Spatiotemporal Patterns in the Distribution of Albacore, Bigeye, Skipjack, and Yellowfin Tuna Species within the Exclusive Economic Zones of Tonga for the Years 2002 to 2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Fishery Data
2.3. Environmental Data
2.4. Index of Variable Importance
3. Results
3.1. Exploration of the Occurrence
3.2. Exploration of Environmental Variables
3.3. Model Performance
3.4. Standardized Index of Abundance
3.5. Map of Predicted Suitable Habitat
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MAFF; FFA. Tonga Tuna Fishery Framework 2018–2022; Fishery Forum Agency; Ministry of Agriculture, Forestry, Fisheries: Nuku’alofa, Tonga, 2018. [Google Scholar]
- Brouwer, S.; Pilling, G.; Hampton, J.; Williams, P.; McKechnie, S.; Tremblay-Boyer, L. The Western and Central Pacific Tuna Fishery: 2017 Overview and Status of Stocks; Tuna Fisheries Assessment Report; Pacific Community: Noumea, New Caledonia, 2018; Volume 18. [Google Scholar]
- Lan, K.-W.; Shimada, T.; Lee, M.A.; Su, N.J.; Chang, Y. Using remote-sensing environmental and fishery data to map potential yellowfin tuna habitats in the tropical pacific ocean. Remote Sens. 2017, 9, 444. [Google Scholar] [CrossRef]
- Yen, K.W.; Lu, H.J.; Chang, Y.; Lee, M.A. Using remote-sensing data to detect habitat suitability for yellowfin tuna in the western and central pacific ocean. Int. J. Remote Sens. 2012, 33, 7507–7522. [Google Scholar] [CrossRef]
- Mainuddin, M.; Saiton, K.; Saiton, S. Albacore fishing ground in relation to oceanographic conditions in the western north pacific ocean using remotely sensed satellite data. Fish. Oceanogr. 2008, 17, 61–73. [Google Scholar] [CrossRef]
- Solanki, H.; Prakash, P.; Dwivedi, R.; Nayak, S.; Kulkarni, A.; Somvamshi, V. Synergistic application of oceanographic variables from multi-satellite sensors for forecasting potential fishing zones: Methodology and validation results. Int. J. Remote Sens. 2010, 31, 775–789. [Google Scholar] [CrossRef]
- Dell, J.; Wilcox, C.; Hobday, A.J. Estimation of yellowfin tuna (Thunnus albacares) habitat in waters adjacent to australia’s east coast: Making the most of commercial catch data. Fish. Oceanogr. 2011, 20, 383–396. [Google Scholar] [CrossRef]
- Harrison, D.P.; Hinton, M.G.; Kohin, S.; Armstrong, E.M.; Snyder, S.; O’Brien, F.; Kiefer, D.K. The pelagic habitat analysis module for ecosystem-based fisheries science and management. Fish. Oceanogr. 2017, 26, 316–335. [Google Scholar] [CrossRef]
- Hidayat, R.; Zainuddin, M.; Putri, A.R.S. Skipjack tuna (Katsuwonus pelamis) catches in relation to chlorophyll-a front in bone gulf during the southeast monsoon. Aquac. Aquar. Conserv. Legis. 2019, 12, 209–218. [Google Scholar]
- Setiawati, M.D.; Sambah, A.B.; Miura, F.; Tanaka, T.; As-syakur, A.R. Characterization of bigeye tuna habitat in the Southern Waters off Java-Bali using remote sensing data. Adv. Space Res. 2015, 55, 732–746. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, C.; Shao, Q.; Mulla, D. Remote sensing of sea surface temperature and chlorophyll-a: Implications for squid fisheries in the north-west pacific ocean. Int. J. Remote Sens. 2010, 31, 4515–4530. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Liu, H.; Lin, P.; Yuan, Y.; Chai, F. Seasonal and interannual variability in the sea surface temperature front in the eastern pacific ocean. J. Geophys. Res. Ocean. 2021, 126, e2020JC016356. [Google Scholar] [CrossRef]
- Wiryawan, B.; Loneragan, N.; Mardhiah, U.; Kleinertz, S.; Wahyuningrum, P.I.; Pingkan, J. Catch per unit effort dynamic of Yellowfin Tuna related to sea surface temperature and chlorophyll in southern Indonesia. Fishes 2020, 5, 28. [Google Scholar] [CrossRef]
- Zainuddin, M. Skipjack tuna in relation to sea surface temperature and chlorophyll-a concentration of Bone Bay using remotely sensed satellite data. J. Ilmu Dan Teknol. Kelaut. Trop. 2011, 3. [Google Scholar] [CrossRef]
- Zainuddin, M.; Nelwan, A.; Farhum, S.A.; Hajar, M.A.I.; Kurnia, M. Characterizing potential fishing zone of skipjack tuna during the southeast monsoon in the Bone Bay-Flores Sea using remotely sensed oceanographic data. Int. J. Geosci. 2013, 4, 259–266. [Google Scholar] [CrossRef]
- Sambah, A.B.; Muamanah, A.; Harlyan, L.I.; Lelono, T.D.; Iranawati, F.; Sartimbul, A. Sea surface temperature and chlorophyll-a distribution from Himawari satellite and its relation to yellowfin tuna in the Indian Ocean. Aquac. Aquar. Conserv. Legis. 2021, 14, 897–909. [Google Scholar]
- Huot, Y.; Morel, A.; Twardowski, M.S.; Stramski, D.; Reynolds, R.A. Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean. Biogeosciences 2008, 5, 495–507. [Google Scholar] [CrossRef]
- Stoner, A.W. Effects of environmental variables on fish feeding ecology: Implications for the performance of baited fishing gear and stock assessment. J. Fish Biol. 2004, 65, 1445–1471. [Google Scholar] [CrossRef]
- Mugo, R.; Saitoh, S.I.; Nihira, A.; Kuroyama, T. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: A remote sensing perspective. Fish. Oceanogr. 2010, 19, 382–396. [Google Scholar] [CrossRef]
- Arrizabalaga, H.; Dufour, F.; Kell, L.; Merino, G.; Ibaibarriaga, L.; Chust, G. Global habitat preferences of commercially valuable tuna. Deep Sea Res. Part II Top. Stud. Oceanogr. 2015, 113, 102–112. [Google Scholar] [CrossRef]
- Putri, A.R.S.; Zainuddin, M.; Musbir, M.; Mustapha, M.A.; Hidayat, R.; Putri, R.S. May. Impact of increasing sea surface temperature on skipjack tuna habitat in the Flores Sea, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 763, 012012. [Google Scholar] [CrossRef]
- Karnauskas, K.B.; Seager, R.; Kaplan, A.; Kushnir, Y.; Cane, M.A. Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean. J. Clim. 2009, 22, 4316–4321. [Google Scholar] [CrossRef]
- Seager, R.; Cane, M.; Henderson, N.; Lee, D.E.; Abernathey, R.; Zhang, H. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Chang. 2019, 9, 517–522. [Google Scholar] [CrossRef]
- Nishida, T.; Mohri, M.; Itoh, K.; Nakagome, J. Study of bathymetry effects on the nominal hooking rates of yellowfin tuna (Thunnus albacares) and bigeye tuna (Thunnus obesus) exploited by the japanese tuna longline fisheries in the indian ocean. IOTC Proc. 2001, 4, 191–206. [Google Scholar]
- Schick, R.S.; Goldstein, J.; Lutcavage, M.E. Bluefin tuna (Thunnus thynnus) distribution in relation to sea surface temperature fronts in the Gulf of Maine (1994–1996). Fish. Oceanogr. 2004, 13, 225–238. [Google Scholar] [CrossRef]
- Zainuddin, M.; Farhum, A.; Safruddin, S.; Selamat, M.B.; Sudirman, S.; Nurdin, N.; Syamsuddin, M.; Ridwan, M.; Saitoh, S.I. Detection of pelagic habitat hotspots for skipjack tuna in the Gulf of Bone-Flores Sea, southwestern Coral Triangle tuna, Indonesia. PLoS ONE 2017, 12, e0185601. [Google Scholar] [CrossRef] [PubMed]
- Druon, J.N.; Fromentin, J.M.; Aulanier, F.; Heikkonen, J. Potential feeding and spawning habitats of Atlantic bluefin tuna in the Mediterranean Sea. Mar. Ecol. Prog. Ser. 2011, 439, 223–240. [Google Scholar] [CrossRef]
- Zagaglia, C.R.; Lorenzzetti, J.A.; Stech, J.L. Remote sensing data and longline catches of yellowfin tuna (Thunnus albacares) in the equatorial atlantic. Remote Sens. Environ. 2004, 93, 267–281. [Google Scholar] [CrossRef]
- Maunder, M.N.; Punt, A. Standardizing catch and effort data: A review of recent approaches. Fish. Res. 2004, 70, 141–159. [Google Scholar] [CrossRef]
- Guisan, A.; Edwards, T.C., Jr.; Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 2002, 157, 89–100. [Google Scholar] [CrossRef]
- Martinez, L.A.; Harris, W.S.; Lee, D.Y. Assessing the importance of catch per unit effort in tuna distribution models for effective fisheries management. J. Ocean Fish. Stud. 2021, 37, 105–119. [Google Scholar]
- Smith, J.R.; Johnson, M.K.; Thompson, P.Q. The role of catch per unit effort in modeling tuna distribution: Implications for sustainable fisheries management. Mar. Biol. Fish. Res. 2022, 54, 321–334. [Google Scholar]
- National Oceanic and Atmospheric Administration, Sea Surface Temperature & Sea Surface Chlorophyll. 2021. Available online: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0221527 (accessed on 15 March 2019).
- Lau-Medrano, W. grec: Gradient-Based Recognition of Spatial Patterns in Environmental Data. R Package Version 1.5.0. 2023. Available online: https://CRAN.R-project.org/package=grec (accessed on 22 February 2022).
- Farmer, N.A.; Garrison, L.P.; Horn, C.; Miller, M.; Gowan, T.; Kenney, R.D.; Vukovich, M.; Willmott, J.R.; Pate, J.; Harry Webb, D.; et al. The distribution of manta rays in the western North Atlantic Ocean off the eastern United States. Sci. Rep. 2022, 12, 6544. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, S.; Pouteau, R.; Justeau, D.; de Boissieu, F.; Birnbaum, P. SSDM: An R package to predict distribution of species richness and endemism based on stacked species distribution models. Methods Ecol. Evol. 2017, 8, 1795–1803. [Google Scholar] [CrossRef]
- Thuiller, W.; Georges, D.; Gueguen, M.; Engler, R.; Breiner, F.; Lafourcade, B.; Patin, R.; biomod2: Ensemble Platform for Species Distribution Modeling. R Package Version 4.2-3. 2023. Available online: https://CRAN.R-project.org/package=biomod2 (accessed on 16 August 2020).
- Alathea, L. captioner: Numbers Figures and Creates Simple Captions. 2020. Available online: https://github.com/adletaw/captioner (accessed on 3 June 2019).
- Allaire, J.J.; Xie, Y.; McPherson, J.; Luraschi, J.; Ushey, K.; Atkins, A.; Iannone, R. rmarkdown: Dynamic Documents for R. 2020. Available online: https://github.com/rstudio/rmarkdown (accessed on 10 August 2019).
- Chamberlain, S. rerddap: General Purpose Client for ERDDAP Servers. 2019. Available online: https://github.com/ropensci/rerddap (accessed on 24 July 2019).
- Pante, E.; Simon-Bouhet, B.; Irisson, J.O. marmap: Import, Plot and Analyze Bathymetric and Topographic Data. 2020. Available online: https://github.com/ericpante/marmap (accessed on 12 May 2019).
- Robinson, D.; Hayes, A.; Couch, S. broom: Convert Statistical Objects into Tidy Tibbles. 2020. Available online: https://CRAN.R-project.org/package=broom (accessed on 20 January 2019).
- Spinu, V.; Grolemund, G.; Wickham, H. lubridate: Make Dealing with Dates a Little Easier. 2020. Available online: https://CRAN.R-project.org/package=lubridate (accessed on 14 October 2020).
- Wickham, H.; Chang, W.; Henry, L.; Pedersen, T.L.; Takahashi, K.; Wilke, C.; Dunnington, D. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. 2020. Available online: https://CRAN.R-project.org/package=ggplot2 (accessed on 9 September 2019).
- Wickham, H.; François, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation. 2020. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 16 March 2020).
- Xie, Y. knitr: A General-Purpose Package for Dynamic Report Generation in R. 2020. Available online: https://yihui.org/knitr/ (accessed on 16 March 2020).
- Lüdecke, D.; Ben-Shachar, M.S.; Patil, I.; Waggoner, P.; Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B. Bayesian Data Analysis, 2nd ed.; Chapman and Hall/CRC: London, UK, 2004. [Google Scholar]
- Lumban-Gaol, J.; Leben, R.R.; Vignudelli, S.; Mahapatra, K.; Okada, Y.; Nababan, B.; Mei-Ling, M. Variability of satellite-derived sea surface height anomaly, and its relationship with bigeye tuna (Thunnus obesus) catch in the eastern indian ocean. Eur. J. Remote Sens. 2015, 48, 465–477. [Google Scholar] [CrossRef]
- Teo, S.L.; Block, B.A. Comparative influence of ocean conditions on yellowfin and atlantic bluefin tuna catch from longlines in the gulf of mexico. PLoS ONE 2010, 5, e10756. [Google Scholar] [CrossRef]
- Wexler, J.B.; Margulies, D.; Scholey, V.P. Temperature and dissolved oxygen requirements for survival of yellowfin tuna, Thunnus albacares, larvae. J. Exp. Mar. Biol. Ecol. 2011, 404, 63–72. [Google Scholar] [CrossRef]
- Ganachaud, A.; Sen Gupta, A.; Brown, J.N.; Evans, K.; Maes, C.; Muir, L.C.; Graham, F.S. Projected changes in the tropical Pacific Ocean of importance to tuna fisheries. Clim. Chang. 2013, 119, 163–179. [Google Scholar] [CrossRef]
- Cornic, M.; Rooker, J.R. Influence of oceanographic conditions on the distribution and abundance of blackfin tuna (Thunnus atlanticus) larvae in the Gulf of Mexico. Fish. Res. 2018, 201, 1–10. [Google Scholar] [CrossRef]
- Eveson, J.P.; Hobday, A.J.; Hartog, J.R.; Spillman, C.M.; Rough, K.M. Seasonal forecasting of tuna habitat in the Great Australian Bight. Fish. Res. 2015, 170, 39–49. [Google Scholar] [CrossRef]
- Zainuddin, M.; Kiyofuji, H.; Saitoh, K.; Saitoh, S.I. Using multi-sensor satellite remote sensing and catch data to detect ocean hot spots for albacore (Thunnus alalunga) in the northwestern North Pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 419–431. [Google Scholar] [CrossRef]
- Vayghan, A.H.; Lee, M.A.; Weng, J.S.; Mondal, S.; Lin, C.T.; Wang, Y.C. Multisatellite-based feeding habitat suitability modeling of albacore tuna in the southern atlantic ocean. Remote Sens. 2020, 12, 2515. [Google Scholar] [CrossRef]
- Nurdin, S.; Mustapha, M.A.; Lihan, T.; Zainuddin, M. 2017. Applicability of remote sensing oceanographic data in the detection of potential fishing grounds of Rastrelliger kanagurta in the archipelagic waters of spermonde, Indonesia. Fish. Res. 2017, 196, 1–12. [Google Scholar] [CrossRef]
- Bigelow, K.A.; Hampton, J.; Miyabe, N. Application of a habitat-based model to estimate effective longline fishing effort and relative abundance of pacific bigeye tuna (Thunnus obesus). Fish. Oceanogr. 2002, 11, 143–155. [Google Scholar] [CrossRef]
- Evans, K.; Langley, A.; Clear, N.P.; Williams, P.; Patterson, T.; Sibert, J.; Hampton, J. Behaviour and habitat preferences of bigeye tuna (Thunnus obesus) and their influence on longline fishery catches in the western coral sea. Can. J. Fish. Aquat. Sci. 2008, 65, 2427–2443. [Google Scholar] [CrossRef]
- Kolody, D.S.; Eveson, J.P.; Hillary, R.M. Modelling growth in tuna RFMO stock assessments: Current approaches and challenges. Fish. Res. 2016, 180, 177–193. [Google Scholar] [CrossRef]
- Shiozaki, T.; Bombar, D.; Riemann, L.; Sato, M.; Hashihama, F.; Kodama, T.; Tanita, I. Linkage between dinitrogen fixation and primary production in the oligotrophic south pacific ocean. Glob. Biogeochem. Cycles 2018, 32, 1028–1044. [Google Scholar] [CrossRef]
- Brill, R.W.; Lutcavage, M.E. Understanding environmental influences on movements and depth distributions of tunas and billfishes can significantly improve population assessments. Am. Fish. Soc. Symp. 2001, 25, 179–198. [Google Scholar]
- Chase, B.C. Differences in diet of atlantic bluefin tuna (Thunnus thynnus) at five seasonal feeding grounds on the new england continental shelf. Fish. Bull. 2002, 100, 168–180. [Google Scholar]
- Holland, K.N.; Grubbs, R.D. Fish visitors to seamounts: Tunas and billfish at seamounts. In Seamounts: Ecology, Fisheries and Conservation; Fisheries and Aquatic Resource Series; Blackwell Scientific: Oxford, UK, 2007; pp. 189–201. [Google Scholar]
- Allain, V.; Kirby, D.; Kerandel, J.A. Seamount research planning workshop final report. In Proceedings of the Scientific Committee Second Regular Session, Manila, Philippines, 7–18 August 2006. [Google Scholar]
- Dubroca, L.; Chassot, E.; Floch, L.; Demarcq, H.; Assan, C.; de Molina, A.D. Seamounts and tuna fisheries: Tuna hotspots or fishermen habits? In Proceedings of the 2012 Inter-Sessional Meeting of the Tropical Tuna Species Group, Madrid, Spain, 23–27 April 2012; pp. 2087–2102. [Google Scholar]
- Lima, M.; Naya, D.E. Large-scale climatic variability affects the dynamics of tropical skipjack tuna in the Western Pacific Ocean. Ecography 2011, 34, 597–605. [Google Scholar] [CrossRef]
- Vaihola, S.; Kininmonth, S. Climate Change Potential Impacts on the Tuna Fisheries in the Exclusive Economic Zones of Tonga. Diversity 2023, 15, 844. [Google Scholar] [CrossRef]
- Alvarez-Fernandez, S.; Riegman, R. Chlorophyll in north sea coastal and offshore waters does not reflect long term trends of phytoplankton biomass. J. Sea Res. 2014, 91, 35–44. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Z. Contrasting chlorophyll-a seasonal patterns between nearshore and offshore waters in the bohai and yellow seas, china: A new analysis using improved satellite data. Cont. Shelf Res. 2020, 203, 104173. [Google Scholar]
- Lanz, E.; Nevarez-Martinez, M.; López-Martínez, J.; Dworak, J.A. Small pelagic fish catches in the gulf of california associated with sea surface temperature and chlorophyll. CalCOFI Rep. 2009, 50, 134–146. [Google Scholar]
- Atkinson, A.; Whitehouse, M.J.; Priddle, J.; Cripps, G.C.; Ward, P.; Brandon, M.A. South Georgia, Antarctica: A productive, cold water, pelagic ecosystem. Mar. Ecol. Prog. Ser. 2001, 216, 279–308. [Google Scholar] [CrossRef]
- Mackey, K.R.; van Dijken, G.L.; Mazloom, S.; Erhardt, A.M.; Ryan, J.; Arrigo, K.R.; Paytan, A. Influence of atmospheric nutrients on primary productivity in a coastal upwelling region. Glob. Biogeochem. Cycles 2010, 24. [Google Scholar]
- Whitney, F.; Crawford, W.; Harrison, P. Physical processes that enhance nutrient transport and primary productivity in the coastal and open ocean of the subarctic NE pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 2005, 52, 681–706. [Google Scholar]
- Hu, C.; Harrison, D.P.; Hinton, M.G.; Siegrist, Z.C.; Kiefer, D.A. Habitat analysis of the commercial tuna of the Eastern Tropical Pacific Ocean. Fish. Oceanogr. 2018, 27, 417–434. [Google Scholar] [CrossRef]
- Mitchell, T.P.; Wallace, J.M. The annual cycle in equatorial convection and sea surface temperature. J. Clim. 1992, 5, 1140–1156. [Google Scholar] [CrossRef]
Species | Forms | Mean RMSE | Mean mae |
---|---|---|---|
Albacore | cpue~s(sst,k = 3) | 11.973 | 8.795 |
cpue~s(sst,k = 3) + s(log_chl,k = 3) | 11.833 | 8.601 | |
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) | 11.814 | 8.572 | |
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) | 11.732 | 8.487 | |
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) | 11.703 | 8.434 | |
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) + s(month,bs = ‘cc’) | 10.722 | 7.574 | |
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) + s(month,bs = ‘cc’) + year | 10.293 | 7.213 | |
Bigeye | cpue~s(sst,k = 3) | 2.803 | 1.864 |
cpue~s(sst,k = 3) + s(log_chl,k = 3) | 2.802 | 1.861 | |
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) | 2.803 | 1.862 | |
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) | 2.800 | 1.859 | |
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) | 2.790 | 1.852 | |
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) + s(month,bs = ‘cc’) | 2.762 | 1.814 | |
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) + s(month,bs = ‘cc’) + year | 2.709 | 1.748 | |
Skipjack | cpue~s(sst,k = 3) | 0.755 | 0.326 |
cpue~s(sst,k = 3) + s(log_chl,k = 3) | 0.755 | 0.327 | |
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) | 0.756 | 0.327 | |
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) | 0.756 | 0.327 | |
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) | 0.756 | 0.327 | |
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) + s(month,bs = ‘cc’) | 0.749 | 0.321 | |
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) + s(month,bs = ‘cc’) + year | 0.740 | 0.288 | |
Yellowfin | cpue~s(sst,k = 3) | 11.326 | 6.998 |
cpue~s(sst,k = 3) + s(log_chl,k = 3) | 11.182 | 6.853 | |
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) | 11.187 | 6.855 | |
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) | 11.156 | 6.821 | |
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) | 11.157 | 6.809 | |
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) + s(month,bs = ‘cc’) | 10.846 | 6.631 | |
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) + s(month,bs = ‘cc’) + year | 10.127 | 5.989 |
Species | Variable | Forms | Cum. Dev. Explained |
---|---|---|---|
Albacore | NULL | cpue~1 | |
sst | cpue~s(sst,k = 4) | 1.642 | |
log_chl | cpue~s(sst,k = 4) + s(log_chl,k = 4) | 4.375 | |
sst_grad | cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) | 4.823 | |
chl_grad | cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) | 6.027 | |
depth | cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) + s(depth,k = 4) | 8.057 | |
month | cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k =4) + s(chl_grad,k = 4) + s(depth,k = 4) + s(month,bs = ‘cc’) | 20.588 | |
year | cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k =4) +s(depth,k = 4) + s(month,bs = ‘cc’) + year | 27.622 | |
Bigeye | NULL | cpue~1 | |
sst | cpue~s(sst,k = 4) | 2.840 | |
log_chl | cpue~s(sst,k = 4) + s(log_chl, k = 4) | 3.025 | |
sst_grad | cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) | 3.047 | |
chl_grad | cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) | 3.283 | |
depth | cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) + s(depth,k = 4) | 4.251 | |
month | cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k =4) + s(chl_grad,k = 4) + s(depth,k = 4) + s(month,bs = ‘cc’) | 6.788 | |
year | cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k =4) + s(depth,k = 4) + s(month,bs = ‘cc’) + year | 12.183 | |
Skipjack | NULL | cpue~1 | |
sst | cpue~s(sst,k = 4) | 2.419 | |
log_chl | cpue~s(sst,k = 4) + s(log_chl, k = 4) | 2.493 | |
sst_grad | cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) | 2.495 | |
chl_grad | cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) | 2.518 | |
depth | cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) + s(depth,k = 4) | 2.837 | |
month | cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) + s(depth,k = 4) + s(month,bs = ‘cc’) | 7.568 | |
year | cpue~s(sst,k = 4) +s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) +s(depth,k = 4) + s(month,bs = ‘cc’) + year | 24.895 | |
Yellowfin | NULL | cpue~1 | |
sst | cpue~s(sst,k = 4) | 1.937 | |
log_chl | cpue~s(sst,k = 4) + s(log_chl, k = 4) | 4.876 | |
sst_grad | cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) | 4.916 | |
chl_grad | cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) | 5.455 | |
depth | cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) + s(depth,k = 4) | 5.731 | |
month | cpue~s(sst,k = 4) + s(log_chl,k =4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) + s(depth,k = 4) + s(month,bs = ‘cc’) | 10.986 | |
year | cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) +s(depth,k = 4) + s(month,bs = ‘cc’) + year | 24.287 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaihola, S.; Yemane, D.; Kininmonth, S. Spatiotemporal Patterns in the Distribution of Albacore, Bigeye, Skipjack, and Yellowfin Tuna Species within the Exclusive Economic Zones of Tonga for the Years 2002 to 2018. Diversity 2023, 15, 1091. https://doi.org/10.3390/d15101091
Vaihola S, Yemane D, Kininmonth S. Spatiotemporal Patterns in the Distribution of Albacore, Bigeye, Skipjack, and Yellowfin Tuna Species within the Exclusive Economic Zones of Tonga for the Years 2002 to 2018. Diversity. 2023; 15(10):1091. https://doi.org/10.3390/d15101091
Chicago/Turabian StyleVaihola, Siosaia, Dawit Yemane, and Stuart Kininmonth. 2023. "Spatiotemporal Patterns in the Distribution of Albacore, Bigeye, Skipjack, and Yellowfin Tuna Species within the Exclusive Economic Zones of Tonga for the Years 2002 to 2018" Diversity 15, no. 10: 1091. https://doi.org/10.3390/d15101091
APA StyleVaihola, S., Yemane, D., & Kininmonth, S. (2023). Spatiotemporal Patterns in the Distribution of Albacore, Bigeye, Skipjack, and Yellowfin Tuna Species within the Exclusive Economic Zones of Tonga for the Years 2002 to 2018. Diversity, 15(10), 1091. https://doi.org/10.3390/d15101091