Low Bioerosion Rates on Inshore Turbid Reefs of Western Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Information
2.2. Environmental and Habitat Data
2.3. Micro CT of Porites Blocks
2.4. Coral Rubble
2.5. Fish and Urchin Grazing
2.6. Statistical Analysis
3. Results
3.1. Environmental and Habitat Data
3.2. Bioerosion
3.3. Fish Abundance and Erosion Rates
3.4. Environmental and Habitat Drivers of Site Differences in Bioerosion
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hutchings, P.A. Biological destruction of coral reefs—A review. Coral Reefs 1986, 4, 239–252. [Google Scholar] [CrossRef]
- Hutchings, P. Role of polychaetes in bioerosion of coral substrates. In Current Developments in Bioerosion; Springer: Berlin/ Heidelberg, Germany, 2008; pp. 249–264. [Google Scholar] [CrossRef]
- Le Grand, H.M.; Fabricius, K.E. Relationship of internal macrobioeroder densities in living massive Porites to turbidity and chlorophyll on the Australian Great Barrier Reef. Coral Reefs 2010, 30, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Chazottes, V.; Le Campion-Alsumard, T.; Peyrot-Clausade, M.; Cuet, P. The effects of eutrophication-related alterations to coral reef communities on agents and rates of bioerosion (Reunion Island, Indian Ocean). Coral Reefs 2002, 21, 375–390. [Google Scholar] [CrossRef]
- Prouty, N.G.; Cohen, A.; Yates, K.K.; Storlazzi, C.D.; Swarzenski, P.W.; White, D. Vulnerability of Coral Reefs to Bioerosion From Land-Based Sources of Pollution. J. Geophys. Res. Ocean. 2017, 122, 9319–9331. [Google Scholar] [CrossRef]
- Zweifler, A.; O’leary, M.; Morgan, K.; Browne, N.K. Turbid coral reefs: Past, present and future—A review. Diversity 2021, 13, 251. [Google Scholar] [CrossRef]
- Browne, N.K.; Cuttler, M.; Moon, K.; Morgan, K.; Ross, C.; Castro-Sanguino, C.; Kennedy, E.; Harris, D.; Barnes, P.; Bauman, A.; et al. Predicting responses of geo-ecological carbonate reef systems to climate change: A conceptual model and review. Oceanogr. Mar. Biol. Annu. Rev. 2021, 59, 229–370. [Google Scholar]
- Stearn, W.; Scoffin, T.P. Calcium Carbonate Budget of a Fringing Reef on the West Coast of Barbados. Bulletin. Mar. Sci. 1977, 27, 479–510. [Google Scholar]
- Kennedy, E.; Perry, C.T.; Halloran, P.; Iglesias-Prieto, R.; Schönberg, C.H.L.; Wisshak, M.; Form, A.U.; Carricart-Ganivet, J.P.; Fine, M.; Eakin, C.M.; et al. Avoiding Coral Reef Functional Collapse Requires Local and Global Action. Curr. Biol. 2013, 23, 912–918. [Google Scholar] [CrossRef] [Green Version]
- Perry, C.T.; Murphy, G.N.; Kench, P.S.; Edinger, E.N.; Smithers, S.G.; Steneck, R.S.; Mumby, P.J. Changing dynamics of Caribbean reef carbonate budgets: Emergence of reef bioeroders as critical controls on present and future reef growth potential. Proc. R. Soc. B Biol. Sci. 2014, 281, 20142018. [Google Scholar] [CrossRef] [Green Version]
- Januchowski-Hartley, F.A.; Graham, N.A.J.; Wilson, S.K.; Jennings, S.; Perry, C.T. Drivers and predictions of coral reef carbonate budget trajectories. Proc. R. Soc. B Biol. Sci. 2017, 284, 20162533. [Google Scholar] [CrossRef] [Green Version]
- Perry, C.T.; Alvarez-Filip, L. Changing geo-ecological functions of coral reefs in the Anthropocene. Funct. Ecol. 2019, 33, 976–988. [Google Scholar] [CrossRef]
- Bruggemann, J.H.; Vanoppen, M.J.H.; Breeman, A.M. Foraging by the stoplight-parrotfish Sparisoma viride. 1.Food selection in different socially determined habitats. Mar. Ecol. Prog. Ser. 1994, 106, 41–56. [Google Scholar] [CrossRef]
- Bellwood, D. Direct estimate of bioerosion by two parrotfish species on the Great Barrier Reef, Australia. Mar. Biol. 1995, 121, 419–429. [Google Scholar] [CrossRef]
- Perry, C.T.; Morgan, K.M.; Yarlett, R.T. Reef Habitat Type and Spatial Extent as Interacting Controls on Platform-Scale Carbonate Budgets. Front. Mar. Sci. 2017, 4, 185. [Google Scholar] [CrossRef] [Green Version]
- Yarlett, R.T.; Perry, C.T.; Wilson, R.W.; Harborne, A.R. Inter-habitat variability in parrot-fish bioerosion rates and grazing pressure on an indian ocean reef platform. Diversity 2020, 12, 381. [Google Scholar] [CrossRef]
- Yarlett, R.T.; Perry, C.T.; Wilson, R.W.; Philpot, K.E. Constraining species-size class varia-bility in rates of parrotfish bioerosion on Maldivian coral reefs: Implications for regional-scale bioerosion estimates. Mar. Ecol. Prog. Ser. 2018, 590, 155–169. [Google Scholar] [CrossRef] [Green Version]
- Chazottes, V.; Campion-Alsumard, T.L.e.; Peyrot-Clausade, M. Bioerosion rates on coral reefs: Interactions between macroborers, microborers and grazers (Moorea, French Polynesia). ‘Palaeogeogr. Palaeoclimatol. Palaeoecol. 1995, 113, 189–198. [Google Scholar] [CrossRef]
- Carreiro-Silva, M.; McClanahan, T.R.; Kiene, W.E. Effects of inorganic nutrients and or-ganic matter on microbial euendolithic community composition and microbioerosion rates. Mar. Ecol. Prog. Ser. 2009, 392, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Rice, M.M.; Maher, R.L.; Correa, A.M.S.; Moeller, H.V.; Lemoine, N.P.; Shantz, A.A.; Burkepile, D.E.; Silbiger, N.J. Macroborer presence on corals increases with nutrient input and promotes parrotfish bioerosion. Coral Reefs 2020, 39, 409–418. [Google Scholar] [CrossRef]
- Diaz, M.C.; Rützler, K. Sponges: An essential component of Caribbean coral reefs. Bull. Mar. Sci. 2001, 69, 535–546. [Google Scholar]
- Pari, N.; Peyrot-Clausade, M.; Hutchings, P.A. Bioerosion of experimental substrates on high islands and atoll lagoons (French Polynesia) during 5 years of exposure. J. Exp. Mar. Biol. Ecol. 2002, 276, 109–127. [Google Scholar] [CrossRef]
- Schönberg, A.C.H.L. Monitoring Bioeroding Sponges: Using Rubble, Quadrat, or Intercept Surveys ? Biol. Bull. 2015, 228, 137–155. [Google Scholar] [CrossRef]
- Sammarco, P.; Risk, M. Large-scale patterns in internal bioerosion of Porites: Cross conti-nental shelf trends on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 1990, 59, 145–156. [Google Scholar] [CrossRef]
- Holmes, K.E.; Edinger, E.N.; Hariyadi, H.; Limmon, G.V.; Risk, M.J. Bioerosion of Live Massive Corals and Branching Coral Rubble on Indonesian Coral Reefs. Mar. Pollut. Bull. 2000, 40, 606–617. [Google Scholar] [CrossRef]
- Risk, M.J.; Heikoop, J.M.; Edinger, E.N.; Erdmann, M.V. The assessment ’toolbox’: Community-based reef evaluation methods coupled with geochemical techniques to identify sources of stress. Bull. Mar. Sci. 2001, 69, 443–458. [Google Scholar]
- Browne, N.; Smithers, S.; Perry, C. Carbonate and terrigenous sediment budgets for two inshore turbid reefs on the central Great Barrier Reef. Mar. Geol. 2013, 346, 101–123. [Google Scholar] [CrossRef]
- Morgan, K.M. A Calcium Carbonate Budget of a Maldivian Reef Platform. Ph.D. Thesis, University of Auckland, Auckland, New Zealand, 2014. [Google Scholar]
- Mallela, J.; Perry, C.T. Calcium carbonate budgets for two coral reefs affected by different terrestrial runoff regimes, Rio Bueno, Jamaica. Coral Reefs 2007, 26, 129–145. [Google Scholar] [CrossRef]
- Davies, P.J.; Hutchings, P.A. Initial colonization, erosion and accretion of coral substrate-Experimental results, Lizard Island, Great Barrier Reef. Coral Reefs 1983, 2, 27–35. [Google Scholar] [CrossRef]
- Kiene, W.E.; Hutchings, P.A. Bioerosion experiments at Lizard Island, Great Barrier Reef. Coral Reefs 1994, 13, 91–98. [Google Scholar] [CrossRef]
- Pari, N.; Peyrot-Clausade, M.; Le Campion-Alsumard, T.; Hutchings, P.; Chazottes, V.; Golubic, S.; Le Campion, J.; Fontaine, M. Bioerosion of experimental substrates on high islands and on atoll lagoons (French Polynesia) after two years of exposure. Mar. Ecol. Prog. Ser. 1998, 166, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Silbiger, N.J.; Guadayol, Ò.; Thomas, F.I.M.; Donahue, M.J. A Novel μCT Analysis Reveals Different Responses of Bioerosion and Secondary Accretion to Environmental Variability. PLoS ONE 2016, 11, e0153058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beuck, L.; Vertino, A.; Stepina, E.; Karolczak, M.; Pfannkuche, O. Skeletal response of Lophelia pertusa (Scleractinia) to bioeroding sponge infestation visualised with micro-computed tomography. Facies 2007, 53, 157–176. [Google Scholar] [CrossRef]
- Enochs, I.C.; Manzello, D.P.; Kolodziej, G.; Noonan, S.H.C.; Valentino, L.; Fabricius, K.E. Enhanced macroboring and depressed calcification drive net dissolution at high-CO2 coral reefs. Proc. R. Soc. B Biol. Sci. 2016, 283, 20161742. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.E.; van Heuven, S.M.A.C.; de Bakker, D.M.; van Duyl, F.C.; Reichart, G.-J.; de Nooijer, L.J. Combined Effects of Experimental Acidification and Eutrophication on Reef Sponge Bioerosion Rates. Front. Mar. Sci. 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Decarlo, T.M.; Cohen, A.L.; Barkley, H.C.; Cobban, Q.; Young, C.; Shamberger, K.E.; Brainard, R.E.; Golbuu, Y. Coral macrobioerosion is accelerated by ocean acidification and nutrients. Geology 2015, 43, 7–10. [Google Scholar] [CrossRef] [Green Version]
- Achlatis, M.; van der Zande, R.M.; Schönberg, C.H.L.; Fang, J.K.H.; Hoegh-Guldberg, O.; Dove, S. Sponge bioerosion on changing reefs: Ocean warming poses physiological constraints to the success of a photosymbiotic excavating sponge. Sci. Rep. 2017, 7, 10705. [Google Scholar] [CrossRef] [Green Version]
- McIlwain, J.L. Link between reproductive output and larval supply of a common damselfish species, with evidence of replenishment from outside the local population. Mar. Ecol. Prog. Ser. 2002, 236, 219–232. [Google Scholar] [CrossRef] [Green Version]
- Baird, A.H.; Blakeway, D.R.; Hurley, T.J.; Stoddart, J. Seasonality of coral reproduction in the Dampier Archipelago, northern Western Australia. Mar. Biol. 2010, 158, 275–285. [Google Scholar] [CrossRef]
- Ridgway, T.; Inostroza, K.; Synnot, L.; Trapon, M.; Twomey, L.; Westera, M. Temporal patterns of coral cover in the offshore Pilbara, Western Australia. Mar. Biol. 2016, 163, 182. [Google Scholar] [CrossRef]
- Moustaka, M.; Langlois, T.J.; McLean, D.; Bond, T.; Fisher, R.; Fearns, P.; Dorji, P.; Evans, R.D. The effects of suspended sediment on coral reef fish assemblages and feeding guilds of north-west Australia. Coral Reefs 2018, 37, 659–673. [Google Scholar] [CrossRef]
- Dee, S.; Cuttler, M.; O’Leary, M.; Hacker, J.; Browne, N. The complexity of calculating an accurate carbonate budget. Coral Reefs 2020, 39, 1525–1534. [Google Scholar] [CrossRef]
- Cuttler, M.; Vos, K.; Branson, P.; Hansen, J.; O’Leary, M.; Browne, N.; Lowe, R. Interannual Response of Reef Islands to Climate-Driven Variations in Water Level and Wave Climate. Remote Sens. 2020, 12, 4089. [Google Scholar] [CrossRef]
- Dee, S.; Cuttler, M.; Cartwright, P.; McIlwain, J.; Browne, N. Encrusters maintain stable carbonate production despite temperature anomalies among two inshore island reefs of the Pilbara, Western Australia. Mar. Environ. Res. 2021, 169, 105386. [Google Scholar] [CrossRef] [PubMed]
- Kohler, K.E.; Gill, S.M. Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 2006, 32, 1259–1269. [Google Scholar] [CrossRef]
- Enochs, I.C.; Toth, L.T.; Kirkland, A.; Manzello, D.P.; Kolodziej, G.; Morris, J.T.; Holstein, D.M.; Schlenz, A.; Randall, C.J.; Maté, J.L.; et al. Upwelling and the persistence of coral-reef frameworks in the eastern tropical Pacific. Ecol. Monogr. 2021, 91. [Google Scholar] [CrossRef]
- Marlow, J.; Davy, S.K.; Shaffer, M.; Haris, A.; Bell, J.J. Bleaching and recovery of a phototrophic bioeroding sponge. Coral Reefs 2018, 37, 565–570. [Google Scholar] [CrossRef]
- Tribollet, A.; Decherf, G.; Hutchings, P.; Peyrot-Clausade, M. Large-scale spatial variability in bioerosion of experimental coral substrates on the Great Barrier Reef (Australia): Importance of microborers. Coral Reefs 2002, 21, 424–432. [Google Scholar] [CrossRef]
- Tribollet, A. The boring microflora in modern coral reef ecosystems: A review of its roles. In Current Developments in Bioerosion; Springer: Berlin/Heidelberg, Germany, 2008; pp. 67–94. [Google Scholar] [CrossRef]
- Bromley, R.G. A stratigraphy of marine bioerosion. In The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis; Special Publications; McIlroy, D., Ed.; Geological Society of London: London, UK, 2004; Volume 228, pp. 455–481. [Google Scholar]
- Goetze, J.S.; Bond, T.; McLean, D.; Saunders, B.J.; Langlois, T.J.; Lindfield, S.; Fullwood, L.A.F.; Driessen, D.; Shedrawi, G.; Harvey, E.S. A field and video analysis guide for diver operated stereo-video. Methods Ecol. Evol. 2019, 10, 1083–1090. [Google Scholar] [CrossRef] [Green Version]
- Karakulak, F.S.; Erk, H.; Bilgin, B. Length-weight relationships for 47 coastal fish species from the northern Aegean Sea, Turkey. J. Appl. Ichthyol. 2006, 22, 274–278. [Google Scholar] [CrossRef]
- Schramm, K.D.; Marnane, M.J.; Elsdon, T.S.; Jones, C.M.; Saunders, B.J.; Newman, S.J.; Harvey, E.S. Fish associations with shallow water subsea pipelines compared to surrounding reef and soft sediment habitats. Sci. Rep. 2021, 11, 6238. [Google Scholar] [CrossRef]
- Perry, C.T.; Lange, I.; Januchowski-Hartley, F.A. ReefBudget Indo Pacific: Online Resource and Methodology. 2018. Available online: http://geography.exeter.ac.uk/reefbudget/ (accessed on 12 March 2021).
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Horikoshi, M.; Li, W. ggfortify: Unified Interface to Visualize Statistical Results of Popular R Packages. R J. 2016, 8, 474–485. [Google Scholar] [CrossRef] [Green Version]
- RStudio Team. RStudio: Integrated Development for R; RStudio: Boston, MA, USA, 2020; Available online: http://www.Rstudio.Com (accessed on 9 September 2022).
- Hoeksema, B.W.; Wels, D.; van der Schoot, R.J.; Hove, H.A.T. Coral injuries caused by Spirobranchus opercula with and without epibiotic turf algae at Curaçao. Mar. Biol. 2019, 166, 60. [Google Scholar] [CrossRef] [Green Version]
- Hoeksema, B.W.; van der Schoot, R.J.; Wels, D.; Scott, C.M.; Hove, H.A.T. Filamentous turf algae on tube worms intensify damage in massive Porites corals. Ecology 2019, 100, e02668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoeksema, B.W.; Timmerman, R.F.; Spaargaren, R.; Smith-Moorhouse, A.; van der Schoot, R.J.; Langdon-Down, S.J.; Harper, C.E. Morphological Modifications and Injuries of Corals Caused by Symbiotic Feather Duster Worms (Sabellidae) in the Caribbean. Diversity 2022, 14, 332. [Google Scholar] [CrossRef]
- Tribollet, A.; Golubic, S. Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 2005, 24, 422–434. [Google Scholar] [CrossRef]
- Silbiger, N.J.; Donahue, M.J.; Brainard, R.E. Environmental drivers of coral reef carbonate production and bioerosion: A multi-scale analysis. Ecology 2017, 98, 2547–2560. [Google Scholar] [CrossRef]
- Ayukai, T.; Miller, D. Phytoplankton biomass, production and grazing mortality in Exmouth Gulf, a shallow embayment on the arid, tropical coast of Western Australia. J. Exp. Mar. Biol. Ecol. 1998, 225, 239–251. [Google Scholar] [CrossRef]
- Osorno, A.; Peyrot-Clausade, M.; Hutchings, P.A. Patterns and rates of erosion in dead Porites across the Great Barrier Reef (Australia) after 2 years and 4 years of exposure. Coral Reefs 2005, 24, 292–303. [Google Scholar] [CrossRef]
- Hutchings, P. Bioerosion. In Encyclopedia of Modern Coral Reefs: Structure, Form and Process; Hopley, D., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 139–156. [Google Scholar]
- Bonesso, J.L.; Browne, N.K.; Murley, M.; Dee, S.; Cuttler, M.V.; Paumard, V.; Benson, D.; O’Leary, M. Reef to island sediment connections within an inshore turbid reef island system of the eastern Indian Ocean. Sediment. Geol. 2022, 436, 106177. [Google Scholar] [CrossRef]
- Zubia, M.; Peyrot-Clausade, M. Internal bioerosion of Acropora formosa in Réunion (Indian Ocean): Microborer and macroborer activities. Oceanol. Acta 2001, 24, 251–262. [Google Scholar] [CrossRef]
- Bak, R. Patterns of echinoid bioerosion in two Pacific coral reef lagoons. Mar. Ecol. Prog. Ser. 1990, 66, 267–272. [Google Scholar] [CrossRef]
- Reaka-Kudla, M.L.; Feingold, J.S.; Glynn, W. Experimental studies of rapid bioerosion of coral reefs in the Galapagos Islands. Coral Reefs 1996, 15, 101–107. [Google Scholar] [CrossRef]
- Tafforeau, P.; Boistel, R.; Boller, E.; Bravin, A.; Brunet, M.; Chaimanee, Y.; Cloetens, P.; Feist, M.; Hoszowska, J.; Jaeger, J.-J.; et al. Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Appl. Phys. A 2006, 83, 195–202. [Google Scholar] [CrossRef]
- Cheal, A.J.; Emslie, M.; MacNeil, M.A.; Miller, I.; Sweatman, H. Spatial variation in the functional characteristics of herbivorous fish communities and the resilience of coral reefs. Ecol. Appl. 2013, 23, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Hoey, A.S.; Bellwood, D.R. Cross-shelf variation in the role of parrotfishes on the Great Barrier Reef. Coral Reefs 2007, 27, 37–47. [Google Scholar] [CrossRef]
- Lange, I.; Perry, C.; Morgan, K.; Roche, R.; Benkwitt, C.; Graham, N. Site-Level Variation in Parrotfish Grazing and Bioerosion as a Function of Species-Specific Feeding Metrics. Diversity 2020, 12, 379. [Google Scholar] [CrossRef]
- Melgarejo-Damián, M.P.; González-Acosta, A.F.; Cruz-Escalona, V.H.; Moncayo-Estrada, R. A comparison of feeding biomechanics between two parrotfish species from the Gulf of California. Zoomorphology 2017, 137, 165–176. [Google Scholar] [CrossRef]
- Reyes-Nivia, C.; Diaz-Pulido, G.; Kline, D.; Guldberg, O.H.; Dove, S. Ocean acidification and warming scenarios in-crease microbioerosion of coral skeletons. Glob. Chang. Biol. 2013, 19, 1919–1929. [Google Scholar] [CrossRef]
- Risk, M.J.; Sammarco, P.W. Bioerosion of corals and the influence of damselfish territoriality: A preliminary study. Oecologia 1982, 52, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Glynn, P.W.; Wellington, G.M. Corals and Coral Reefs of the Gala´Pagos Islands (with an Annotated List of the Scleractinian Corals of the Gala’pagos by JW Wells); University of California Press: Berkeley, CA, USA, 1983; 330p. [Google Scholar]
Substrate Cover (%) | Environment | Bioerosion Rates (kg m−2 year−1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reef | Site | Depth (m) | Coral | MA | TA | Sand | Light (PAR) | Temperature (°C) | Chlorophyll (µg L−1) | pH | Turbidity (FNU) | Salinity | Micro | Macro | Grazing | Total |
Eva | ENI | 3.1 | 9.51 | 56.44 | 19.02 | 13.50 | 142.04 (±73.15) | 27.15 (±0.80) | 0.38 (±0.05) | 8.18 (±0.01) | 1.48 (±0.33) | 38.16 (±0.42) | 0.03 (±0.01) | 0.06 (±0.01) | 0.01 (±0.01) | 0.11 (±0.02) |
Eva | ENO | 3.5 | 65.35 | 0.00 | 13.52 | 5.07 | 142.04 (±59.90) | 27.15 (±0.80) | 0.38 (±0.05) | 8.18 (±0.01) | 1.48 (±0.33) | 38.16 (±0.42) | 0.03 (±0.01) | 0.10 (±0.02) | 0.01 (±0.01) | 0.15 (±0.07) |
Eva | ESI | 2.7 | 2.06 | 62.06 | 3.82 | 19.41 | 311.17 (±73.15) | 26.90 (±0.86) | 0.38 (±0.05) | 8.18 (±0.01) | 1.48 (±0.33) | 38.16 (±0.42) | 0.07 (±0.01) | 0.06 (±0.01) | 0.02 (±0.01) | 0.16 (±0.02) |
Eva | ESO | 3.6 | 1.19 | 71.85 | 5.12 | 7.77 | 311.17 (±59.90) | 26.90 (±0.86) | 0.38 (±0.05) | 8.18 (±0.01) | 1.48 (±0.33) | 38.16 (±0.42) | 0.07 (±0.02) | 0.10 (±0.05) | 0.02 (±0.01) | 0.22 (±0.02) |
Fly | FNI | 4.5 | 29.12 | 0.00 | 34.71 | 20.29 | 106.62 (±36.10) | 27.20 (±0.89) | 0.49 (±0.06) | 8.19 (±0.03) | 2.27 (±0.36) | 38.34 (±0.46) | 0.05 (±0.01) | 0.06 (±0.01) | 0.06 (±0.09) | 0.18 (±0.1) |
Fly | FNO | 4.0 | 6.24 | 29.46 | 32.10 | 7.07 | 106.62 (±36.10) | 27.20 (±0.89) | 0.49 (±0.06) | 8.19 (±0.03) | 2.27 (±0.36) | 38.34 (±0.46) | 0.04 (±0.01) | 0.09 (±0.03) | 0.01 (±0.003) | 0.14 (±0.03) |
Fly | FSI | 3.0 | 1.06 | 35.98 | 4.76 | 35.71 | 127.08 (±65.53) | 27.32 (±0.89) | 0.49 (±0.06) | 8.19 (±0.03) | 2.27 (±0.36) | 38.34 (±0.46) | 0.04 (±0.00) | 0.11 (±0.05) | 0.02 (±0.007) | 0.17 (±0.05) |
Fly | FSO | 3.1 | 0.00 | 67.58 | 1.21 | 21.06 | 127.08 (±65.53) | 27.32 (±0.89) | 0.49 (±0.06) | 8.19 (±0.03) | 2.27 (±0.36) | 38.34 (±0.46) | 0.05 (±0.01) | 0.21 (±0.02) | 0.04 (±0.01) | 0.30 (±0.02) |
Fixed Effects | Sum Squares | Mean of Squares | DF | F Value | p Value |
---|---|---|---|---|---|
Bioeroder | 0.060 | 0.030 | 2 | 28.00 | <0.001 |
Reef | 0.001 | 0.001 | 1 | 0.89 | 0.428 |
Random effects | Variance | SD | |||
Reef:Site | 0.00003 | 0.005 | |||
Site | 0.00002 | 0.004 | |||
Residual | 0.00108 | 0.032 | |||
Post hoc Tukey | Estimate | SE | Z value | pvalue | |
Macro-Micro | 0.043 | 0.009 | 4.80 | <0.001 | |
Grazing-Micro | −0.023 | 0.009 | −2.58 | 0.027 | |
Grazing-Macro | −0.066 | 0.009 | −7.38 | <0.001 |
Model | ||||||||
---|---|---|---|---|---|---|---|---|
Microborers | Estimate | SE | T Value | p Value | Multiple R2 | Adjusted R2 | F Statistics | p Value |
Temperature | −0.0949 | 0.8969 | 2.948 | 0.008 | ||||
Depth | 0.0058 | 0.0122 | 0.472 | 0.642 | ||||
Coral cover | −0.0006 | 0.0004 | −1.589 | 0.127 | 0.411 | 0.270 | 2.926 | 0.037 |
Macroalgal cover | −0.0005 | 0.0004 | −1.476 | 0.155 | ||||
Turfing algal cover | −0.0008 | 0.0006 | −1.446 | 0.163 | ||||
Macroborers | ||||||||
Temperature | −0.0527 | 0.0620 | −0.851 | 0.404 | ||||
Depth | −0.0720 | 0.0236 | −3.055 | 0.006 | ||||
Coral cover | −0.0005 | 0.0007 | −0.682 | 0.503 | 0.426 | 0.290 | 3.124 | 0.029 |
Macroalgal cover | 0.0003 | 0.0007 | 0.441 | 0.664 | ||||
Turfing algal cover | 0.0042 | 0.0011 | 3.739 | 0.001 | ||||
Grazers | ||||||||
Temperature | 0.0161 | 0.0201 | 0.798 | 0.435 | ||||
Depth | −0.0086 | 0.0076 | −1.132 | 0.271 | ||||
Coral cover | −0.0001 | 0.0002 | −0.202 | 0.842 | 0.105 | −0.118 | 0.4716 | 0.793 |
Macroalgal cover | 0.0001 | 0.0002 | 0.173 | 0.865 | ||||
Turfing algal cover | 0.0003 | 0.0004 | 0.932 | 0.362 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dee, S.; DeCarlo, T.; Lozić, I.; Nilsen, J.; Browne, N.K. Low Bioerosion Rates on Inshore Turbid Reefs of Western Australia. Diversity 2023, 15, 62. https://doi.org/10.3390/d15010062
Dee S, DeCarlo T, Lozić I, Nilsen J, Browne NK. Low Bioerosion Rates on Inshore Turbid Reefs of Western Australia. Diversity. 2023; 15(1):62. https://doi.org/10.3390/d15010062
Chicago/Turabian StyleDee, Shannon, Thomas DeCarlo, Ivan Lozić, Jake Nilsen, and Nicola K. Browne. 2023. "Low Bioerosion Rates on Inshore Turbid Reefs of Western Australia" Diversity 15, no. 1: 62. https://doi.org/10.3390/d15010062