
Citation: Vaihola, S.; Yemane, D.;

Kininmonth, S. Spatiotemporal

Patterns in the Distribution of

Albacore, Bigeye, Skipjack, and

Yellowfin Tuna Species within the

Exclusive Economic Zones of Tonga

for the Years 2002 to 2018. Diversity

2023, 15, 1091. https://doi.org/

10.3390/d15101091

Academic Editors: Michael Wink and

Charalampos Dimitriadis

Received: 9 August 2023

Revised: 3 October 2023

Accepted: 4 October 2023

Published: 18 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diversity

Article

Spatiotemporal Patterns in the Distribution of Albacore, Bigeye,
Skipjack, and Yellowfin Tuna Species within the Exclusive
Economic Zones of Tonga for the Years 2002 to 2018
Siosaia Vaihola 1,*, Dawit Yemane 2,3 and Stuart Kininmonth 4,*

1 School of Agriculture, Geography, Environment, Ocean and Natural Sciences, University of the South Pacific,
Private Mail Bag, Suva 9072, Fiji

2 Fisheries Management Branch, Department of Forestry, Fisheries and the Environment, Foreshore,
Cape Town 8012, South Africa; dghebrehiwet@dffe.gov.za

3 Department of Biological Sciences and Marine Research Institute, University of Cape Town,
Cape Town 7701, South Africa

4 Heron Island Research Station, Faculty of Science, University of Queensland, Gladstone 4680, Australia
* Correspondence: saiavaiholajr@gmail.com (S.V.); s.kininmonth@uq.edu.au (S.K.); Tel.: +679-77933126 (S.V.);

+61-7-4978-1399 (ext. 221) (S.K.)

Abstract: The Tongan fisheries targeting the species of albacore (Thunnus alalunga), bigeye (Thunnus
obesus), skipjack (Katsuwonus pelamis), and yellowfin tuna (Thunnus albacares), comprising the main
tuna catch landed, within the EEZ of Tonga is critical to the economy of Tonga. Thus, it is crucial
to study the spatiotemporal pattern of their catch and the influence of environmental and physical
variables, in addition to the month and year of the catch. To this end, sets of eight generalized
additive models were applied to model the distribution of these four species. Selection among
competing models was carried out based on k-fold cross-validation, using RMSPE prediction error as
a measure of model predictive performance. The following sets of predictors were considered; sea
surface temperature, sea surface chlorophyll, bottom depth, month, and year. In addition, to assess the
influence of fronts, gradients in SST and Chl-a were computed and used as predictors. Catch year
was the most important variable for all, except Albacore tuna, for which month was the important
variable. The third most important variable was SST for albacore and bigeye tuna, whereas bottom
depth was the most important variable for skipjack and yellowfin tuna. A standardized index of
CPUE indicates mostly inter-annual variation in CPUE for albacore and bigeye tuna, whereas a it
indicates a general increase in CPUE for skipjack and yellowfin tuna. Hotspots of albacore tuna
catches are around the northern and southern edges of the exclusive economic zone and typically
during the months of June to August. The bigeye tuna hotspots were concentrated on the eastern
side of the islands, in waters overlying trenches; this was most obvious during the months of January
to June. Skipjack tuna hotspots were near the edges of the exclusive economic zone, although it is
caught in smaller amounts to the three tuna species considered and higher catch rates were observed
only after 2014. For yellowfin tuna, the highest catch rates were concentrated around the islands
and descending towards the southern edge of the EEZ. As part of the initiative of this study to
support national optimal resource management, this study generated standardized CPUE (indices
of abundance), an important input in stock assessment, and also looked into the potential influence
of environmental and physical variables on the CPUE of these valuable tuna stocks within the EEZ
of Tonga.

Keywords: tuna catch abundance; generalized additive models; predictor variables; spatiotempo-
ral distribution

1. Introduction

Tonga is enveloped within the geographical boundary of the Western Central Pacific
Ocean (WCPO) and its exclusive economic zone (EEZ) is managed by its Ministry of
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Fisheries with the objective of maintaining the viability of each tuna fishery through the
implementation of its management policies. The most economically important tuna species
in Tonga are albacore, bigeye, skipjack, and yellowfin, which account for over 95% of all tuna
fisheries by annual catch and economic value. Tuna production is the largest commercial
fishery in Tonga and is estimated at 2000 metric tonnes (mt) per year (approximately 17%
of 30% of Tonga’s marine resource-related benefits) [1]. Longline is the main method for
commercial tuna fishing, starting from the 1970s, although pole and line has also been
used [1,2].

The application of satellite remote sensing oceanographic data within the geographic
information system (GIS) has been identified as a tool that may improve tuna production
and management outcomes [3,4]. Potential fishing zones (PFZ) have been identified in the
EEZ of Madagascar, the Arabian Sea, Tropical Pacific Ocean, the north-west coast of India,
and the western North Pacific Ocean, using satellite data collected from environmental pa-
rameters and oceanographic conditions [3,5,6]. As stated above, biophysical environmental
parameters such as sea surface temperature (SST), chlorophyll-a (Chl-a) concentration, and
water depths play an important role in influencing the spatial and temporal distributions of
tuna [4,7]. Predictions of PFZs are established based on species distribution models aimed
at parameterizing the environmental factors that influence the biology and habitats of the
species of interest.

Studies have shown that environmental variables and oceanic conditions influence
tuna presence; thus, characterizing their habitats is essential to understanding their spatial
and temporal distributions [8–10]. Sea surface temperature and Chl-a concentration have
been identified as playing a role in generating spatial and temporal distribution patterns
of tuna in the WCPO [11], East Pacific Ocean [12], and the East Coast of Australia [7].
These studies have indicated that tropical and subtropical tuna prefer warm waters and
are found in regions with high Chl-a concentration. In addition, it has been shown that the
seasonal and annual patterns of tuna abundance are affected by SST and Chl-a and that
their variability is related to ocean upwelling and El Nino events [13–15]. Utilization of
satellite remotely sensed and fisheries data for management and assessment of tuna and
using the information as basis for decision support by managers has not been carried out
in Tonga [1] nor in its surrounding island countries like Fiji, Samoa, and Niue.

Chlorophyll-a plays a crucial role in determining the distribution of tuna as it serves
as a primary indicator of primary productivity in the ocean, influencing the abundance and
distribution of their prey species [13,16]. Hence, tuna rely on the presence of chlorophyll-a-
rich areas as they indicate the presence of productive feeding grounds, which ultimately
affects their migration patterns and distribution in search of optimal foraging opportunities.
Sea surface chlorophyll-a gradients (chl_grad), affected by nutrient and light availability
as well as oceanic currents, offer valuable insights into the distribution, abundance, and
health of marine primary producers, contributing to the assessment of ecosystem pro-
ductivity [17]. Sea surface temperature significantly influences tuna distribution as these
species are ectothermic, meaning their body temperature is dependent on the surrounding
environment [18]. Optimal temperature ranges dictate the presence and movement of tuna,
with warmer waters often associated with increased abundance, as they provide favorable
conditions for their metabolic activity and prey availability [19–21]. Conversely, deviations
from the preferred temperature range can lead to shifts in tuna distribution, impacting
their migration patterns and potentially reducing their availability in certain regions [13,20].
Ocean temperature in Tonga is above 18 ◦C and is favorable for tropical and subtropical
tuna species, which are known to have temperature preference range of ≥25 ◦C [20]. Alba-
core, which is known to be temperate species, is also caught in Tongan waters and is known
to have temperature preference range between 20 ◦C and 30 ◦C in each hemisphere [20].
The sea surface temperature gradient (sst_grad) quantifies the speed of temperature change
in the ocean over a specific distance, with higher gradients indicating faster changes and
lower gradients indicating more gradual changes [22]. These gradients are influenced
by factors such as solar radiation, ocean currents, and atmospheric conditions, and they
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significantly impact weather patterns, ocean circulation, and the distribution of marine
life [23]. Bathymetry has been identified to affect catch rate of yellowfin and bigeye tuna
in the Indian Ocean, with their catch per unit effort (CPUE) generally becoming higher
as steep bathymetry zones become larger [24]. Hence, bathymetry may also play a role
as Tonga EEZ envelops the Tonga Trench, Tonga Ridge, Tofua Arce Volcanic Front, the
northern end of the Tonga Kermadec Arc and the westward region of the Lau Basin. These
geologically bathypelagic features are part of the island nation’s fishing grounds and may
influence its oceanic conditions such as; surface water temperature, nutrient, salt content,
and mixed layer depth, which are habitats for pelagic species and fishing fleets. Bathymetry
may also play a role since volcanic seamount lines run through the fishing ground and
include very deep water more than 5000 m deep and very shallow seamounts and a large
shelf that is about 2000 m deep.

Apex predators in the marine environment, including tuna, are shown to exploit
frontal zones; thus, for both SST and Chl-a, frontal gradients were computed and used
to model the distribution of the four tuna species [25,26]. Although the range of species
distribution models can be used for the purpose of the current project, generalized additive
models (GAMs) were used instead. GAMs allow for non-linear relationship between re-
sponse variables, in this case CPUE of population of tuna species, and sets of predictors
without explicitly specifying the form of the relationship, thus enhance our knowledge
of the influence of environmental variables on the distribution and abundance of popu-
lations [27,28]. They are semiparametric extensions of generalized liner models with an
assumption that the functions are additive and the components are smooth [29]. GAMs
have the ability to handle highly nonlinear and non-monotomic relationships between
responses and explanatory variables, making them ideal for expressing underlying rela-
tionships in ecological systems [19]. This technique has been successfully used to describe
the habitat preferences of target and non-target species and has often been used to predict
species distributions [30]. The main objectives of this study are to identify (1) the spatial
and inter-annual variability in the CPUE of the four species within the EEZ of Tonga and
(2) the form and strength of influence of the above mentioned environmental variables.

2. Materials and Methods
2.1. Study Region

This study was conducted in the archipelago waters of Tonga, a small island country
located 700 km south-west of Fiji and 1900 km north-west of New Zealand, in the South
Pacific Ocean. It covers an EEZ (latitude 14.5◦ S–20.22◦ S, longitude 171.31◦ W–179.10◦ W)
of approximately 800 km2 (Figure 1). This EEZ envelops the northern end of the Tonga
Trench, Tonga Ridge, Tofua Arce Volcanic Front, the northern end of the Tonga Kermadec
Arc, and the westward region of the Lau Basin. Two geologically parallel north-to-south
chains of volcanic seamounts run along the Tonga Ridge and the famous seamount of
Capricorn about 193 km east of Vava’u Island. This fishing ground supports the nation’s
commercial tuna fishery harvest of about two thousand tons per year.

2.2. Fishery Data

Datasets for albacore, bigeye, skipjack, and yellowfin tuna catch from January 2002 to
December 2018 were used to model the distribution of the four species in the EEZ of Tonga.
The catch and effort data were compiled by the Tongan longline fishery and provided
by the Tonga Ministry of Fishery and the South Pacific Community (SPC) Office in New
Caledonia. The entire fish catch was checked by a minimum of two fisheries offices to
ensure compliance [1]. The fishery data of the 1◦ spatial grid comprising daily fishing
positions (latitude and longitude), fishing effort (in number of hooks), fishing date (in day,
month, and year), and catch (in numbers). The observed catch rate was calculated as the
weight of the catch in metric tons divided by the number of hooks deployed per fishing
record, providing a standardized measure of fishing efficiency and effort in capturing the
target species [31,32]. The CPUE data were then aggregated into the monthly level to match
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the temporal scales of the environmental data. The distributions of the CPUEs of albacore,
bigeye, skipjack, and yellowfin are shown in Figure 2, respectively.
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2.3. Environmental Data

To assess the influence of environmental variables on the distribution of the four tuna
species, SST and Chl-a were downloaded from the NOAA repository [33]. Both of these data
sources are at a monthly resolution. In addition, to assess the potential influence of fronts
regions, frontal gradients for SST and Chl-a were computed for each monthly layer, using
the grec R package, version 1.5.0 [34]. These were then normalized by dividing the values by
the maximum for the month. The distributions of these environmental variables are shown
in Figure 3, respectively. These data made it possible to identify well-defined fronts [35].
Before applying distribution models, the existence and strength of multi-collinearity were
assessed. This was completed by computing the variance inflation factor (VIF). There was
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no indication of the existence of serious multi-collinearity as none of the computed VIF
values were more than 5 (VIF ≤ 5). Seven GAM models were considered to model the
distribution of the four species. Selection among the seven models was based on k-fold
cross-validation (where k is repeated 5 times), using root mean squared prediction error
(RMSPE) as a performance measure. The seven models considered were:

Model formula
M1 cpue ∼ s(sst)
M2 cpue ∼ s(sst) + s(logchl)
M3 cpue ∼ s(sst) + s(logchl) + s(depth)
M4 cpue ∼ s(sst) + s(logchl) + s(depth) + s(sst_grad)
M5 cpue ∼ s(sst) + s(logchl) + s(depth) + s(sst_grad) + s(chl_grad)
M6 cpue ∼ s(sst) + s(logchl) + s(depth) + s(sst_grad) + s(chl_grad) + s(month)
M7 cpue ∼ s(sst) + s(logchl) + s(depth) + s(sst_grad) + s(chl_grad) + s(month) + year
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temperature frontal gradients (sst_grad) for the duration of the study period of this study, 2002–2018
of the NOAA repository [33], taken within the EEZ, longitude 171.31◦ W–179.10◦ W.

2.4. Index of Variable Importance

There are multiple approaches used to compute the relative importance of variables.
One such approach applied in the context of species distribution modelling is implemented
in the R packages SSDM [36], biomod2 [37]. The approach determines the relative impor-
tance of each variable by comparing model predictions under the full model (model with
all the variables) to that based on model without the variable of interest. The change in
correlation between predictions under the full model to that after removing a predictor
indicates how important the removed variable was. The index of importance was computed
as shown below:

Iri = 1 − max
(
cor

(
Pr, Ppi

)
, 0
)

where Iri is the relative index of importance, Pr prediction from the best model, Ppi is
the prediction from the variable ii permuted. To obtain a measure of variability of the
relative importance required repeating this process 50 times. All the processing, analysis,
visualization, and report generation were performed using multiple packages [38–46] in R
software [47].

3. Results
3.1. Exploration of the Occurrence

An overview of the distribution of CPUE used in all the distribution modelling is
provided in Figures S1–S4 for albacore, bigeye, skipjack, and yellowfin, respectively. The
first available data for NASA Aqua was in June 2002, hence the overlay of catch data
started over the Tonga EEZ. The figures show monthly and annual distributions of the
CPUE of the four species by the longline fishery throughout the year from January to
December. The distribution of CPUE shown suggests that most of the fishing effort of
the tuna longliners was concentrated in the 15–24◦ S. Bigeye, skipjack, and yellowfin CPUE
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shows a central-northernmost distribution, and was caught mainly between 14◦ S and 22◦ S.
The albacore species thrives in temperate to subtropical regions and exhibits its highest catch
rates between the central-southern part of the EEZ. The highest CPUE for all species are
observed from 2002–2008 and from 2013–2018 and the lowest CPUE are observed from
2009–2012. In addition, the figure also shows a broad scale seasonality in the CPUE of the
four tuna species and an increase in their CPUE especially over the recent period.

3.2. Exploration of Environmental Variables

The spatiotemporal pattern in SST, Chl-a, sea surface temperature gradient, sea sur-
face chlorophyll gradient, and bathymetry data within the EEZ of Tonga are shown in
Figures S5–S9, respectively. The distribution of SST is not homogeneous throughout the
EEZ of Tonga, with pronounced seasonal variation. The value of the temperature ranges
from 18 ◦C to 30 ◦C. From December to April, the temperature remains between 27 ◦C and
30 ◦C. From May, it falls significantly to reach its minimum in August, at approximately
18 ◦C. SST rises from September until November. The northern part of the EEZ is warmer
compared to the central and southern parts. The local relative abundance of the four tuna
species increases towards the central part of the EEZ (Figures S1–S4), indicating a preference
of tropical tuna species to warmer waters. The distribution of SST shows that, during cooler
months (April–October), the fishing operations aggregated in more temperate waters of
SST 22 ◦C to 30 ◦C, where the highest catches occurred. The value of Chl-a concentration
was at a range of 0.05–0.1 mgm−3 and was observed to be homogeneous and with no clear
spatial and temporal patterns. However, generally there was a higher Chl-a concentration
in the central part of the EEZ during summer, from November to January.

Bathymetry in this fishing ground is in the range of approximately 2000−8000 m. The
islands of Tonga geographically distributed along the south-west to north-east of the EEZ.
Very deep water of more than 5000 m covers the Tonga Trench and to the south-eastern part
of the EEZ, with very shallow volcanic sea mounts and a large shelf ≥2000 m deep at north-
western part. The sea surface chlorophyll-a gradient ranged from 0 to 0.75 mgm−3m−1,
with slightly higher gradients occurring in the summer months (November to March) and
an increase observed during the cooler months (May to August) in the most recent period of
the study. The sea surface temperature gradient exhibited a wide annual variation ranging
from 0 to 0.60 ◦Cm−1 with slightly higher values observed in the periods of 2004–2010 and
2014–2017.

3.3. Model Performance

The performance of each of the seven models, from k-fold cross-validation as measured
by the RMSPE, is presented in Table 1. Most models with only environmental variables
and bathymetry as predictors appear to have comparable performance with noticeable
improvement in performance with the addition of catch month and year (e.g., from 11.703
(model 5) to 10.293 (model 7) for albacore). Figure 4 shows the partial effects of predictors
on the CPUE of all the four tuna stocks. The partial effects with their partial residuals are
presented in Figure S10. For ease of flow, partial effects of all the predictors are presented
together. The partial effects of year indicated a gradual increase in CPUE from 2002 to
2018. CPUE appeared to decrease with increases in SST from 20 ◦C to about 25 ◦C, after
which it appeared to increase again. Relatively higher CPUE were also associated with low
SST fronts. Albacore appeared to be associated with relatively low chlorophyll water and
also a relatively stable chlorophyll front. Within the EEZ of Tonga, albacore appeared to be
associated with areas that are deeper with CPUE declining in shallower water <2000 m.
Seasonally, higher CPUE were observed around the middle of calendar year. For bigeye
tuna, the partial effects of year indicates a gradual increase in CPUE from 2002 to 2007, after
which it declined and only started to increase after 2015. The CPUE of bigeye tuna appears
to increase with increases in SST up to 25 ◦C, after which it remained stable. Relatively
higher CPUE were also associated with low SST fronts. Bigeye tuna appear to be associated
with relatively high-chlorophyll water and also a relatively stable chlorophyll front. Within
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the EEZ of Tonga, bigeye appear to be associated with areas that are deeper, with CPUE
declining linearly toward shallower water. Seasonally higher CPUE were observed around
the start of the calendar year. Plots of predicted values vs. observed values for each species
presented in log-scale are shown in Figure S11.

Table 1. Performance of the seven models considered for albacore, bigeye, skipjack, and yellowfin in the
EEZ of Tonga. The mean RMSE and mae (mean absolute error) of the test data are presented.

Species Forms Mean
RMSE

Mean
mae

Albacore cpue~s(sst,k = 3) 11.973 8.795
cpue~s(sst,k = 3) + s(log_chl,k = 3) 11.833 8.601
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) 11.814 8.572
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) 11.732 8.487
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) 11.703 8.434
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) +
s(month,bs = ‘cc’) 10.722 7.574

cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) +
s(month,bs = ‘cc’) + year 10.293 7.213

Bigeye cpue~s(sst,k = 3) 2.803 1.864
cpue~s(sst,k = 3) + s(log_chl,k = 3) 2.802 1.861
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) 2.803 1.862
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) 2.800 1.859
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) 2.790 1.852
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) +
s(month,bs = ‘cc’) 2.762 1.814

cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) +
s(month,bs = ‘cc’) + year 2.709 1.748

Skipjack cpue~s(sst,k = 3) 0.755 0.326
cpue~s(sst,k = 3) + s(log_chl,k = 3) 0.755 0.327
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) 0.756 0.327
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) 0.756 0.327
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) 0.756 0.327
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) +
s(month,bs = ‘cc’) 0.749 0.321

cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) +
s(month,bs = ‘cc’) + year 0.740 0.288

Yellowfin cpue~s(sst,k = 3) 11.326 6.998
cpue~s(sst,k = 3) + s(log_chl,k = 3) 11.182 6.853
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) 11.187 6.855
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) 11.156 6.821
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) 11.157 6.809
cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) +
s(month,bs = ‘cc’) 10.846 6.631

cpue~s(sst,k = 3) + s(log_chl,k = 3) + s(sst_grad,k = 3) + s(chl_grad,k = 3) + s(depth,k = 3) +
s(month,bs = ‘cc’) + year 10.127 5.989

The partial effects of predictors for skipjack tuna are presented in Figure 4. The partial
effects of year indicate a gradual decrease in CPUE from 2002 to 2008, after which it
gradually increased. The CPUE of skipjack tuna appears to decrease with increases in SST
up to 25 ◦C, after which it remained relatively stable. The partial effects of chlorophyll
indicates that the CPUE of skipjack gradually declined with an increase in log Chl. Although
the effects of chl_grad are largely flat, they suggests an association of higher CPUE with
a low and strong chlorophyll frontal area. A similar pattern appears to characterize the
partial effect of sst_grad on the CPUE of skipjack. Within the EEZ of Tonga, skipjack tuna
appear to be associated with areas that are around 5000 m deep with CPUE declining on
both sides. Seasonally higher CPUE were observed around July and August.
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Figure 4. The partial effects for covariates chl_grad, depth, Chl-a, SST, sst_grad, month and year
for albacore, bigeye, skipjack, and yellowfin, respectively, within the EEZ of Tonga, longitude
171.31◦ W–179.10◦ W.

The partial effects of predictors for yellowfin tuna are presented in Figure 4. The partial
effects of year indicates a gradual increase in CPUE from 2002 to 2018 with substantial inter-
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annual variability. The CPUE of yellowfin tuna appears to increase with increases in SST
up to 25 ◦C–27 ◦C, after which it declined. However, sst frontal (sst_grad) appears to have
limited/minor influence on the CPUE of yellowfin tuna. A higher CPUE of yellowfin tuna
was associated with water mass characterized by strong chlorophyll fronts (chl_grad). In
addition, the CPUE of yellowfin tuna also appears to increase with increases in chlorophyll
concentration (logChl). Within the EEZ of Tonga, the CPUE of yellowfin tuna appears to
remain stable up to a depth of 5000 m, declining in waters deeper than 5000 m. Seasonally,
higher CPUE were observed around July and August.

The index of relative importance of the predictors influencing the distribution and
abundance of the four tuna populations caught within the EEZ of Tonga is shown in
Figure 5. The numerical index of relative importance of predictors for the four tuna species
is presented in Table S1. As can be seen in the figure, catch year and catch month were
the two most important predictors for all the three species, except for albacore tuna, for
which the order reverses. The third most important variable was bottom depth for skipjack
and yellowfin tuna and SST for albacore and bigeye tuna. The remaining variables appear
to have a minor role. Model diagnostics for the best model were also checked and there
was no substantial violation of the assumption of independent and identically distributed
variables. Plots of linear predictor vs. deviance residuals and quantile–quantile of residuals
are shown in Figure S12 for all species. Figure 6 shows plots of a posterior predictive
distribution of the models for the four tuna species. It illustrates that, despite the relatively
low deviance explained (Tables 2 and S2) for all the tuna populations modelled, the model
captures the dynamic of the data generation process.
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Figure 6. Plots of posterior predictive distribution of the models for (A) albacore, (B) bigeye,
(C) skipjack and (D) yellowfin in the EEZ of Tonga, longitude 171.31◦ W–179.10◦ W. Distribution of
the observed data is shown in black whereas the distributions from multiple draws of the model are
shown in gray. Distribution of the observed data is shown in black whereas the distributions from
multiple draws of the model are shown in gray. Posterior predictive check is way of checking if the
model fits the data. The expectation is that if the model fits the data well, repeated generation of the
data from fitted model should have the same distribution as the response variable. The presence of
any systematic deviation from between the observed distribution and that posterior draws from the
model indicates problem with the fitted model [48]. In this case no issue was observed.

Table 2. Model summary for the best GAM model for the four species. The cumulative proportion of
deviance explained (Cum. dev. explained) from the null model (a model with just an intercept term)
to the full model is presented.

Species Variable Forms Cum. Dev. Explained

Albacore NULL cpue~1
sst cpue~s(sst,k = 4) 1.642
log_chl cpue~s(sst,k = 4) + s(log_chl,k = 4) 4.375
sst_grad cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) 4.823
chl_grad cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) 6.027

depth cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) +
s(depth,k = 4) 8.057

month cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k =4) + s(chl_grad,k = 4) +
s(depth,k = 4) + s(month,bs = ‘cc’) 20.588

year cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k =4)
+s(depth,k = 4) + s(month,bs = ‘cc’) + year 27.622
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Table 2. Cont.

Species Variable Forms Cum. Dev. Explained

Bigeye NULL cpue~1
sst cpue~s(sst,k = 4) 2.840
log_chl cpue~s(sst,k = 4) + s(log_chl, k = 4) 3.025
sst_grad cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) 3.047
chl_grad cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) 3.283

depth cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) +
s(depth,k = 4) 4.251

month cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k =4) + s(chl_grad,k = 4) +
s(depth,k = 4) + s(month,bs = ‘cc’) 6.788

year cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k =4) +
s(depth,k = 4) + s(month,bs = ‘cc’) + year 12.183

Skipjack NULL cpue~1
sst cpue~s(sst,k = 4) 2.419
log_chl cpue~s(sst,k = 4) + s(log_chl, k = 4) 2.493
sst_grad cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) 2.495
chl_grad cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) 2.518

depth cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) +
s(depth,k = 4) 2.837

month cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) +
s(depth,k = 4) + s(month,bs = ‘cc’) 7.568

year cpue~s(sst,k = 4) +s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4)
+s(depth,k = 4) + s(month,bs = ‘cc’) + year 24.895

Yellowfin NULL cpue~1
sst cpue~s(sst,k = 4) 1.937
log_chl cpue~s(sst,k = 4) + s(log_chl, k = 4) 4.876
sst_grad cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) 4.916
chl_grad cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) 5.455

depth cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) +
s(depth,k = 4) 5.731

month cpue~s(sst,k = 4) + s(log_chl,k =4) + s(sst_grad,k = 4) + s(chl_grad,k = 4) +
s(depth,k = 4) + s(month,bs = ‘cc’) 10.986

year cpue~s(sst,k = 4) + s(log_chl,k = 4) + s(sst_grad,k = 4) + s(chl_grad,k = 4)
+s(depth,k = 4) + s(month,bs = ‘cc’) + year 24.287

Table 2 presents the cumulative proportion of the deviance explained from the null
model to the full model. Table S2 presents smooth effects and Table S3 presents the
parametric effects of the best GAM models fitted for each tuna species. As is evident from
Table 2, the full models (models including all terms) demonstrate the highest cumulative
deviance explained across all species, with albacore having the highest value at 27.622,
followed by skipjack and yellowfin, while bigeye has the lowest value at 12.183. Also, it can be
seen (Table S2) that all of the smooth terms were significant for albacore (with p-value < 0.05).
For bigeye tuna, sst_grad was not statistically significant, whereas the remaining terms had
a significant effect. The effects of both frontal terms (sst_grad and chl_grad) and chlorophyll
were not significant for skipjack tuna with SST, bottom depth, and month having statistically
significant effects. For yellowfin tuna, all the terms, except for sst_grad, had a significant
effect on its spatiotemporal pattern.

3.4. Standardized Index of Abundance

The standardized index of abundance, based on the best GAM model, is presented in
Figure 7. For comparison, both the standardized and nominal index of abundance were
normalized, In = I/

(
I
)
. The trends for both albacore and bigeye tuna are characterized by

inter-annual variability with no long-term trend over the period considered. Skipjack and
yellowfin tuna appear to show an overall increase in abundance over the period 2002–2018.
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Figure 7. Time-series of standardized indices of CPUE for the four tuna species in the EEZ of Tonga,
longitude 171.31◦ W–179.10◦ W.

3.5. Map of Predicted Suitable Habitat

Maps of predicted suitable habitat for albacore, bigeye, skipjack, and yellowfin are shown
in Figures 8–11. They are arranged quarterly to illustrate how their abundance changes
with season. Albacore tuna appeared to be characterized by seasonal variability in CPUE
where they become more abundant during the months of July to August, with regions in
the northern and southern parts of the EEZ characterized by relatively higher abundance
(Figure 8). Conversely, as shown in Figure 9, bigeye tuna appeared to be more abundant
during the first half of the year (January–June) and in regions in the southern and eastern
part of the EEZ. Although skipjack increased in abundance after 2013 (Figure 10), they
appeared to be characterized by the same seasonal cycle as albacore tuna and peak in
abundance around July to August, but are associated with the same regions as bigeye
tuna. Yellowfin tuna has also been increasing in abundance since about 2010; although
characterized by inter-annual variability, they appear to be in higher abundance from
December to July and mostly around the island chain (Figure 11).
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Figure 10. Predicted distribution map for skipjack tuna arranged quarterly. DJF: December, January,
February; MAM: March, April, May; JJA: June, July, August; SON: September, October, November
within the EEZ of Tonga, longitude 171.31◦ W–179.10◦ W.



Diversity 2023, 15, 1091 15 of 21

Diversity 2023, 15, x FOR PEER REVIEW 16 of 22 
 

 

Figure 10. Predicted distribution map for skipjack tuna arranged quarterly. DJF: December, January, 

February; MAM: March, April, May; JJA: June, July, August; SON: September, October, November 

within the EEZ of Tonga, longitude 171.31° W– 179.10° W. 

 

Figure 11. Predicted distribution map for yellowfin tuna arranged quarterly. DJF: December, January, 

February; MAM: March, April, May; JJA: June, July, August; SON: September, October, November 

within the EEZ, longitude 171.31° W– 179.10° W of Tonga. 

4. Discussion 

Our purpose in modeling albacore, bigeye, yellowfin, and skipjack distribution in the 

EEZ of Tonga was to link tuna CPUE to environmental, physical, and temporal factors 

and subsequently to generate predictive habitat suitability maps and standardized indices 

of abundance, which could be useful for national planning and policy development for 

conservation and sustainable management of the species. The environmental variables in-

cluded in this study were SST, Chl-a, sst grad, chl_grad and bottom depth (as physical pre-

dictors). Other variables (e.g., salinity levels, mixed layer depth, sea surface height, ocean 

currents, dissolved oxygen, and others) have been employed in previous studies as pre-

dictors when modeling the suitability of tuna habitats [49–54]. Studies indicate that these 

surface and subsurface layers of oceanic environments also influence the distribution and 

presence of tuna in the water column. The movement of ocean surface waters, including 

converging and diverging flows, is linked to fluctuations in sea surface height. Tuna utilize 

these variations as signals to identify areas where food is plentiful. [49]. The movement of 

ocean currents has an effect on the mobility of phytoplankton and small pelagic fish, thus 

shaping the dispersion of marine organisms at higher trophic levels [50]. The distribution 

and presence of tuna in the ocean environment are also influenced by dissolved oxygen 

levels [51] and salinity [52,53]. However, when accessible, these investigations are con-

strained either to a single species or to relatively small regions [7]. Furthermore, when 

these variables are integrated with sea surface temperature and chlorophyll concentration 

to model habitat suitability, research has indicated that SST and Chl-a concentration are 

the predominant factors among them [3,10,19,55–57]. Our study also included extensive 

tuna longline datasets with spatiotemporal coverages, where the information was used to 

model tuna habitat preferences and distribution as a number of studies have shown [58–

60]. It may be premature to draw strong inferences regarding environmental effects on 

tuna distribution and abundance, even so, our results indicated that temporal variables, 

e.g., inter-annual variability and seasonality are influential. Bottom depth served as sur-

rogate for environmental conditions not captured by SST, Chl-a, and the two frontal indi-

ces (sst_grad, and chl_grad). This played an important role following year and month for all 

the tuna species considered except for albacore tuna. SST was the most important variable 

following year, month, and bottom depth for all the tuna species considered in this study. 

Figure 11. Predicted distribution map for yellowfin tuna arranged quarterly. DJF: December, January,
February; MAM: March, April, May; JJA: June, July, August; SON: September, October, November
within the EEZ, longitude 171.31◦ W–179.10◦ W of Tonga.

4. Discussion

Our purpose in modeling albacore, bigeye, yellowfin, and skipjack distribution in the
EEZ of Tonga was to link tuna CPUE to environmental, physical, and temporal factors
and subsequently to generate predictive habitat suitability maps and standardized indices
of abundance, which could be useful for national planning and policy development for
conservation and sustainable management of the species. The environmental variables
included in this study were SST, Chl-a, sst grad, chl_grad and bottom depth (as physical
predictors). Other variables (e.g., salinity levels, mixed layer depth, sea surface height,
ocean currents, dissolved oxygen, and others) have been employed in previous studies
as predictors when modeling the suitability of tuna habitats [49–54]. Studies indicate that
these surface and subsurface layers of oceanic environments also influence the distribution
and presence of tuna in the water column. The movement of ocean surface waters, includ-
ing converging and diverging flows, is linked to fluctuations in sea surface height. Tuna
utilize these variations as signals to identify areas where food is plentiful. [49]. The move-
ment of ocean currents has an effect on the mobility of phytoplankton and small pelagic
fish, thus shaping the dispersion of marine organisms at higher trophic levels [50]. The
distribution and presence of tuna in the ocean environment are also influenced by dissolved
oxygen levels [51] and salinity [52,53]. However, when accessible, these investigations are
constrained either to a single species or to relatively small regions [7]. Furthermore, when
these variables are integrated with sea surface temperature and chlorophyll concentration
to model habitat suitability, research has indicated that SST and Chl-a concentration are
the predominant factors among them [3,10,19,55–57]. Our study also included extensive
tuna longline datasets with spatiotemporal coverages, where the information was used to
model tuna habitat preferences and distribution as a number of studies have shown [58–60].
It may be premature to draw strong inferences regarding environmental effects on tuna
distribution and abundance, even so, our results indicated that temporal variables, e.g.,
inter-annual variability and seasonality are influential. Bottom depth served as surro-
gate for environmental conditions not captured by SST, Chl-a, and the two frontal indices
(sst_grad, and chl_grad). This played an important role following year and month for all the
tuna species considered except for albacore tuna. SST was the most important variable
following year, month, and bottom depth for all the tuna species considered in this study.
GAM analysis, modeling the CPUE of tuna species, revealed that catch year and catch month
had biggest effect (Figure 4) on the fisheries success.

Although no scientific studies have been conducted on tuna habitat preferences in
Tonga, areas with relatively high CPUE of tuna species could be attributed to oceanographic
conditions associated the bathypelagic features within its EEZ. As previously stated, this
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central part of the EEZ partly envelops the Tonga Ridge, Tofua Arce Volcanic Front, the
northern end of the Tonga Kermadec Arc, the westward region of the Lau Basin and the
parallel north to south chains of volcanic seamounts along the Tonga Ridge. These oceanic
features may influence environmental conditions, such as surface water temperature,
nutrient, salt content, and mixed layer depth, which are habitats for pelagic species such
as tuna. This may also be the reason for the persistent presence of the four tuna species
throughout the year although the EEZ of Tonga is part of the WCPO and is generally
characterized as oligotrophic [61], due to deep vertical mixing of water masses. Studies
have demonstrated a strong correlation between tuna and shallow waters, particularly
continental shelves and seamounts [62,63]. These locations are widely recognized as prime
habitats for large offshore fishes, primarily because of the substantial foraging advantages
they offer [62] and possibly for reproductive and navigational benefits [64–66].

The temporal pattern in the standardized indices of abundance (Figure 7) and the
partial effects plots suggested that during the time period of this study (2002–2018), some of
the stocks of the tuna population within the EEZ of Tonga experienced a gradual increase,
whereas for other species it was mostly characterized by inter-annual variability. Some
of the important regulatory changes and environmental dynamics within the time period
of this study that could potentially be driving the trend in the CPUE of the four tuna
populations within the EEZ include: (i) a fishing moratorium (2004–2011) on foreign
fishing fleets [1], as part of the Tonga’s long-term plan to expand its tuna fisheries, and
(ii) the impact of El Niño Southern Oscillation (ENSO) events (such as those of 1997/98,
2003/04, 2009/10) known to affect tuna catchability through the spatial shift of tuna’s
preferred habitat away from normal fishing grounds in the Western Pacific [67,68]. Strong
seasonality was observed in the distribution and abundance of tuna populations. This
could be attributed to seasonal variability, which is known to influence the migration
patterns and habitats of tuna in the WCPO [5,13]. Whilst Zainuddin et al., (2008) reported
increased tuna abundance in cooler waters (April-September) in the Western North Pacific
Ocean, Arrizabalaga et al. (2015) [20] reported higher abundance in warm waters due to
tuna temperature preference for spawning.

Bathymetry also plays a role (Figure 5) in the central area of the EEZ of depths ranged
between 2000 m and 3000 m (Figure S9), where the highest tuna capture occurred. As stated
above, this is an area that partly envelops water of various depths due to its geographically
topographic features. The eastern part of the EEZ covers the famous Tonga Trench, which
runs south–north with depths of 5000 m or greater.

Our CPUE distributions (Figures S1–S4) show this area to have very low tuna encoun-
ters as compared to the central part. We attributed this habitat suitability distribution to two
main reasons: (i) the productive waters in the deep areas are scattered over large vertical
waters, whereas in smaller vertical waters, productive waters are compressed making
them easy and quick to access for tuna, hence a higher tuna presence; (ii) since bathymetry
is linked to both fleet operations and fish habitat; hence, it can act as a crude proxy for
distance from ports. The distance from the main ports in Nuku’alofa (the capital of Tonga)
to the high tuna occurrence areas (central areas of the EEZ) is in the range of 50 to 100 km,
whereas the distance to the deepest areas is in the range of 150 to 400 km. Therefore, it
could be that fishing vessels preferred the central area due to its shorter distance from ports,
hence cutting back on operational costs.

The preferred ranges of the environmental factors, SST and Chl-a, are shown in
Figure 4, but were found to be least important in modelling distribution, as measured by
variable importance (values ≤ 0.1, Figure 5); much less important than spatial-temporal
factors and bottom depth. Therefore, we tend to consider their influence over the tuna
occurrence in the EEZ of Tonga to be limited (at least in the context of the present modelling
framework). A study by Lan et al. (2017) [19] in the Tropical Pacific Ocean, suggests that
areas with a higher SST and a Chl-a concentration of approximately 0.05–0.25 mgm−3

yield higher catch rates of yellowfin tuna. Setiawati et al. (2015) [10] indicated bigeye tuna
habitat ranges for SST and Chl-a are 24.8 to 28.7 ◦C and 0.05 to 0.17 mgm−3, respectively.
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The results indicated by Zainuddin et al. (2006) that the distribution pattern of potential
fishing zones for skipjack during the southeast monsoon were well-characterized by SST,
ranging from 28.5 ◦C to 30.5 ◦C and with Chl-a ranging from 0.10 to 0.20 mgm−3 [55]. In
the Western Pacific Ocean, Zainuddin et al. (2008) report that the highest CPUE of albacore
corresponded with areas of SST at 18.5–21.5 ◦C and Chl-a of 0.2–0.4 mgm−3 [69]. In addition,
studies have shown that areas with low catch encounters are found in the offshore waters
due to the low Chl-a concentration present in these areas [69,70]. Chl-a presence is an
indicator of areas where small pelagic fishes concentrated for feeding [71]. Hence, an
adequate level of Chl-a concentration is required to enhance food availability and increase
fish presence in the area. According to Atkinson et al. (2001) [72], Chl-a concentration of at
least 0.2 mgm−3 is required (as compared to the Chl-a concentration in the EEZ of Tonga
0.03–0.1 mgm−3) to provide adequate levels of food to support a viable commerical fishery.
Our results show that the highest Chl-a concentration in the archipelago waters of Tonga
to be 0.1 mgm−3, which is only half of that reported (0.2 mgm−3). Furthermore, there
is no direct input of nutrient from land and coastal upwellings [61] to enhance primary
productivity [73,74].

The spatiotemporal pattern in SST and Chl-a data (Figure S5 and Figure S6, respec-
tively) show their monthly variability compared to maps of predicted suitable habitat
for albacore (Figure 8), bigeye (Figure 9), skipjack (Figure 10), and for yellowfin (Figure 11).
It was observed, as stated earlier, that the largest captures of the four tuna species are
distributed in the central waters, 15◦ S–24◦ S, of the EEZ with temperatures above 22 ◦C
and Chl-a concentration ≤ 0.001 mgm−3. Our results show that albacore has the highest
CPUE, followed by bigeye and yellowfin, and skipjack has the lowest as indicated by CPUE
distributions (Figures S1–S4). The study by Arrizabalaga et al. (2015) [20] on global tuna
catch found that albacore has the highest CPUE and is mostly caught between the latitudes
of 20◦ S and 40◦ N, relatively high bigeye CPUE has been observed between 0◦ and 40◦

of each hemisphere, and yellowfin are found around the equator, while skipjack’s highest
CPUE are observed around 0◦–20◦ of each hemisphere. The study by Hu et al. (2018) [75]
found that bigeye tuna are caught more (more so than yellowfin, albacore, and skipjack) in
equatorial waters farther from the coast and where the hypoxic layer is deeper. There
was also indication of seasonal variation in their distributions, possibly corresponding to
seasonal displacement of water temperature along low–high latitudes [76]. Our results
show they influence but do not seem to be the main determinants of the distribution and
abundance of the tuna species in Tongan waters when compared, for example, to temporal
measures like the variables month and year (Figure 5).

5. Conclusions

The study integrated catch data for four tuna species in Tonga’s EEZ with satellite-
derived environmental data and employed distribution modeling and GAM analyses,
revealing that high tuna catches align closely with predicted habitat maps from 2002
to 2018. The partial effect plots of our GAMs confirmed the non-linear relationships
between the variables analyzed and tuna occurrence. Among the variables considered,
SST exhibited the highest importance, followed by year, month, and bottom depth for all
the tuna species in this study. The results of our study also suggest that the stocks of tuna
populations within Tonga’s EEZ showed a gradual increase for some species while others
exhibited inter-annual variability. The key factors driving the CPUE trends for the four tuna
populations could be attributed to a fishing moratorium on foreign fleets and the influence
of El Niño-Southern Oscillation events altering the preferred habitat of tuna. Regarding
spatial distribution, both the CPUE distribution and the predicted suitable tuna habitats
in the study region indicate a preference for the tuna species to be concentrated in the
central part of the EEZ, aligning with historically productive tuna fishing areas. The study
revealed a seasonal peak in tuna occurrence between May and September, contrasting with
lower occurrence rates from October to April, underscoring the consistent significance of
spatiotemporal variables in shaping the habitat patterns of tuna and highlighting specific
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times and locations of abundance for these species. Overall, our model results predict
the spatiotemporal pattern of the four tuna habitats in good agreement with our simple
prediction maps and observation occurrence data. Future research needs to be conducted
in the area in order to further examine the links and interactions between tuna habitats and
other environmental and oceanographic factors not included in this study.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d15101091/s1, Table S1. Summary of numerical index of relative
importance of predictors for the four tuna species in the EEZ, of Tonga. Table S2. Model summary for
the best GAM model for the four species. Smooth effects: estimated degrees of freedom (edf ), degrees
of freedom (df ), F-statistics, and p-values and deviance explained are presented. Table S3. Model
summary for the best GAM model for the four species. Parametric effects: estimate, standard error,
F-statistics and p-values are presented. Figure S1. Spatiotemporal pattern in the distribution of albacore
tuna within the EEZ of Tonga, longitude 14.5◦ S–20.22◦ S, longitude 171.31◦ W–179.10◦ W. Data
aggregated to coarser resolution of 0.3 degree (~5 NM). Figure S2. Spatiotemporal pattern in the distri-
bution of bigeye tuna in the EEZ of Tonga, longitude 14.5◦ S–20.22◦ S, longitude 171.31◦ W–179.10◦ W.
Data aggregated to coarser resolution of 0.3 degree (~5 NM). Figure S3. Spatiotemporal pattern
in the distribution of skipjack tuna in the EEZ of Tonga, longitude 14.5◦ S–20.22◦ S, longitude
171.31◦ W–179.10◦ W. Data aggregated to coarser resolution of 0.3 degree (~5 NM). Figure S4. Spa-
tiotemporal pattern in the distribution of yellowfin tuna in the EEZ of Tonga, longitude 14.5◦ S–20.22◦ S,
longitude 171.31◦ W–179.10◦ W. Data aggregated to coarser resolution of 0.3 degree (~5 NM).
Figure S5. Annual and monthly variability of sea surface temperature for the EEZ of Tonga,
longitude 14.5◦ S–20.22◦ S, longitude 171.31◦ W–179.10◦ W. Data aggregated to coarser resolution of
0.3 degree (~5 NM). Figure S6. Annual and monthly variability of sea surface chlorophyll for the EEZ
of Tonga, longitude 14.5◦ S–20.22◦ S, longitude 171.31◦ W–179.10◦ W. Figure S7. Annual and monthly
variability of sea surface chlorophyll gradient for the EEZ of Tonga, longitude 14.5◦ S–20.22◦ S, longi-
tude 171.31◦ W–179.10◦ W. Figure S8. Annual and monthly variability of sea surface temperature
gradient for the EEZ of Tonga, longitude 14.5◦ S–20.22◦ S, longitude 171.31◦ W–179.10◦ W. Figure S9.
Bathymetry for the EEZ of Tonga, longitude 14.5◦ S–20.22◦ S, longitude 171.31◦ W–179.10◦ W.
Figure S10. The partial effects with partial residuals for covariates chl_grad, depth, Chl-a, SST, sst_grad,
month and year for (a) albacore, (b) bigeye, (c) skipjack and (d) yellowfin, respectively, within the EEZ
of Tonga, longitude 171.31◦ W–179.10◦ W. Figure S11. Model diagnostic plots of predicted values
vs. observed values for each species presented in log-scale for visual purpose. Figure S12. Model
diagnostics, plot of linear predictors vs. deviance residuals and quantile–quantile plots of theoret-
ical values vs. deviance residuals for albacore (panels A and B), bigeye (panels C and D), skipjack
(panels E and F) and yellowfin (panels G and H) in the EEZ of Tonga, longitude 14.5◦ S–20.22◦ S,
longitude 171.31◦ W–179.10◦ W.
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