Microbial Community Abundance Affects the Methane Ebullition Flux in Dahejia Reservoir of the Yellow River in the Warm Season
Abstract
:1. Introduction
2. Study Sites
3. Materials and Methods
3.1. CH4 Fluxes Monitoring
3.2. High-Throughput Sequencing
3.3. Collection and Measurement of Environmental Data
3.4. Statistical Analyses
4. Results
4.1. The CH4 Ebullition Flux Was Higher in the Nighttime than in the Daytime
4.2. Spatial Variation of CH4 Ebullition Flux from Upstream to Downstream
5. Discussion
5.1. Influence of Abiotic Factors on CH4 Ebullition Flux
5.2. Sediment Microbes Affected the CH4 Ebullition Flux
5.3. Comparison of CH4 Ebullition Flux at Reservoirs in Different Climate Zones
Reservoir | CH4 Ebullition Flux (mg m−2 h−1) | Contribution of CH4 Ebullition Flux (%) | Note |
---|---|---|---|
Thirparappu [57] | 114.47 | 95.07 | Tropical |
Miaowei [58] | 0.33 ± 0.56 | 62.26 | Tropical |
Gatun Lake [59] | 525.56 | 97.7 | Tropical |
Falling Greek [53] | 0.67 ± 0.31 | 72.17 | Subtropical |
Xin’anjiang [52] | 2.73 ± 2.02 | 92.86 | Subtropical |
Itaipu [60] | 0.025 | 7 | Subtropical |
Samuel [60] | 0.57 | 55.88 | Subtropical |
Pengxi River [7] | 0.84 | 70 | Subtropical |
Saar River [61] | 5.31 ± 7.46 | 97 | Temperate zone |
Eguzon [62] | 0.24 ± 0.56 | 9.8 | Temperate zone |
Northern Québec [63] | 0.1 | 83 | Frigid zone |
Porttipahta [6] | 0.4 | 17.09 | Frigid zone |
Lokka [63] | 115.59 | 83.63 | Frigid zone |
Dahejia | 0.31 ± 0.29 | 86.11 | This study |
6. Conclusions
- CH4 ebullition was the dominant mode of CH4 emissions at the study site and contributed to 78.85 ± 20% of total CH4 flux.
- The CH4 ebullition flux in the nighttime (0.34 ± 0.21 mg m−2 h−1) was significantly higher than that in the daytime (0.19 ± 0.21 mg m−2 h−1).
- The CH4 ebullition flux first decreased and then increased from upstream to downstream. In the River, Middle, Lake, and Down subregions, the CH4 ebullition flux was 0.52 ± 0.57 mg m−2 h−1, 0.51 ± 0.54 mg m−2 h−1, 0.11 ± 0.04 mg m−2 h−1, and 0.43 ± 0.3 mg m−2 h−1, respectively.
- Among abiotic variables, the CH4 ebullition flux was closely related to total phosphorus, total organic carbon, pH and nitrate nitrogen. Among biotic factors, CH4 ebullition flux had a significant negative linear correlation with microbial abundance. The redundancy analysis showed that the CH4 ebullition flux was significantly positively correlated with the abundances of Firmicutes and Actinobacteria and negatively with that of Proteobacteria and Chloroflexi.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WMO. The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2020. WMO Greenh. Gas Bull. 2021, 17, 1–3. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Agasild, H.; Zingel, P.; Tuvikene, L.; Tuvikene, A.; Timm, H.; Feldmann, T.; Salujõe, J.; Toming, K.; Jones, R.; Nõges, T. Biogenic methane contributes to the food web of a large, shallow lake. Freshw. Biol. 2014, 59, 272–285. [Google Scholar] [CrossRef]
- Dlugokencky, E.J. Trends in Atmospheric Methane (NOAA/GML, 2021). Available online: https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4 (accessed on 18 September 2021).
- Zhang, P.; Wang, X.F.; Yuan, X.Z. General characteristics and research progress of methane emissions from freshwater ecosystems in China. China Environ. Sci. 2020, 40, 3567–3579. [Google Scholar] [CrossRef]
- Bastviken, D.; Tranvik, L.J.; Downing, J.A.; Crill, P.M.; Enrich-Prast, A. Freshwater Methane Emissions Offset the Continental Carbon Sink. Science 2011, 331, 50. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, C.; Liu, L. Ebullition fluxes of CO2 and CH4 in Pengxi River, Three Gorges Reservoir. J. Lake Sci. 2014, 26, 789–798. [Google Scholar]
- Linkhorst, A.; Paranaíba, J.R.; Mendonça, R.; Rudberg, D.; DelSontro, T.; Barros, N.; Sobek, S. Spatially Resolved Measurements in Tropical Reservoirs Reveal Elevated Methane Ebullition at River Inflows and at High Productivity. Glob. Biogeochem. Cycles 2021, 35, e2020GB006717. [Google Scholar] [CrossRef]
- DelSontro, T.; Boutet, L.; St-Pierre, A.; del Giorgio, P.A.; Prairie, Y.T. Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity. Limnol. Oceanogr. 2016, 61, S62–S77. [Google Scholar] [CrossRef]
- West, W.E.; Creamer, K.P.; Jones, S.E. Productivity and depth regulate lake contributions to atmospheric methane. Limnol. Oceanogr. 2016, 61, S51–S61. [Google Scholar] [CrossRef] [Green Version]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The Global Methane Budget 2000-2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- Houghton, K.M.; Carere, C.R.; Stott, M.B.; McDonald, I.R. Thermophilic methanotrophs: In hot pursuit. Fems Microbiol. Ecol. 2019, 95, fiz125. [Google Scholar] [CrossRef]
- Ding, J.; Lu, Y.-Z.; Fu, L.; Ding, Z.-W.; Mu, Y.; Cheng, S.H.; Zeng, R.J. Decoupling of DAMO archaea from DAMO bacteria in a methane-driven microbial fuel cell. Water Res. 2017, 110, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, T.R.; Dick, R.P. Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands. Appl. Soil Ecol. 2013, 65, 8–22. [Google Scholar] [CrossRef]
- Ren, M.F.; Li, L.Y.; Chen, L.; Xing, T.T.; Liu, Y.Q.; Dong, X.Z. Methanogen communities and predominant methanogenic pathways in three saline-alkaline lakes on the Tibetan Plateau. Acta Microbiol. Sin. 2020, 60, 161–171. [Google Scholar] [CrossRef]
- Ma, X.F.; Chen, S.Y.; Deng, J.; Feng, Q.S.; Huang, X.D. Vegetation phenology dynamics and its response to climate change on the Tibetan Plateau. Acta Prataculturae Sin. 2016, 25, 13–21. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, X.; Liu, S.; Zhang, S.; Li, S.; Wang, J.; Wang, G.; Gao, H.; Zhang, Z.; Wang, Q.; et al. Significant methane ebullition from alpine permafrost rivers on the East Qinghai-Tibet Plateau. Nat. Geosci. 2020, 13, 349–354. [Google Scholar] [CrossRef]
- Natchimuthu, S.; Sundgren, I.; Gålfalk, M.; Klemedtsson, L.; Crill, P.; Danielsson, Å.; Bastviken, D. Spatio-temporal variability of lake CH4 fluxes and its influence on annual whole lake emission estimates. Limnol. Oceanogr. 2016, 61, S13–S26. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Du, Z.; Wei, Z.; Xu, Q.; Feng, Y.; Lin, P.; Lin, J.; Chen, S.; Qiao, Y.; Shi, J.; et al. High methane emissions from thermokarst lakes on the Tibetan Plateau are largely attributed to ebullition fluxes. Sci. Total Environ. 2021, 801, 149692. [Google Scholar] [CrossRef]
- Harrison, J.A.; Deemer, B.R.; Birchfield, M.K.; O’Malley, M.T. Reservoir Water-Level Drawdowns Accelerate and Amplify Methane Emission. Environ. Sci. Technol. 2017, 51, 1267–1277. [Google Scholar] [CrossRef]
- DelSontro, T.; Perez, K.K.; Sollberger, S.; Wehrli, B. Methane dynamics downstream of a temperate run-of-the-river reservoir. Limnol. Oceanogr. 2016, 61, S188–S203. [Google Scholar] [CrossRef] [Green Version]
- Conrad, R.; Ji, Y.; Noll, M.; Klose, M.; Claus, P.; Enrich-Prast, A. Response of the methanogenic microbial communities in Amazonian oxbow lake sediments to desiccation stress. Environ. Microbiol. 2014, 16, 1682–1694. [Google Scholar] [CrossRef]
- Zhu, D.; Wu, Y.; Chen, H.; He, Y.; Wu, N. Intense methane ebullition from open water area of a shallow peatland lake on the eastern Tibetan Plateau. Sci. Total Environ. 2016, 542, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Q. Aquatic Ecological Environmental Impact Assessment of Dahejia Hydropower Station Project. Master’s Thesis, Xi’an University of Technology, Xi’an, China, 2017. [Google Scholar]
- Johnson, K.M.; Hughes, J.E.; Donaghay, P.L.; Sieburth, J.M. Bottle-calibration static head space method for the determination of methane dissolved in seawater. Anal. Chem. 1990, 62, 2408–2412. [Google Scholar] [CrossRef]
- Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 2014, 12, 351–362. [Google Scholar] [CrossRef]
- Modi, A.; Vai, S.; Caramelli, D.; Lari, M. The Illumina Sequencing Protocol and the NovaSeq 6000 System. Methods Mol. Biol. 2021, 2242, 15–42. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaulieu, J.J.; DelSontro, T.; Downing, J.A. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nat. Commun. 2019, 10, 1375. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; Zhang, M.; Hu, Z.; Gao, Y.; Hu, C.; Liu, C.; Liu, S.; Zhang, Z.; Zhao, J.; Xiao, W.; et al. Spatial variations of methane emission in a large shallow eutrophic lake in subtropical climate. J. Geophys. Res. Biogeosciences 2017, 122, 1597–1614. [Google Scholar] [CrossRef]
- He, B.; He, J.; Wang, J.; Li, J.; Wang, F. Characteristics of GHG flux from water-air interface along a reclaimed water intake area of the Chaobai River in Shunyi, Beijing. Atmos. Environ. 2018, 172, 102–108. [Google Scholar] [CrossRef]
- Garcia, J.-L.; Patel, B.K.C.; Ollivier, B. Taxonomic, Phylogenetic, and Ecological Diversity of Methanogenic Archaea. Anaerobe 2000, 6, 205–226. [Google Scholar] [CrossRef]
- Smith, R.L.; Bohlke, J.K. Methane and nitrous oxide temporal and spatial variability in two midwestern USA streams containing high nitrate concentrations. Sci. Total Environ. 2019, 685, 574–588. [Google Scholar] [CrossRef]
- Ettwig, K.F.; Butler, M.K.; Le Paslier, D.; Pelletier, E.; Mangenot, S.; Kuypers, M.M.; Schreiber, F.; Dutilh, B.E.; Zedelius, J.; de Beer, D.; et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 2010, 464, 543–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B. N2O and CH4 Fluxes and Their Influencing Factors in Spartina Alterniflora Salt Marsh in Nanhui Shore of Yangtze Estuary under High Nitrogen Background. Ph.D. Thesis, East China Normal University, Shanghai, China, 2021. [Google Scholar]
- Yvon-Durocher, G.; Allen, A.P.; Bastviken, D.; Conrad, R.; Gudasz, C.; St-Pierre, A.; Thanh-Duc, N.; Del Giorgio, P.A. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 2014, 507, 488–491. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Fang, C.; Sun, X.; Han, L.; He, X.; Huang, G. Bacterial community succession during pig manure and wheat straw aerobic composting covered with a semi-permeable membrane under slight positive pressure. Bioresour. Technol. 2018, 259, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Emerson, J.B.; Varner, R.K.; Wik, M.; Parks, D.H.; Neumann, R.B.; Johnson, J.E.; Singleton, C.M.; Woodcroft, B.J.; Tollerson, R.; Owusu-Dommey, A.; et al. Diverse sediment microbiota shape methane emission temperature sensitivity in Arctic lakes. Nat. Commun. 2021, 12, 5815. [Google Scholar] [CrossRef]
- Bolhuis, H.; Cretoiu, M.S.; Stal, L.J. Molecular ecology of microbial mats. Fems Microbiol. Ecol. 2014, 90, 335–350. [Google Scholar] [CrossRef] [Green Version]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef]
- Cheng, C. Research on Simultaneous Reduction and Mechanisms of Methane and Nitrous Oxide. Ph.D. Thesis, Shandong University, Jinan, China, 2019. [Google Scholar]
- Li, J. Key Driving Factors Of Greenhouse Gas Fluxes Under Diffrent Microhabitats in Ulansuhai Wetland. Master’s Thesis, Inner Mongolia University, Huhehaote, China, 2021. [Google Scholar]
- Wei, H. Soil Greenhouse Gas Emission And Its Influencing Factors from Temperate Deciduous Broad-Leaved Forest And Tropical Mountain Rain Forest. Ph.D. Thesis, Northwest A & F University, Xianyang, China, 2018. [Google Scholar]
- Hou, J.L. Metagenomic Study of the Structure, Evolution and Metabolic Potential of Microbial Communities Inhabiting Deep Sea Hydrothermal Chimneys. Master Thesis, Shanghai Jiao Tong University, Shanghai, China, 2018. [Google Scholar]
- Campbell, B.J.; Engel, A.; Porter, M.L.; Takai, K. The versatile ε-proteobacteria: Key players in sulphidic habitats. Nat. Rev. Microbiol. 2006, 4, 458–468. [Google Scholar] [CrossRef]
- Gao, Y.H. Study on CH4 and N2O Emission Characteristics and Influencing Factors of Reservoirs in Cold Regions. Master’s Thesis, Dalian University of Technology, Dalian, China, 2019. [Google Scholar]
- Isidorova, A.; Grasset, C.; Mendonça, R.; Sobek, S. Methane formation in tropical reservoirs predicted from sediment age and nitrogen. Sci. Rep. 2019, 9, 11017. [Google Scholar] [CrossRef] [Green Version]
- Borges, A.V.; Darchambeau, F.; Teodoru, C.R.; Marwick, T.R.; Tamooh, F.; Geeraert, N.; Omengo, F.O.; Guérin, F.; Lambert, T.; Morana, C.; et al. Globally significant greenhouse-gas emissions from African inland waters. Nat. Geosci. 2015, 8, 637–642. [Google Scholar] [CrossRef] [Green Version]
- Deemer, B.R.; Harrison, J.A.; Li, S.; Beaulieu, J.J.; DelSontro, T.; Barros, N.; Bezerra-Neto, J.F.; Powers, S.M.; dos Santos, M.A.; Vonk, J.A. Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis. BioScience 2016, 66, 949–964. [Google Scholar] [CrossRef] [Green Version]
- Neumann, R.B.; Moorberg, C.J.; Lundquist, J.D.; Turner, J.C.; Waldrop, M.P.; McFarland, J.W.; Euskirchen, E.S.; Edgar, C.W.; Turetsky, M.R. Warming Effects of Spring Rainfall Increase Methane Emissions From Thawing Permafrost. Geophys. Res. Lett. 2019, 46, 1393–1401. [Google Scholar] [CrossRef]
- Grinham, A.; Dunbabin, M.; Albert, S. Importance of sediment organic matter to methane ebullition in a sub-tropical freshwater reservoir. Sci. Total Environ. 2018, 621, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Yang, L. Contrasting methane emissions from upstream and downstream rivers and their associated subtropical reservoir in eastern China. Sci. Rep. 2019, 9, 8072. [Google Scholar] [CrossRef] [Green Version]
- McClure, R.P.; Lofton, M.E.; Chen, S.; Krueger, K.M.; Little, J.C.; Carey, C.C. The Magnitude and Drivers of Methane Ebullition and Diffusion Vary on a Longitudinal Gradient in a Small Freshwater Reservoir. J. Geophys. Res. Biogeosciences 2020, 125, 18. [Google Scholar] [CrossRef]
- Bai, X.; Xu, Q.; Li, H.; Cheng, C.; He, Q. Lack of methane hotspot in the upstream dam: Case study in a tributary of the Three Gorges Reservoir, China. Sci. Total Environ. 2020, 754, 142151. [Google Scholar] [CrossRef]
- Yao, T.; Dong. A comprehensive study of Water-Ecosystem-Human activities reveals unbalancing Asian Water Tower and accompanying potential risks. Chin. Sci. Bull. 2019, 64, 2761–2762. [Google Scholar] [CrossRef] [Green Version]
- Sinha, E.; Michalak, A.M.; Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 2017, 357, 405–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvam, B.P.; Natchimuthu, S.; Arunachalam, L.; Bastviken, D. Methane and carbon dioxide emissions from inland waters in India–implications for large scale greenhouse gas balances. Glob. Chang. Biol. 2014, 20, 3397–3407. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Yang, Z.; Delwiche, K.; Long, L.; Liu, J.; Liu, D.; Wang, C.; Bodmer, P.; Lorke, A. Spatial and temporal variability of methane emissions from cascading reservoirs in the Upper Mekong River. Water Res. 2020, 186, 116319. [Google Scholar] [CrossRef]
- Keller, M.; Stallard, R.F. Methane emission by bubbling from Gatun Lake, Panama. J. Geophys. Res. Atmos. 1994, 99, 8307–8319. [Google Scholar] [CrossRef]
- dos Santos, M.A.; Rosa, L.P.; Sikar, B.; Sikar, E.; dos Santos, E.O. Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants. Energy Policy 2006, 34, 481–488. [Google Scholar] [CrossRef]
- Maeck, A.; DelSontro, T.; McGinnis, D.; Fischer, H.; Flury, S.; Schmidt, M.; Fietzek, P.; Lorke, A. Sediment Trapping by Dams Creates Methane Emission Hot Spots. Environ. Sci. Technol. 2013, 47, 8130–8137. [Google Scholar] [CrossRef] [PubMed]
- Descloux, S.; Chanudet, V.; Serça, D.; Guérin, F. Methane and nitrous oxide annual emissions from an old eutrophic temperate reservoir. Sci. Total Environ. 2017, 598, 959–972. [Google Scholar] [CrossRef] [PubMed]
- Huttunen, J.T.; Väisänen, T.S.; Hellsten, S.K.; Heikkinen, M.; Nykänen, H.; Jungner, H.; Niskanen, A.; Virtanen, M.O.; Lindqvist, O.V.; Nenonen, O.S.; et al. Fluxes of CH4, CO2, and N2O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland. Glob. Biogeochem. Cycles 2002, 16, 3-1–3-17. [Google Scholar] [CrossRef]
Time | CH4 Concentration (μmol L−1) | CH4 Saturation (%) | Contribution of CH4 Ebullition Flux (%) |
---|---|---|---|
Daytime (06:00–18:00) | 0.34 ± 0.06 a | 1732 ± 2803 a | 68.01 ± 26.23 a |
Nighttime (18:00–06:00) | 0.28 ± 0.08 a | 1433 ± 2378 a | 95.65 ± 7.97 b |
Subregion | CH4 Concentration (μmol L−1) | CH4 Saturation (%) | Contribution of CH4 Ebullition Flux (%) |
---|---|---|---|
River | 0.40 ± 0.03 a | 6695 ± 779 a | 70.84 ± 25.25 a |
Middle | 0.23 ± 0.05 b | 3310 ± 808 b | 98.27 ± 1.73 b |
Lake | 0.39 ± 0.09 a | 7720 ± 1565 a | 61.58 ± 17.69 a |
Down | 0.19 ± 0.06 b | 3514 ± 1164 b | 75.39 ± 16.78 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Mao, X.; Xia, L.; Yu, H.; Yu, Y.; Tang, W.; Xiao, F.; Ji, H. Microbial Community Abundance Affects the Methane Ebullition Flux in Dahejia Reservoir of the Yellow River in the Warm Season. Diversity 2023, 15, 154. https://doi.org/10.3390/d15020154
Wu Y, Mao X, Xia L, Yu H, Yu Y, Tang W, Xiao F, Ji H. Microbial Community Abundance Affects the Methane Ebullition Flux in Dahejia Reservoir of the Yellow River in the Warm Season. Diversity. 2023; 15(2):154. https://doi.org/10.3390/d15020154
Chicago/Turabian StyleWu, Yi, Xufeng Mao, Liang Xia, Hongyan Yu, Yao Yu, Wenjia Tang, Feng Xiao, and Haichuan Ji. 2023. "Microbial Community Abundance Affects the Methane Ebullition Flux in Dahejia Reservoir of the Yellow River in the Warm Season" Diversity 15, no. 2: 154. https://doi.org/10.3390/d15020154
APA StyleWu, Y., Mao, X., Xia, L., Yu, H., Yu, Y., Tang, W., Xiao, F., & Ji, H. (2023). Microbial Community Abundance Affects the Methane Ebullition Flux in Dahejia Reservoir of the Yellow River in the Warm Season. Diversity, 15(2), 154. https://doi.org/10.3390/d15020154