marco, M.; Rondinini, C.; Boitani, L. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proc. Natl. Acad. Sci. USA 2017, 114, 7635–7640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmeirim, A.F.; Santos-Filho, M.; Peres, C.A. Marked decline in forest-dependent small mammals following habitat loss and fragmentation in an Amazonian deforestation frontier. PLoS ONE 2020, 15, e0230209. [Google Scholar] [CrossRef] [PubMed]
- Laurance, W.F.; Delamônica, P.; Laurance, S.G.; Vasconcelos, H.L.; Lovejoy, T.E. Rainforest fragmentation kills big trees. Nature 2000, 404, 836. [Google Scholar] [CrossRef] [PubMed]
- Jamhuri, J.; Samantha, L.D.; Tee, S.L.; Kamarudin, N.; Ashton-Butt, A.; Zubaid, A.; Lechner, A.M.; Azhar, B. Selective logging causes the decline of large-sized mammals including those in unlogged patches surrounded by logged and agricultural areas. Biol. Conserv. 2018, 227, 40–47. [Google Scholar] [CrossRef]
- Cudney-Valenzuela, S.J.; Arroyo-Rodríguez, V.; Morante-Filho, J.C.; Toledo-Aceves, T.; Andresen, E. Tropical forest loss impoverishes arboreal mammal assemblages by increasing tree canopy openness. Ecol. Appl. 2023, 33, e2744. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.G.; Ribeiro, M.C.; Hasui, É.; da Costa, C.A.; da Cunha, R.G.T. Patch Size, Functional Isolation, Visibility and Matrix Permeability Influences Neotropical Primate Occurrence within Highly Fragmented Landscapes. PLoS ONE 2015, 10, e0114025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hazelwood, K.; Paine, C.E.T.; Cornejo Valverde, F.H.; Pringle, E.G.; Beck, H.; Terborgh, J. Changes in tree community structure in defaunated forests are not driven only by dispersal limitation. Ecol. Evol. 2020, 10, 3392–3401. [Google Scholar] [CrossRef] [Green Version]
- Benchimol, M.; Peres, C.A. Predicting primate local extinctions within “real-world” forest fragments: A pan-neotropical analysis. Am. J. Primatol. 2014, 76, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Cardillo, M.; Mace, G.M.; Jones, K.E.; Bielby, J.; Bininda-Emonds, O.R.P.; Sechrest, W.; Orme, C.D.L.; Purvis, A. Multiple causes of high extinction risk in large mammal species. Science 2005, 309, 1239–1241. [Google Scholar] [CrossRef] [Green Version]
- Carretero-Pinzón, X.; Defler, T.R.; McAlpine, C.A.; Rhodes, J.R. What do we know about the effect of patch size on primate species across life history traits? Biodivers. Conserv. 2016, 25, 37–66. [Google Scholar] [CrossRef] [Green Version]
- Galán-Acedo, C.; Arroyo-Rodríguez, V.; Cudney-Valenzuela, S.J.; Fahrig, L. A global assessment of primate responses to landscape structure. Biol. Rev. 2019, 94, 1605–1618. [Google Scholar] [CrossRef] [PubMed]
- Benchimol, M.; Pere, C.A. Anthropogenic modulators of species-area relationships in Neotropical primates: A continental-scale analysis of fragmented forest landscapes. Divers. Distrib. 2013, 19, 1339–1352. [Google Scholar] [CrossRef] [Green Version]
- Programa Bosques. Bosque—no bosque y pérdida de bosque Húmedo Amazónico 2000–2014; Programa Nacional de Conservación de Bosques para la Mitigación del Cambio Climatico: Lima, Peru, 2015. [Google Scholar]
- Watch, G.F. World Resources Institute Open Data Porta. Available online: http://data.globalforestwatch.org/datasets/mining-concessions (accessed on 20 May 2020).
- GIZ. Cambio de Uso Actual de la Tierra en la Amazonía Peruana: Avances e Implementación en el Marco de la Ley Forestal y de Fauna Silvestre 29763; Cooperación Alemana: Lima, Peru, 2016; p. 28. [Google Scholar]
- Kahhat, R.; Parodi, E.; Larrea-Gallegos, G.; Mesta, C.; Vázquez-Rowe, I. Environmental impacts of the life cycle of alluvial gold mining in the Peruvian Amazon rainforest. Sci. Total Environ. 2019, 662, 940–951. [Google Scholar] [CrossRef]
- Oliveira, P.J.C.; Asner, G.P.; Knapp, D.E.; Almeyda, A.; Galván-Gildemeister, R.; Keene, S.; Raybin, R.F.; Smith, R.C. Land-Use Allocation Protects the Peruvian Amazon. Science 2007, 317, 1233–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurance, W.F. Conservation and the Global Infrastructure Tsunami: Disclose, Debate, Delay! Trends Ecol. Evol. 2018, 33, 568–571. [Google Scholar] [CrossRef] [PubMed]
- Aquino, R.; Cornejo, F.; Cortés-Ortiz, L.; Encarnación, C.F.; Heymann, E.W.; Marsh, L.K.; Mittermeier, R.A.; Rylands, A.B.; Vermeer, J. Primates de Peru, Guia de Identificacion de Bolsillo; Conservation International: Arlington, VA, USA, 2015. [Google Scholar]
- Pacheco, V.; Graham-Angeles, L.; Dian Peña, S.R.; Hurtado, C.M.; Ruelas, D.; Cervantes Zevallos, O.K.; Serrano Villavicencio, J.E. Diversidad y distribución de los mamíferos del Perú por departamentos y ecorregiones I: Didelphimorphia, Paucituberculata, Sirenia, Cingulata, Pilosa, Primates, Lagomorpha, Eulipotyphla, Carnivora, Perissodactyla y Artiodactyla. Rev. Peru. Biol. 2020, 27, 289–328. [Google Scholar] [CrossRef]
- Hurtado, C.M.; Serrano-Villavicencio, J.; Pacheco, V. Densidad poblacional y conservación de los primates de la Reserva de Biosfera del Noroeste, Tumbes, Perú. Rev. Peru. Biol. 2016, 23, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Boonratana, R. Asian primates in fragments: Understanding causes and consequences of fragmentation, and predicting primate population viability. Am. J. Primatol. 2020, 82, e23082. [Google Scholar] [CrossRef] [PubMed]
- Salafsky, N.; Salzer, D.; Stattersfield, A.J.; Hilton-Taylor, C.; Neugarten, R.; Butchart, S.H.M.; Collen, B.E.N.; Cox, N.; Master, L.L.; O’Connor, S.; et al. A Standard Lexicon for Biodiversity Conservation: Unified Classifications of Threats and Actions. Conserv. Biol. 2008, 22, 897–911. [Google Scholar] [CrossRef] [PubMed]
- Rondón, S.; Cavallero, S.; Renzi, E.; Link, A.; González, C.; D’Amelio, S. Parasites of Free-Ranging and Captive American Primates: A Systematic Review. Microorganisms 2021, 9, 2546. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Bilbao, G.; Martin-Solano, S.; Saegerman, C. Zoonotic Blood-Borne Pathogens in Non-Human Primates in the Neotropical Region: A Systematic Review. Pathogens 2021, 10, 1009. [Google Scholar] [CrossRef] [PubMed]
- Solórzano-García, B.; Pérez-Ponce de León, G. Parasites of Neotropical Primates: A Review. Int. J. Primatol. 2018, 39, 155–182. [Google Scholar] [CrossRef]
- Rowe, N.; Myers, M. All the Worlds Primates; Pogonias Press: Charleston, RI, USA, 2016; p. 777. [Google Scholar]
- Ambiente, M.d. Estudio Para la Identificacion de Areas Degradadas y Propuesta de Monitoreo; Dirrecion General de Ordenamiento Territorial Ambiental—MINAM: Lima, Peru, 2018; p. 44. [Google Scholar]
- Rogelj, J.; Meinshausen, M.; Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Chang. 2012, 2, 248–253. [Google Scholar] [CrossRef]
- Kriticos, D.J.; Webber, B.L.; Leriche, A.; Ota, N.; Macadam, I.; Bathols, J.; Scott, J.K. CliMond: Global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 2012, 3, 53–64. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Allgas, N.; Shanee, S.; Shanee, N.; Collongues de Palomino, H. Rapid Survey of the Primate Density and Biomass at Katakari, Pacaya Samiria National Reserve, Peru. Primate Conserv. 2018, 32, 57–66. [Google Scholar]
- Terborgh, J. Five New World Primates: A Study in Comparative Ecology; Princeton University Press: Princeton, NJ, USA, 1983; p. 276. [Google Scholar]
- Finer, M.; Jenkins, C.N. Proliferation of Hydroelectric Dams in the Andean Amazon and Implications for Andes-Amazon Connectivity. PLoS ONE 2012, 7, e35126. [Google Scholar] [CrossRef]
- CIA. The World Fact Book. Available online: https://www.cia.gov/the-world-factbook/countries/peru/#people-and-society (accessed on 4 February 2021).
- Estrada, A.; Garber, P.A.; Chaudhary, A. Current and future trends in socio-economic, demographic and governance factors affecting global primate conservation. PeerJ 2020, 8, e9816. [Google Scholar] [CrossRef] [PubMed]
- Estrada, A. Socioeconomic Contexts of Primate Conservation: Population, Poverty, Global Economic Demands, and Sustainable Land Use. Am. J. Primatol. 2013, 75, 30–45. [Google Scholar] [CrossRef] [PubMed]
- Schjellerup, I. La Morada. A case study on the impact of human pressure on the environment in the Ceja de Selva, northeastern Peru. AMBIO J. Hum. Environ. 2000, 29, 451–454. [Google Scholar] [CrossRef]
- Shanee, N.; Shanee, S. Land trafficking, migration, and conservation in the “no-man’s land” of northeastern Peru. Trop. Conserv. Sci. 2016, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Gallice, G.R.; Larrea-Gallegos, G.; Vázquez-Rowe, I. The threat of road expansion in the Peruvian Amazon. Oryx 2017, 53, 284–292. [Google Scholar] [CrossRef]
- Lindshield, S.M. Protecting Nonhuman Primates in Peri-Urban Environments: A Case Study of Neotropical Monkeys, Corridor Ecology, and Coastal Economy in the Caribe Sur of Costa Rica. In Ethnoprimatology: Primate Conservation in the 21st Century; Waller, M.T., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 351–369. [Google Scholar]
- Bueno, C.; Sousa, C.O.M.; Freitas, S.R. Habitat or matrix: Which is more relevant to predict road-kill of vertebrates? Braz. J. Biol. 2015, 75, 228–238. [Google Scholar] [CrossRef] [Green Version]
- Chapman, C.A.; Twinomugisha, D.; Teichroeb, J.A.; Valenta, K.; Sengupta, R.; Sarkar, D.; Rothman, J.M. How Do Primates Survive Among Humans? Mechanisms Employed by Vervet Monkeys at Lake Nabugabo, Uganda. In Ethnoprimatology: Primate Conservation in the 21st Century; Waller, M.T., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 77–94. [Google Scholar]
- Estrada, A.; Raboy, B.E.; Oliveira, L.C. Agroecosystems and Primate Conservation in The Tropics: A Review. Am. J. Primatol. 2012, 74, 696–711. [Google Scholar] [CrossRef]
- Kalbitzer, U.; Chapman, C.A. Primate Responses to Changing Environments in the Anthropocene. In Primate Life Histories, Sex Roles, and Adaptability: Essays in Honour of Linda M. Fedigan; Kalbitzer, U., Jack, K.M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 283–310. [Google Scholar]
- Linder, J.M.; Palkovitz, R.E. The Threat of Industrial Oil Palm Expansion to Primates and Their Habitats. In Ethnoprimatology: Primate Conservation in the 21st Century; Waller, M.T., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–45. [Google Scholar]
- Gutiérrez-Vélez, V.H.; DeFries, R.; Pinedo-Vásquez, M.; Uriarte, M.; Padoch, C.; Baethgen, W.; Fernandes, K.; Lim, Y. High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon. Environ. Res. Lett. 2011, 6, 044029. [Google Scholar] [CrossRef]
- Programa Bosques. Estrategia nacional Sobre bosques y cambio climático; Programa Nacional de Conservación de Bosques para la Mitigación del Cambio Climatico: Lima, Peru, 2016. [Google Scholar]
- Mayor, P.; Pérez-Peña, P.; Bowler, M.; Puertas, P.E.; Kirkland, M.; Bodmer, R. Effects of selective logging on large mammal populations in a remote indigenous territory in the northern Peruvian Amazon. Ecol. Soc. 2015, 20, 36. [Google Scholar] [CrossRef] [Green Version]
- Leberatto, A.C. Understanding the illegal trade of live wildlife species in Peru. Trends Organ. Crime 2016, 19, 42–66. [Google Scholar] [CrossRef]
- Finer, M.; Jenkins, C.N.; Sky, M.A.B.; Pine, J. Logging Concessions Enable Illegal Logging Crisis in the Peruvian Amazon. Sci. Rep. 2014, 4, 4719. [Google Scholar] [CrossRef] [PubMed]
- Endo, W.; Peres, C.A.; Salas, E.; Mori, S.; Sanchez-Vega, J.-L.; Shepard, G.H.; Pacheco, V.; Yu, D.W. Game Vertebrate Densities in Hunted and Nonhunted Forest Sites in Manu National Park, Peru. Biotropica 2010, 42, 251–261. [Google Scholar] [CrossRef]
- Mendoza, A.P.; Shanee, S.; Cavero, N.; Lujan-Vega, C.; Ibañez, Y.; Rynaby, C.; Villena, M.; Murillo, Y.; Olson, S.H.; Perez, A.; et al. Domestic networks contribute to the diversity and composition of live wildlife trafficked in urban markets in Peru. Glob. Ecol. Conserv. 2022, 37, e02161. [Google Scholar] [CrossRef]
- Shanee, N.; Mendoza, A.P.; Shanee, S. Diagnostic overview of the illegal trade in primates and law enforcement in Peru. Am. J. Primatol. 2017, 79, e22516. [Google Scholar] [CrossRef] [PubMed]
- Mayor, P.; El Bizri, H.R.; Morcatty, T.Q.; Moya, K.; Bendayán, N.; Solis, S.; Vasconcelos Neto, C.F.A.; Kirkland, M.; Arevalo, O.; Fang, T.G.; et al. Wild meat trade over the last 45 years in the Peruvian Amazon. Conserv. Biol. 2022, 36, e13801. [Google Scholar] [CrossRef] [PubMed]
- Daut, E.F.; Brightsmith, D.J.; Peterson, M.J. Role of non-governmental organizations in combating illegal wildlife–pet trade in Peru. J. Nat. Conserv. 2015, 24, 72–82. [Google Scholar] [CrossRef]
- Shanee, N.; Shanee, S. Denunciafauna–A social media campaign to evaluate wildlife crime and law enforcement in Peru. J. Political Ecol. 2021, 28, 533–552. [Google Scholar] [CrossRef]
- Wilkinson, D.A.; Marshall, J.C.; French, N.P.; Hayman, D.T.S. Habitat fragmentation, biodiversity loss and the risk of novel infectious disease emergence. J. R. Soc. Interface 2018, 15, 20180403. [Google Scholar] [CrossRef] [Green Version]
- Gibb, R.; Redding, D.W.; Chin, K.Q.; Donnelly, C.A.; Blackburn, T.M.; Newbold, T.; Jones, K.E. Zoonotic host diversity increases in human-dominated ecosystems. Nature 2020, 584, 398–402. [Google Scholar] [CrossRef]
- Rulli, M.C.; Santini, M.; Hayman, D.T.S.; D’Odorico, P. The nexus between forest fragmentation in Africa and Ebola virus disease outbreaks. Sci. Rep. 2017, 7, 41613. [Google Scholar] [CrossRef] [Green Version]
- White, L.A.; Forester, J.D.; Craft, M.E. Disease outbreak thresholds emerge from interactions between movement behavior, landscape structure, and epidemiology. Proc. Natl. Acad. Sci. USA 2018, 115, 7374. [Google Scholar] [CrossRef] [PubMed]
- Vittor, A.Y.; Gilman, R.H.; Tielsch, J.; Glass, G.; Shields, T.; Lozano, W.S.; Pinedo-Cancino, V.; Patz, J.A. The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of Falciparum malaria in the Peruvian Amazon. Am. J. Trop. Med. Hyg. 2006, 74, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenz, A.; Heymann, E.W.; Petney, T.N.; Taraschewski, H.F. The influence of human settlements on the parasite community in two species of Peruvian tamarin. Parasitology 2010, 137, 675–684. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, T.R.; Chapman, C.A. Prediction of parasite infection dynamics in primate metapopulations based on attributes of forest fragmentation. Conserv. Biol. 2006, 20, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Rocklöv, J.; Dubrow, R. Climate change: An enduring challenge for vector-borne disease prevention and control. Nat. Immunol. 2020, 21, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Scheffers, B.R.; De Meester, L.; Bridge, T.C.L.; Hoffmann, A.A.; Pandolfi, J.M.; Corlett, R.T.; Butchart, S.H.M.; Pearce-Kelly, P.; Kovacs, K.M.; Dudgeon, D.; et al. The broad footprint of climate change from genes to biomes to people. Science 2016, 354, aaf7671. [Google Scholar] [CrossRef]
- Sales, L.; Ribeiro, B.R.; Chapman, C.A.; Loyola, R. Multiple dimensions of climate change on the distribution of Amazon primates. Perspect. Ecol. Conserv. 2020, 18, 83–90. [Google Scholar] [CrossRef]
- Thomas, C.D. Climate, climate change and range boundaries. Divers. Distrib. 2010, 16, 488–495. [Google Scholar] [CrossRef]
- Graham, T.L.; Matthews, H.D.; Turner, S.E. A Global-Scale Evaluation of Primate Exposure and Vulnerability to Climate Change. Int. J. Primatol. 2016, 37, 158–174. [Google Scholar] [CrossRef]
- Ribeiro, B.R.; Sales, L.P.; De Marco, P., Jr.; Loyola, R. Assessing Mammal Exposure to Climate Change in the Brazilian Amazon. PLoS ONE 2016, 11, e0165073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strassburg, B.B.N.; Iribarrem, A.; Beyer, H.L.; Cordeiro, C.L.; Crouzeilles, R.; Jakovac, C.C.; Braga Junqueira, A.; Lacerda, E.; Latawiec, A.E.; Balmford, A.; et al. Global priority areas for ecosystem restoration. Nature 2020, 586, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Newmark, W.D.; Jenkins, C.N.; Pimm, S.L.; McNeally, P.B.; Halley, J.M. Targeted habitat restoration can reduce extinction rates in fragmented forests. Proc. Natl. Acad. Sci. USA 2017, 114, 9635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrier, S. Prioritizing where to restore Earth’s ecosystems. Nat. News Views 2020, 586, 680–681. [Google Scholar] [CrossRef]
Threat | Threatens Primate | Threatens Primate Habitat | Causes Fragmentation | Exacerbates Fragmentation | Threatens Primate and Primate Habitats as a Consequence of Fragmentation | Row Total (Score Only) | |
---|---|---|---|---|---|---|---|
1. | Residential and Commercial Development | 29/3.22 | 49/4.05 | 49/4.13 | 45/4.37 | 44/4.19 | 49/3.57 |
1.1 | Housing and urban | 26/5.38 | 49/6.38 | 49/6.48 | 45/6.56 | 44/6.31 | 49/5.48 |
1.2 | Commercial and industrial areas | 16/4.84 | 36/5.21 | 37/5.20 | 36/5.21 | 36/5.21 | 37/4.50 |
1.3 | Tourism and recreation | 13/4.81 | 19/5.00 | 20/4.88 | 22/4.89 | 18/4.86 | 23/3.91 |
2. | Agriculture and Aquaculture | 22/1.77 | 53/2.57 | 53/2.71 | 47/2.54 | 49/2.36 | 53/2.09 |
2.1 | Annual and Perennial Non-timber Crops | 16/3.71 | 52/4.12 | 52/4.13 | 45/4.25 | 47/3.99 | 52/3.34 |
2.1.1 | Shifting agriculture | 13/5.19 | 50/5.65 | 50/5.70 | 44/5.68 | 44/5.40 | 50/4.49 |
2.1.2 | Smallholder farming | 16/5.78 | 51/6.57 | 51/6.57 | 45/6.61 | 47/6.28 | 51/5.31 |
2.1.3 | Agro-industry farming | 14/5.36 | 38/6.12 | 38/6.12 | 35/6.14 | 36/5.97 | 38/5.11 |
2.1.4 | Scale unknown/unrecorded | 1/2.50 | 2/3.75 | 2/3.75 | 1/2.50 | 1/2.50 | 2/2.25 |
2.2 | Wood and Pulp Plantations | 10/3.00 | 34/3.38 | 34/3.43 | 32/3.26 | 32/3.10 | 34/2.74 |
2.2.1 | Smallholder plantations | 10/5.00 | 34/5.37 | 34/5.44 | 32/5.31 | 32/5.08 | 34/4.41 |
2.2.2 | Agro-Industry plantations | 8/4.69 | 31/5.16 | 31/5.24 | 27/5.19 | 26/5.10 | 31/4.08 |
2.2.3 | Scale unknown/unrecorded | 1/2.50 | 1/2.50 | 1/2.50 | 1/2.50 | 1/2.50 | 1/2.50 |
2.3 | Livestock Farming | 19/2.34 | 51/2.67 | 50/2.68 | 40/2.89 | 41/2.73 | 51/14.17 |
2.3.1 | Nomadic grazing | 2/3.75 | 3/4.17 | 3/3.33 | 3/3.33 | 3/3.33 | 3/3.33 |
2.3.2 | Smallholder grazing, ranching or farming | 17/5.44 | 49/6.63 | 48/6.72 | 38/7.04 | 39/6.54 | 49/5.15 |
2.3.3 | Agro-industry grazing, ranching or farming | 15/5.00 | 37/5.54 | 36/5.56 | 33/5.53 | 34/5.29 | 37/4.55 |
2.3.4 | Scale unknown/unrecorded | 1/2.50 | 1/2.50 | 1/2.50 | 1/2.50 | 1/2.50 | 1/2.50 |
2.4 | Marine and Freshwater Aquaculture | 5/2.50 | 24/2.50 | 2/2.50 | 2/2.50 | 25/1.65 | |
2.4.1 | Subsistence/artisanal aquaculture | 5/5.00 | 22/5.00 | 23/1.17 | |||
2.4.2 | Industrial aquaculture | 2/3.33 | 2/3.33 | 2/3.33 | 3/2.00 | ||
2.4.3 | Scale unknown/unrecorded | ||||||
3. | Energy Production and Mining | 12/2.71 | 47/4.63 | 47/4.68 | 44/4.35 | 43/3.95 | 47/3.54 |
3.1 | Oil and gas drilling | 4/5.00 | 39/5.77 | 41/5.61 | 34/5.51 | 31/5.24 | 41/4.02 |
3.2 | Mining | 9/5.00 | 36/5.83 | 35/6.00 | 33/5.91 | 325.55 | 36/4.65 |
3.3 | Renewable energy | ||||||
4. | Transportation and Service Corridors | 18/3.40 | 45/4.94 | 48/5.00 | 41/5.15 | 39/5.03 | 49/3.80 |
4.1 | Roads and railroads | 16/5.31 | 45/6.33 | 48/6.51 | 41/6.65 | 38/6.45 | 49/4.90 |
4.2 | Utility and service lines | 7/5.36 | 29/5.52 | 31/5.40 | 28/5.36 | 28/5.27 | 32/4.14 |
4.3 | Shipping lanes | ||||||
4.4 | Flight paths | ||||||
5. | Biological Resource Use | 55/1.85 | 54/2.03 | 54/2.07 | 47/2.65 | 49/2.27 | 55/2.03 |
5.1 | Hunting and Collecting of Terrestrial Animals | 55/3.95 | 14/2.74 | 10/2.75 | 44/3.75 | 38/3.73 | 55/2.15 |
5.1.1 | Intentional use | 55/6.59 | 12/5.42 | 9/5.28 | 44/6.65 | 38/6.51 | 55/3.69 |
5.1.2 | Unintentional effects | 43/5.35 | 8/5.00 | 5/5.00 | 31/5.16 | 27/5.28 | 43//2.78 |
5.1.3 | Persecution/Control | 11/5.45 | 2/5.00 | 2/5.00 | 8/5.31 | 7/5.00 | 11/2.86 |
5.1.4 | Motivation unknown/unrecorded | ||||||
5.2 | Gathering of Terrestrial Plants | 2/1.67 | 34/1.72 | 31/1.72 | 15/1.72 | 8/1.67 | 36/1.28 |
5.2.1 | Intentional use | ||||||
5.2.2 | Unintentional effects | 1/5.00 | 34/5.00 | 31/5.00 | 15/5.17 | 8/5.00 | 36/2.49 |
5.2.3 | Persecution/Control | 1/5.00 | 1/5.00 | 1/5.00 | 2/1.50 | ||
5.2.4 | Motivation unknown/unrecorded | ||||||
5.3 | Logging and Wood Harvesting | 25/3.40 | 54/4.26 | 54/4.15 | 44/4.17 | 47/3.79 | 54/3.34 |
5.3.1 | Intentional use: subsistence/small scale | ||||||
5.3.2 | Intentional use: large scale | ||||||
5.3.3 | Unintentional effects: subsistence/small scale | 24/5.21 | 54/6.57 | 54/6.39 | 44/6.31 | 47/5.85 | 54/5.10 |
5.3.4 | Unintentional effects: large scale | 24/5.31 | 47/7.07 | 47/6.91 | 43/6.28 | 43/5.99 | 47/5.59 |
5.3.5 | Motivation unknown/unrecorded | 1/2.50 | 1/2.50 | 1/2.50 | 1/2.50 | 1/2.50 | 1/2.50 |
5.4 | Fishing and Harvesting Aquatic Resources | 1/5.00 | 18/5.00 | 18/1.06 | |||
5.4.1 | Intentional use: subsistence/small scale | ||||||
5.4.2 | Intentional use: large scale | ||||||
5.4.3 | Unintentional effects: subsistence/small scale | 1/5.00 | 18/5.00 | 18/1.06 | |||
5.4.4 | Unintentional effects: large scale | ||||||
5.4.5 | Persecution/Control | ||||||
5.4.6 | Motivation unknown/unrecorded | ||||||
6. | Human Intrusions and Disturbance | 28/2.11 | 35/3.21 | 35/3.07 | 343.19 | 26/2.88 | 39/2.37 |
6.1 | Recreational Activities | 28/5.27 | 28/5.18 | 28/5.00 | 30/5.25 | 26/5.38 | 36/4.06 |
6.2 | War, Civil Unrest and Military Exercises | 3/5.00 | 13/5.38 | 13/5.00 | 13/5.38 | 7/5.00 | 16/3.19 |
6.3 | Work and Other Activities | 3/5.00 | 23/5.33 | 22/5.34 | 18/5.42 | 9/5.56 | 23/3.50 |
7. | Natural System Modifications | 18/0.83 | 38/1.60 | 32/1.91 | 28/1.37 | 24/1.39 | 38/1.10 |
7.1 | Fire and Fire Suppression | 18/5.00 | 36/5.90 | 30/5.83 | 27/5.93 | 24/6.04 | 36/4.35 |
7.1.1 | Increase in fire frequency/intensity | 18/5.00 | 36/5.90 | 30/5.83 | 27/5.93 | 24/6.04 | 36/4.35 |
7.1.2 | Suppression in fire frequency/intensity | ||||||
7.1.3 | Trend unknown/unrecorded | ||||||
7.2 | Dams and Water Management/Use | 20/1.53 | 26/1.48 | 8/1.75 | 5/2.20 | 31/1.21 | |
7.2.1 | Abstraction of surface water (domestic use) | 1/5.00 | 1/5.00 | 1/2.00 | |||
7.2.2 | Abstraction of surface water (commercial use) | 12/5.21 | 7/5.36 | 4/5.00 | 4/5.00 | 12/2.33 | |
7.2.3 | Abstraction of surface water (agricultural use) | 5/6.00 | 4/6.25 | 4/6.25 | 3/6.67 | 5/4.00 | |
7.2.4 | Abstraction of surface water (unknown use) | ||||||
7.2.5 | Abstraction of ground water (domestic use) | 1/5.00 | 4/5.00 | 4/2.00 | |||
7.2.6 | Abstraction of ground water (commercial use) | ||||||
7.2.7 | Abstraction of ground water (agricultural use) | ||||||
7.2.8 | Abstraction of ground water (unknown use) | ||||||
7.2.9 | Small dams | 10/5.00 | 23/5.22 | 5.5/00 | 3/5.00 | 24/1.75 | |
7.2.10 | Large dams | ||||||
7.2.11 | Dams (size unknown) | ||||||
7.3 | Other Ecosystem Modifications | ||||||
8. | Invasive and Other Problematic Species and Genes | 52/1.36 | 2/0.56 | 2/0.56 | 52/1.36 | 54/1.36 | 55/0.79 |
8.1 | Invasive Non-Native/Alien Species | 1/0.00 | |||||
8.1.1 | Unspecified species | 1/0.00 | |||||
8.1.2 | Named species | ||||||
8.2 | Problematic Native Species | 2/2.50 | 2/2.50 | 2/2.50 | 2/2.50 | 2/2.50 | 2/2.75 |
8.2.1 | Unspecified species | 2/2.50 | 2/2.50 | 2/2.50 | 2/2.50 | 2/2.50 | 2/2.50 |
8.2.2 | Named species | 2/2.50 | 2/2.50 | 2/2.50 | 2/2.50 | 2/2.50 | 2/2.50 |
8.3 | Introduced Genetic Material | 1/5.00 | 1/1.00 | ||||
8.4 | Pathogens and Microbes | 52/2.38 | 52/2.45 | 52/2.48 | 55/1.38 | ||
8.4.1 | Unspecified species | 51/2.50 | 52/2.50 | 52/2.50 | 54/1.44 | ||
8.4.2 | Named species | 46/2.61 | 50/2.50 | 51/2.50 | 54/1.38 | ||
8.5 | Viral/Prion-induced Diseases | 52/2.45 | 52/2.48 | 54/2.55 | 55/1.43 | ||
8.5.1 | Unspecified species (disease) | 51/2.50 | 52/2.50 | 54/2.50 | 54/1.44 | ||
8.5.2 | Named species (disease) | 51/2.50 | 51/2.50 | 53/2.64 | 54/1.45 | ||
8.6 | Disease of Unknown Cause | 46/2.61 | 46/2.50 | 48/2.50 | 48/0.00 | ||
9. | Pollution | 17/0.57 | 48/1.08 | 42/0.86 | 39/0.96 | 26/0.72 | 48/0.64 |
9.1 | Household Sewage and Urban Waste Water | 8/2.81 | 2/3.75 | 8/0.75 | |||
9.1.1 | Sewage | 8/4.38 | 2/5.00 | 8/1.13 | |||
9.1.2 | Run-off | 2/5.00 | 1/5.00 | 2/1.50 | |||
9.1.3 | Type unknown/unrecorded | ||||||
9.2 | Industrial and Military Effluents | 10/2.50 | 45/3.53 | 39/3.33 | 35/3.64 | 18/3.47 | 46/2.19 |
9.2.1 | Oil spills | 37/4.39 | 30/4.33 | 27/4.54 | 12/4.17 | 37/2.51 | |
9.2.2 | Seepage from mining | 10/5.00 | 32/4.84 | 29/4.48 | 28/4.73 | 15/5.00 | 33/3.29 |
9.2.3 | Type unknown/unrecorded | ||||||
9.3 | Agricultural and Forestry Effluents | 3/1.67 | 23/2.25 | 19/1.75 | 16/1.77 | 8/1.88 | 23/1.16 |
9.3.1 | Nutrient loads | 5/5.00 | 5/1.00 | ||||
9.3.2 | Soil erosion | 23/5.22 | 19/5.26 | 16/5.31 | 8/5.63 | 23/3.04 | |
9.3.3 | Herbicides and pesticides | 3/5.00 | 2/5.00 | 5/1.00 | |||
9.3.4 | Type unknown/unrecorded | ||||||
9.4 | Garbage and Solid Waste | 1/5.00 | 3/5.83 | 1/5.00 | 2/5.00 | 1/5.00 | 4/0.00 |
9.5 | Airborne Pollutants | ||||||
9.5.1 | Acid rain | ||||||
9.5.2 | Smog | ||||||
9.5.3 | Ozone | ||||||
9.5.4 | Type unknown/unrecorded | ||||||
9.6 | Excess Energy | 9/1.81 | 5/1.75 | 5/1.75 | 10/1.35 | ||
9.6.1 | Light pollution | 6/2.50 | 3/2.50 | 4/2.50 | 6/1.08 | ||
9.6.2 | Thermal pollution | ||||||
9.6.3 | Noise pollution | 6/2.92 | 2/5.00 | 2/3.75 | 7/1.00 | ||
9.6.4 | Type unknown/unrecorded | ||||||
10. | Geological Events | 2/2.50 | 22/2.61 | 20/2.50 | 9/2.50 | 6/2.50 | 22/1.36 |
10.1 | Volcanoes | ||||||
10.2 | Earthquakes, tsunamis | 2/2.50 | 3/3.33 | 2/2.50 | 2/2.50 | 2/2.50 | 3/2.00 |
10.3 | Avalanches, landslides | 2/2.50 | 22/4.77 | 20/4.75 | 20/4.44 | 9/4.17 | 22/2.45 |
11. | Climate Change and Severe Weather | 55/6.41 | 55/6.49 | 55/6.42 | 55/6.49 | 55/6.48 | 55/6.46 |
11.1 | Habitat Shifting and alteration | 53/7.17 | 55/7.00 | 55/7.00 | 55/7.00 | 55/7.00 | 55/6.98 |
11.2 | Droughts | 55/5.91 | 55/6.00 | 55/5.86 | 55/6.00 | 55/5.95 | 55/5.95 |
11.3 | Temperature excess | 54/7.13 | 54/7.22 | 54/7.13 | 54/7.22 | 54/7.22 | 54/7.19 |
11.4 | Storms and flooding | 54/5.93 | 54/5.97 | 54/5.93 | 54/5.97 | 54/5.97 | 54/5.95 |
11.5 | Other impacts |
Threat | Threatens Primate (1) | Threat | Threatens Primate Habitat (2) | Threat | Causes Fragmentation (3) | Threat | Exacerbates Fragmentation (4) | Threat | Threatens Primate and Primate Habitats as a Consequence of Fragmentation (5) | Threat | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Hunting intentional use | 55/ 6.59 | Logging unintentional effects: subsistence/ small-scale | 54/ 6.57 | Logging unintentional effects: subsistence/ small-scale | 54/ 6.39 | Housing and urban | 45/ 6.56 | Smallholder farming | 47/ 6.28 | Logging unintentional effects: subsistence/ small-scale | 54/ 5.10 |
Hunting unintentional effects | 43/ 5.35 | Smallholder farming | 51/ 6.57 | Smallholder farming | 51/ 6.57 | Smallholder farming | 45/ 6.61 | Logging unintentional effects: subsistence/ small-scale | 47/ 5.85 | Smallholder farming | 51/ 5.31 |
Housing and urban | 26/ 5.38 | Housing and urban | 49/ 6.38 | Housing and urban | 49/ 6.48 | Hunting intentional use | 44/ 6.65 | Housing and urban | 44/ 6.31 | Housing and urban | 49/ 5.48 |
Logging unintentional effects: large-scale | 24/ 5.31 | Smallholder grazing, ranching or farming | 49/ 6.63 | Smallholder grazing, ranching or farming | 48/ 6.72 | Logging unintentional effects: subsistence/ small-scale | 44/ 6.31 | Logging unintentional effects: large-scale | 43/ 5.99 | Smallholder grazing, ranching or farming | 49/ 5.15 |
Smallholder grazing, ranching or farming | 17/ 5.44 | Logging unintentional effects: large-scale | 47/ 7.07 | Roads and railroads | 48/ 6.51 | Logging unintentional effects: large-scale | 43/ 6.28 | Smallholder grazing, ranching or farming | 39/ 6.54 | Roads and railroads | 49/ 4.90 |
Smallholder farming | 16/ 7.78 | Roads and railroads | 45/ 6.33 | Logging unintentional effects: large-scale | 47/ 6.91 | Roads and railroads | 41/ 6.65 | Roads and railroads | 38/ 6.45 | Logging unintentional effects: large-scale | 47/ 5.59 |
Agro-industry farming | 38/ 6.12 | Agro-industry farming | 38/ 6.12 | Smallholder grazing, ranching or farming | 38/ 7.04 | Hunting intentional use | 38/ 6.51 | ||||
Agro-industry farming | 35/ 6.14 | Agro-industry farming | 36/ 5.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shanee, S.; Fernández-Hidalgo, L.; Allgas, N.; Vero, V.; Bello-Santa Cruz, R.; Bowler, M.; Erkenswick Watsa, M.; García Mendoza, G.; García-Olaechea, A.; Hurtado, C.; et al. Threat Analysis of Forest Fragmentation and Degradation for Peruvian Primates. Diversity 2023, 15, 276. https://doi.org/10.3390/d15020276
Shanee S, Fernández-Hidalgo L, Allgas N, Vero V, Bello-Santa Cruz R, Bowler M, Erkenswick Watsa M, García Mendoza G, García-Olaechea A, Hurtado C, et al. Threat Analysis of Forest Fragmentation and Degradation for Peruvian Primates. Diversity. 2023; 15(2):276. https://doi.org/10.3390/d15020276
Chicago/Turabian StyleShanee, Sam, Lorena Fernández-Hidalgo, Nestor Allgas, Veronica Vero, Raul Bello-Santa Cruz, Mark Bowler, Mrinalini Erkenswick Watsa, Gabriel García Mendoza, Alvaro García-Olaechea, Cindy Hurtado, and et al. 2023. "Threat Analysis of Forest Fragmentation and Degradation for Peruvian Primates" Diversity 15, no. 2: 276. https://doi.org/10.3390/d15020276
APA StyleShanee, S., Fernández-Hidalgo, L., Allgas, N., Vero, V., Bello-Santa Cruz, R., Bowler, M., Erkenswick Watsa, M., García Mendoza, G., García-Olaechea, A., Hurtado, C., Vega, Z., Marsh, L., Boonratana, R., & Mendoza, A. P. (2023). Threat Analysis of Forest Fragmentation and Degradation for Peruvian Primates. Diversity, 15(2), 276. https://doi.org/10.3390/d15020276