Next Article in Journal
Resource Partitioning by Corallivorous Snails on Bonaire (Southern Caribbean)
Previous Article in Journal
Metabolomics Unravels Grazing Interactions under Nutrient Enrichment from Aquaculture
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Influence of Volcanism, Soils, and Climate in the Endemicity Levels of Asteraceae in the Arequipa Region (Southern Peru)

by
Antonio Galán-de-Mera
1,*,
Eliana Linares-Perea
2 and
Hamilton Beltrán
3
1
Laboratorio de Botánica, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Madrid, Spain
2
Fundación Estudios Fitogeográficos del Perú, Arequipa 04002, Peru
3
Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima 15046, Peru
*
Author to whom correspondence should be addressed.
Diversity 2023, 15(1), 33; https://doi.org/10.3390/d15010033
Submission received: 16 November 2022 / Revised: 20 December 2022 / Accepted: 23 December 2022 / Published: 27 December 2022
(This article belongs to the Section Plant Diversity)

Abstract

:
We present the diversity of Asteraceae in the Arequipa Region of southern Peru, an area strongly influenced by volcanism, which has given rise to different soil types and has determined a very wide bioclimatic and vegetational zonation. We present the distribution of Asteraceae endemisms of Peru and Arequipa, and of the dry puna. For this purpose, we have used the bioclimatic methodology of Rivas-Martínez, the characteristic soils of each collection point, and the distance of the collection localities from the volcanoes. In the Arequipa Region, we found 232 species of Asteraceae, of which 49 are endemic to Peru or to the dry puna and 7 are endemic to the studied area. Of these endemics, 10 are thermotropical, 1 is mesotropical, 3 are supratropical, and 3 are orotropical bioindicators, being mainly distributed in two large groups of soils: sandy and saline or gypsiferous soils, mostly located within the thermotropical belt of the coastal desert, and andosols and cambisols distributed from the thermotropical to the cryorotropical belts of the Andes. The greatest number of endemics and semi-endemics are found in the vicinity of the arc formed by the Misti, Chachani and Pichu-Pichu volcanoes.

1. Introduction

The Asteraceae family, together with the Orchidaceae, Poaceae, and Piperaceae, is one of the most diverse families in Peru [1]. The most recent list of the New World Flora [2] reported 1474 species of Asteraceae, although various taxonomic studies led to a reduction to 1244 between synonymies and species absent from the Peruvian territory [3,4].
Perhaps the first author to synthetically study the Asteraceae in southern Peru was Weddell [5], including genera such as Mutisia L.f., Perezia Lag., Plazia Ruiz & Pav. or Werneria Kunth (=Rockhausenia D.J.N. Hind), based on the work of post-Linnaean authors such as Linnaeus filius, Ruiz and Pavón, Humboldt et al., or Lessing [6,7,8,9]. Without forgetting the data of Weberbauer [10] in southern Peru, with the ecological behavior of Ambrosia, Diplostephium Kunth, Grindelia Willd., Lepidophyllum Cass. (=Parastrephia Nutt.), Onoseris Willd., Proustia Lag. Or Senecio L., we have added numerous contributions restricted to certain groups or genera, such as Chersodoma Phil. [11], Mutisia [12,13], Gochnatia Kunth [14], Plazia [15], Senecio [16,17,18,19]), Werneria (=Rockhausenia) [20,21], Xenophyllum V.A. Funk (=Werneria) [21,22,23], and to floristic and vegetational studies [24].
The Arequipa Region is located in southern Peru, between the coordinates 15°11′45.72″ S/73°27′54.70″ W and 16°47′08.93″ S/70°03′51.28″ W, longitudinally, and 14°37′51.08″ S/71°59′04.75″ W and 16°35′21.08″ S/72°47′05.95″ W, transversely, and presents six large areas with habitat types of different climatic characters: (a) coastal desert hills (‘lomas’) with ephemeral vegetation and isolated Cactaceae (0–1000 m a.s.l.), (b) inter-desert barrier as a large plain with Quaternary fluvial and aeolian sedimentation only with the vegetation of the streams (1000–2000 m a.s.l.), (c) western Andean slopes with Cactaceae and shrub communities (2000–3100 m a.s.l.), (d) western Andean slops with mesophytic shrubs (3100–3800 m a.s.l.), (e) volcanic reliefs with deep soils of the dry highlands with shrubs and grasslands (‘dry puna’), the humid highlands with a predominance of grasslands (‘humid puna’) (3800–4800 m a.s.l.), and (f) the coldest areas with cryogenic processes with small grasslands, usually above 4800 m a.s.l. [25]. These landscape units reach their greatest extensions in the Arequipa Region with respect to others in Peru, with volcanic soils and morphology, making it a model area for establishing ecological relationships in various plant families.
Volcanoes have undoubtedly marked the landscape of Arequipa with super-eruptions dating back 490 million years (Ordovician) [26], Pleistocene stratovolcanoes (2.59 m.y. BP) [27], such as the Chachani complex [28]), with relatively modern eruptions, such as those of Misti in the 15th century [27], Huaynaputina, in the 17th century (Moquegua Region) [29] or Sabancaya at present (Figure 1). The Pichu-Pichu volcano represents an older geomorphological pattern, as it is known to have been active 6.7 m.y. ago (Miocene) and part of it collapsed 1 m.y. ago [30,31].
Several studies have revealed the relationship between plant diversity, climatic factors, soil types, and volcanic activity in different parts of the world [32,33,34,35]. Dimopoulos et al. [32] indicated that areas more distant from the most modern volcanism have the highest floristic diversity, while materials derived from the most modern volcanism have a low diversity and tend to be terophytes or bisannuals. Schwarzer et al. [33] studied the distribution and dispersal of plants due to the Huaynaputina super-eruption, concluding that some species had dispersed from very distant Andean areas from Argentina or Chile to southern Peru with the substrate originated by the eruption having a strong influence. Ghermandi et al. [34] comparing plant composition before and after a volcanic eruption in Patagonia observed that plant cover is higher in areas with volcanic ash than in areas without volcanic ash, and that ash deposition removes exotic terophytes but increases the presence of geophytes. Martín Osorio et al. [35] studied the colonising vegetation in a recent eruption on the Canary Island of Tenerife, observing a high number of endemic species in the lower vegetation belts.
The aim of this work was to obtain an updated catalogue of the species of Asteraceae in the Arequipa Region, establishing the distribution patterns of its endemisms and semi-endemisms in relation to bioclimatology, soil types, and volcanism in order to identify future conservation areas within the territory studied.

2. Materials and Methods

2.1. Studying and Arranging Herbarium Vouchers

To know the number of Asteraceae species growing in the Arequipa Region, 2206 herbarium sheets from the CUZ, F, HBG, HUSA, K, MA, MO, NY, P, US, and USM herbaria (acronyms following Thiers, continuously updated [36]) were studied. For each, the locality, collector and collection number, month, year, altitude, and coordinates were detailed (Supplementary Table S1). The Asteraceae of Arequipa with the distribution in other Peruvian regions (Supplementary Table S2) were extracted from the Supplementary Table S1 in order to discover which are the endemisms and semi-endemisms of the territory studied.
Endemisms are species that inhabit within the borders of the Peruvian territory or the Arequipa Region, while semi-endemisms are species distributed throughout the regions of Ica, Ayacucho, Arequipa, Moquegua, and Tacna in Peru, even though they extend to Bolivia, Chile and Argentina; they are species that are spread throughout the driest part of the Andes, from the Ica Region to the highlands of Bolivia, Chile and Argentina (Xerophytic Punenian biogeographic province) according to the biogeographical sectorisation by Rivas-Martínez et al. [37].
Appendix A, Table A1 are the species of non-repeated localities of the database (Supplementary Table S1) with decimal coordinates and is a synthesis of Supplementary Table S3. Decimal coordinates were also used to generate the distribution maps of the Figures 1, 8, and 9 with the Quantum Geographic Information System (QGIS) 3.0.1 [38].

2.2. Bioclimatic Characterization of Plants

To bioclimatically characterise the locality of each herborised specimen, we used the Rivas-Martínez model of bioclimatic belts [39]. Bioclimatic belts are based on thermicity index (It) ranges and bioindicators, which are plants and associations of vegetation. The thermicity index is a mathematical expression containing different temperature values in degrees centigrade: It = (T + M + m) 10 [T: Average annual temperature, M: Average maximum temperature in the coldest month, m: Average minimum temperature of the coldest month]. At present, we are able to distinguish six bioclimatic belts or thermotypes throughout Peru (Figure 2, [40]): Infratropical (It > 690), thermotropical (It = 490 to 690), mesotropical (It = 320 to 490), supratropical (It = 160 to 320), orotropical (It = 50 to 160), and cryorotropical (It = < 50). These belts are nuanced by rainfall intervals (annual P in mm) or ombrotypes, so we can observe a very humid thermotropical belt in the Amazon but be very dry in Southern Peru. We can distinguish nine types of precipitation intervals in the country: Ultrahyperarid (P < 5), hyperarid (5 to 30), arid (31 to 100), semiarid (101 to 300), dry (301 to 500), subhumid (501 to 900), humid (901 to 1500), hyperhumid (1501 to 2500), and ultrahyperhumid (>2500). In Arequipa, the bioclimate fluctuates from thermotropical ultrahyperarid to cryorotropical humid [41].
Meteorological data, with a time frame of 30 years, were taken from METEOBLUE [42], establishing comparisons in some cases with the results of the CHELSA database [43]. These computer tools make it possible to obtain meteorological values and climate diagrams for any coordinate, which increases the accuracy of the relationship between a species and certain bioclimatic indices and parameters.

2.3. Plants, Soils and Volcanism

To observe the influence of soil types on the flora, we used SoilGrids database [44] by matching the coordinates of the localities where specimens were collected with those of the corresponding pixel which indicates the percentage of soil types. According to IUSS Working Group WRB [45], we have distinguished 13 soil types in the Arequipa Region (Appendix A, Table A1; Supplementary Table S3): Andosols: volcanic soils par excellence, formed on ashes, volcanic glasses, or from pyroclasts (they are found in regions with active or recent volcanism, that is, in the vicinity of volcanic cones); arenosols: sandy soils; regosols: soils with no significant profile development; leptosols: shallow or extremely gravelly soils; calcisols: soils with accumulation of calcium carbonate; cambisols: moderately developed soils; luvisols: soils with a clay-enriched subsoil, with a high base status and high-activity clay; fluvisols: floodplains and tidal marshes; solonchaks: soils with salt enrichment upon evaporation; gypsisols: soils with accumulation of gypsum; kastanozems: soils of dry climate, with accumulation of organic matter phaeozems: soils of more humid climate, with accumulation of organic matter; and vertisols: soils influenced by water, alternating wet-dry conditions and rich in swelling clays.
In addition, to test the possible tendency of flora distribution versus volcanism, we calculated the distance between the localities of the specimens and the base of the Arequipa volcanoes (DIST) (Appendix A, Table A1; Supplementary Table S3) using the database of the Global Volcanism Program of Smithsonian Institution [46]. From this database, it is possible to obtain a kml file visible using the Google-Earth portal [47]. For this purpose, localities between 0 and 50 km were separated from localities between 50 and 150 km, since 50 km is the approximate distance between the coastline and the beginning of the western Andean slope.

2.4. Statistical Analysis

To observe the tendency of the distribution of 138 collected specimens in relation to their altitude (H), climatic variables and indices (T, M, m, It, P), distance to the nearest volcanoes (DIST), and percentages of the soils found in the pixel of a given locality, we used a principal component analysis (PCA) based on a matrix with the numerical data of the Appendix A, Table A1, or Supplementary Table S3. Eingenvectors indicate how the variables correlate with the location of the specimens. To see how the different variables are correlated, a correlation matrix was carried out using Pearson’s parametric test. These statistical analyses were run with the PAST 4.07b software [48].

3. Results

3.1. Diversity of Asteraceae in the Arequipa Region

Among the 2206 herbarium sheets studied (Supplementary Table S1), 232 species belonging to 82 genera of the Asteraceae family from the Arequipa Region were extracted (Supplementary Table S2), of which 49 are Peruvian endemics or semi-endemics of the Xerophytic Punenian biogeographic province: Ageratina lobulifera (B.L.Rob.) R.M.King and H. Rob., Aldama dilloniorum (A.J.Moore and H. Rob.) E.E.Schill. and Panero, A. peruviana (A. Gray) E.E.Schill. and Panero, Ambrosia dentata (Cabrera) M. O. Dillon, *A. pannosa W.W.Payne, Aristeguietia ballii (Oliv.) R.M.King and H. Rob., A. cursonii (B.L.Rob.) R.M.King and H. Rob., Baccharis scandens (Ruiz and Pav.) Pers., Chersodoma juanisernii (Cuatrec.) Cuatrec., Chionopappus benthamii S. F. Blake, Erigeron incaicus Solbrig, E. leptorhizon DC., Gochnatia arequipensis Sandwith, *Heiseria irmscheriana (Bruns) Mesfin, *Helogyne hutchisonii R.M.King and H. Rob., Heterosperma ferreyrii H. Rob., Lomanthus arnaldii (Cabrera) B. Nord. and Pelser, L. icaensis (H.Beltrán and A. Galán) B. Nord., L. lomincola (Cabrera) B. Nord. and Pelser, *L. mollendoensis (Cabrera) B. Nord., L. okopanus (Cabrera) B. Nord., L. subcandidus (A. Gray) B. Nord., L. tovarii (Cabrera) B. Nord. & Pelser, Munnozia lyrata (A. Gray) H. Rob. and Brettell, Mutisia arequipensis Cabrera, Nordenstamia longistyla (Greenm. and Cuatrec.) B. Nord., Onoseris minima Domke, O. odorata (D. Don) Hook and Arn., Ophryosporus bipinnatifidus B.L.Rob., O. pubescens (Smith) R.M.King and H. Rob., *Paquirea lanceolata (H.Beltrán and Ferreyra) Panero and S. Freire, Philoglossa peruviana DC., Senecio acarinus Cabrera, S. beltranii P. Gonzáles and Montesinos, S. chachaniensis Cuatrec., S. crassilodix Cuatrec., S. flaccidifolius Wedd., S. gamolepis Cabrera, S. hebetatus Wedd., S. neoviscosus Cuatrec., *S. smithianus Cabrera, S. yurensis Rusby, S. cuzcoensis Hieron., S. hoppii B.L.Rob., S. melissiaefolia (Lam.) Sch.Bip., S. puberula Hook., S. weberbaueri B.L.Rob., Syncretocarpus sericeus (DC.) S. F. Blake, and *Wedelia hoffmanniana F.Bruns. The seven species marked with an asterisk are endemic to Arequipa. W. hoffmanniana has not been collected since 1923 (sheet Gunther 46, HBG).
We consider the following species as semi-endemic or endemic to the Xerophytic Punenian biogeographic province (Appendix A, Table A1; Supplementary Table S3): Aldama dilloniorum, Ambrosia dentata, A. pannosa, Aphyllocladus denticulatus (J.Rémy ex Gay) Cabrera, Aristeguietia cursonii, Diplostephium meyenii Wedd., Gochnatia arequipensis, Helogyne apaloidea Nutt., Lomanthus icaensis, L. mollendoensis, L. okopanus, Lophopappus cuneatus R.E.Fr., L. foliosus Rusby, Mutisia arequipensis, M. orbignyana Wedd., Onoseris minima, Ophryosporus bipinnatifidus, O. hoppii (B.L.Rob.) R.M.King and H.Rob., Pluchea absinthioides (Hook. and Arn.) H.Rob. and Cuatrec., Polyachyrus annuus I.M.Johnst., Senecio calcicola Meyen and Walp., S. crassilodix, S. neoviscosus, S. scorzonerifolius Meyen and Walp., S. yurensis, and Werneria esquilachensis Cuatrec.
The genus Chionopappus Benth., Heiseria E.E. Schill and Panero and Paquirea Panero and S.E. Freire are endemic to Peru. Paquirea genus is endemic to Arequipa only.

3.2. Distribution Patterns

In the PCA (Figure 3), specimens are arranged along the axes according to altitude (H) (Component 1) and Thermicity Index (It) (Component 2). Precipitation trends higher towards the negative values of Component 2, while the Thermicity Index (It) trends higher towards the positive values of the x-axis. Thus, species located further to the right of the ordinate axis are found in the thermotropical bioclimatic belt, while those located further to the left are found in the supra- and orotropical belts. This means that the distances to volcanoes, combined with very low rainfall and a higher thermicity index (It) and, in turn, with Arenosols (Are), Gypsisols (Gyp), Solonchaks (Sch) and Leptosols (Lep) denote the species that are concentrated on the thermotropical coastal belt. These species include Lomanthus icaensis (57), and L. mollendoensis (58,61,62), Ophryosporus bipinnatifidus (89), Polyachyrus annuus (102,103,104), and Senecio calcicola (109,110,111).
In the lower right quadrant of the PCA, there are species of the lower mesotropical belt, with slightly more precipitation, poorly consolidated soils (Regosols, Reg) and accumulations of calcium carbonate (Calcisols, Cal) from the Jurassic and Cretaceous of Arequipa. Among the species, we found Aldama dilloniorum (8), Ambrosia pannosa (1), Aphyllocladus denticulatus (18,19), Gochnatia arequipensis (48,50), Helogyne apaloidea (54), Senecio yurensis (120,128,130,133). Here we also found thermotropical species, generally from the coast, established with a certain probability on regosols and calcisols, such as Lomanthus okopanus (63), Ophryosporus hoppii (94), Polyachyrus annuus (101), and Senecio calcicola (107). In this quadrant we also found Pluchea absinthioides (97), typical of thermo-mesotropical watercourses, in arenosols and fluvisols, as is characteristic of riverside vegetation.
To the left of the ordinates, we found the greatest ecological diversity, with species ranging from mesotropical to cryorotropical bioclimates. Those closest to the negative part of the ordinate axis are of semi-arid ombrotype and are associated with andosols with poorly consolidated soils due to their proximity to volcanic cones. These include Aphyllocladus denticulatus (21), Diplostephium meyenii (33,34), Gochnatia arequipensis (44,46), Senecio neoviscosus (116), and S. yurensis (123). Among these species, we find both mesotropical and supratropical species, the latter corresponding to localities, that having a typical altitude of the mesotropical belt, are subject to thermal inversion, as is the case with 46 (2400 m, Gochnatia arequipensis) and 116 (2800 m, Senecio neoviscosus), located to the South-East of the city of Arequipa.
On the other hand, the species located on the negative side of the x-axis next to the ordinates combine the features of being located in andosols and cambisols, the proximity to volcanoes, and a lower rainfall. For example, Gochnatia arequipensis (47) was found on andosols and cambisols, 1 km from the volcanic cones of Chachani and under a dry mesotropical bioclimate; Senecio yurensis (129) was found under a semi-arid mesotropical bioclimate, but only 13 km from Pichu-Pichu and with similar edaphological characteristics. The leftmost species, Aristeguietia cursonii (27), Diplostephium meyenii (39) and Mutisia arequipensis (74,75) are in humid orotropical localities with deep soils; however, 27 and 74 are already above the x-axis, showing the importance of washed soils (Luvisols) due to increased rainfall.
In the upper left quadrant, the species Diplostephium meyenii (40) and Gochnatia arequipensis (53) from semi-arid mesotropical localities are prominent. In the first case, it is a mesotropical location at 3100 m a.s.l., an altitude that should correspond to the limit of the supratropical belt. In addition, 53 belongs to a point located on Phaeozems deep soils, and in more humid environments. The rest of the localities in this quadrant belong to the more humid areas in the interior of the territory studied, including species such as Aphyllocladus denticulatus (24,25), Lophopappus cuneatus (66), L. foliosus (68,69), Mutisia arequipensis (72,73,76), and M. orbignyana (81), which grow forming shrublands on Kastanozems or Phaeozems soils. Localities 24, 25 and 72 are from La Unión province; 24 has a cryorotropical thermotype only at 3659 m a.s.l., and 25 and 72 are orotropical at 3300 and 3600 m a.s.l. respectively, which seems to indicate a preferential exposure to southerly winds.
Supporting the PCA results, the correlation matrix (Figure 4) shows the correlation between the different PCA variables, between positive values if there is at least some correlation, or negative values if the correlation is negative. H (altitude) and DIST (distance to volcanoes) are negatively correlated, since at lower altitudes in the coastal desert, the distance to volcanoes is greater. However, P (precipitation) has a positive correlation with altitude because the highest precipitation values are at high altitudes in the Arequipa Region. Similarly, Are (Arenosols) have a negative correlation with altitude and precipitation, as most of the arenosols are on the coast. Kst (Kastanozems) and Pha (Phaeozems) have a positive correlation with precipitation as they are located in the most humid localities of the Andes. Andosols have a positive correlation with altitude as they are mainly found in the vicinity of volcanic cones, which are areas of higher bioclimatic levels, where the value of the thermicity index (It) is lower.
Most of the collections of endemic and semi-endemic species are in the thermotropical bioclimatic zone, that is, on the coast (Figure 5A). These species are: Ambrosia dentata, Heiseria irmscheriana, Helogyne hutchinsonii, Lomanthus icaensis, L. mollendoensis, Ophryosporus bipinnatifidus, Polyachyrus annuus, Senecio smithianus, and Wedelia hoffmanniana. However, the mesotropical belt also has a high number, which includes all the areas of the Arequipa Region between 2100 and 3100 m a.s.l. Here we find Ambrosia pannosa, Aldama dilloniorum, Aphyllocladus denticulatus, Diplostephium meyenii, Gochnatia arequipensis, Helogyne apaloidea, Lophopappus cuneatus, Ophryosporus hoppii, Pluchea absinthioides, Senecio calcicola, and S. yurensis. At the supratropical level, endemisms and semi-endemisms begin to decline, until only two collections extend to the cryorotropical belt. In the supratropical, we can find Aldama dilloniorum, Aristeguietia cursonii, Diplostephium meyenii, Gochnatia arequipensis, Lophopappus foliosus, Mutisia arequipensis, M. orbignyana, Paquirea lanceolata, Senecio neoviscosus, S. scorzonerifolius, and S. yurensis; in the orotropical Aphyllocladus denticulatus, Aristeguietia cursonii, Diplostephium meyenii, Lophopappus cuneatus, L. foliosus, Mutisia arequipensis, Mutisia orbignyana, Onoseris minima, Senecio crassilodix, S. yurensis and Werneria esquilachensis; and finally, in the cryorotropical, Aphyllocladus denticulatus and Diplostephium meyenii. The localities of the thermotropical belt are distributed among the ultrahyperarid to semiarid ombrotypes, an ombrotype that also reaches a higher proportion in the mesotropical belt. From dry to hyperhumid are supra, oro, and cryorotropical localities, many of them located in the interior valleys of the region, indicating that the Andean western slopes are much drier (Figure 5B).
The number of times that a species is found within a bioclimatic belt indicates whether or not it is a bioindicator (Figure 6). In contrast to species such as Ambrosia pannosa (mesotropical), Heiseria irmscheriana (thermotropical), Helogyne hutchisonii (thermotropical), Lomanthus mollendoensis (thermotropical), Paquirea lanceolata (supratropical) or Senecio smithianus (thermotropical), there are others with a wider dispersion, such as Senecio yurensis (from thermo- to orotropical), Diplostephium meyenii (from meso- to cryorotropical) or Gochnatia arequipensis (from thermo- to supratropical). Thermotropical bioindicators are Ambrosia dentata, Heiseria irmscheriana, Helogyne hutchisonii, Lomanthus icaensis, L. mollendoensis, L. okopanus, Ophryosporus bipinnatifidus, Polyachyrus annuus, Senecio smithianus, and Wedelia hoffmanniana; however, only one mesotropical bioindicator, Ambrosia pannosa, was found. The supratropical ones are Paquirea lanceolata, Senecio neoviscosus, and S. scorzonerifolius. On the orotropical belt only Onoseris minima, Senecio crassilodix and Werneria esquilachensis are bioindicators. There are no bioindicators on the cryorotropical belt among the endemisms and semi-endemisms of the Arequipa Region.
Figure 7A shows the soil groups by locality of collection. From this, we can deduce that there are two main distribution poles for Asteraceae endemisms and semi-endemisms, on saline or gypsiferous basic soils and sandy soils, and on andosols and cambisols. The first group of soils belongs mainly to the thermotropical soil type, while the second group of soils presents localities from thermotropical to cryorotropical, indicating a great extension of the andosols and their influence on the flora (see quadrants and eigenvectors in Figure 3).
If we analyze the number of Asteraceae endemisms and semi-endemisms found closest to the volcanoes of Arequipa (Figure 7B), we can observe that the greatest number of these are in the space between the Misti, Chachani and Pichu- Pichu volcanoes, in the vicinity of the city of Arequipa, perhaps originating from the influence of a large volcanic complex dated to at least the Eocene (56–37 m.y. ago). Materials from the other volcanoes continued to have an influence, but to a lesser extent. The species most closely linked to this volcanic environment spread over 50 localities are (Figure 8, Appendix A, Table A1; Supplementary Table S3): Aldama dilloniorum, Aphyllocladus denticulatus, Diplostephium meyenii, Gochnatia arequipensis, Lophopappus cuneatus, Mutisia orbignyana, Onoseris minima, Ophryosporus hoppii, Pluchea absinthioides, Senecio crassilodix, S. neoviscosus, S. yurensis, and Werneria esquilachensis.
For Aldama dilloniorum, Onoseris minima, Senecio neoviscosus, and Werneria esquilachensis this volcanic arc signifies a biogeographic barrier to the north (Figure 9).

4. Discussion

4.1. Diversity

Arequipa features 232 species of Asteraceae; 49 are endemic to the Peruvian territory, of which only 7 belong to the Arequipa Region. This means that the number of species in Peru decreases from north to south. La Libertad presents 456 species in its flora (135 national endemics, and an unknown number of regional endemics), Ancash 393 (164 national and 13 regional endemics), Lima 344 (120 national and 14 regional endemics), and Ica 72 (11 national and 1 regional endemics). The Ica Region contains very few species due to its small Andean area [49,50,51,52].

4.2. Distribution Patterns

Asteraceae species in Arequipa follow a distribution pattern linked to the climatic characteristics of the territory, soils, and volcanism. Thus, most of the species are found in the lower bioclimatic levels, between the thermotropical and mesotropical (Figure 3 and Figure 5), although some, such as Diplostephium meyenii or Senecio yurensis, extend as far as the orotropical and cryorotropical belts (Figure 8), probably due to their anemochore dispersal. Thus, we also find fewer endemics in the orotropical and cryorotropical levels, which means in the alpine zones, in accordance with the dispersal pattern of the family [53,54]. In other areas of the world, this fact is also recognized [35]; therefore, on the volcanic island of Tenerife (Canary Islands) there are also a large number of endemics living between the inframediterranean and mesomediterranean belts. However, in the territory studied, several Asteraceae species have a narrower distribution, taking into account that there is also a fairly clear separation between the species of the coastal desert and those of the Andean Mountain Range, and that in this desert, most of the endemisms are located in islands of vegetation in the high areas that receive rainfall (‘lomas’) [55].
This bioclimatic distribution is also paralleled by soil types; as saline and gypsiferous soils and arenosols are more prevalent in the hyperarid and ultrahyperarid thermotropical bioclimate of the coastal desert, other soil types are more linked to volcanic eruptions in the rest of Arequipa [33,56], with andosols noticeable when volcanic eruptions are more modern [46], especially at higher altitudes and lower It. In contrast, regosols and leptosols, which are stony and have a negative correlation with altitude and precipitation, arose from older volcanic eruptions (Figure 3).
Ancient volcanism was involved in the speciation of Asteraceae and their distribution [57,58]), as well as the aridity that began to originate in the Palaeocene (66–56 m.y. ago) in the western Andes [59], augmented by the strengthening of the Humboldt Current during the Eocene (56–37 m.y. ago) [60]. In this way, Villaseñor [57] concludes that volcanism created a large number of microhabitats suitable for the diversification of Asteraceae genera. However, modern eruptions have led to a decrease in biodiversity in the orotropical and cryorotropical zones, so that the number of endemic orotropical and cryorotropical bioindicators of Asteraceae in Arequipa is very low. This fact has been confirmed in several studies in other parts of the world, such as Kilimanjaro (Tanzania) [61], the Santorini archipelago (Greece) [32], Chile [62], and Argentinean Patagonia [34]. On the contrary, in non-volcanic territories, as is the case in the Sierra de Guadarrama in the Central System of the Iberian Peninsula, the oromediterranean and cryoromediterranean belts host at least 19 endemisms in a small territorial extension [63]. Related to this final observation, the Lima Region, with similar precipitation (humid and hyperhumid ombrotypes), and which has no modern volcanoes, has 21 oro-cryorotropical endemisms of Asteraceae [64], while the Arequipa Region has only 3.
Maps (Figure 8 and Figure 9) indicate a higher concentration of Asteraceae endemics and semi-endemics in the vicinity of the city of Arequipa. Brecheisen et al. [65] mapped the agricultural and urban expansion of the city in 1966, 1978, and 2019, which has begun to occupy part of the slopes of Chachani, Misti and Pichu-Pichu, endangering many of the populations studied through elimination and alteration. Therefore, we propose the creation of flora micro-reserves to help their conservation, inspired by models and legislation established in other countries [66].

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/d15010033/s1, Table S1: 2206 herbarium sheets studied from Arequipa Region, with localities, collectors and coordinates; Table S2: Astereceae of Arequipa with the distribution in Peruvian regions, a representative herbarium sheet, life form, and altitudinal range; Table S3: Table with the values taken to obtain the PCA of Figure 2, bioclimatic diagnosis, volcanoes closest to the localities studied, and percentage of soil types per pixel of SoilGrids database in a locality.

Author Contributions

Conceptualization, H.B. and A.G.-d.-M.; methodology, H.B., E.L.-P. and A.G.-d.-M.; software, E.L.-P. and A.G.-d.-M.; validation, E.L.-P. and A.G.-d.-M.; formal analysis, E.L.-P. and A.G.-d.-M.; investigation, H.B., E.L.-P. and A.G.-d.-M.; resources, E.L.-P. and A.G.-d.-M.; data curation, H.B.; writing—original draft preparation, A.G.-d.-M.; writing—review and editing, H.B., E.L.-P. and A.G.-d.-M.; visualization, H.B., E.L.-P. and A.G.-d.-M.; supervision, H.B. and A.G.-d.-M. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

This study did not require ethical approval.

Data Availability Statement

Not applicable.

Acknowledgments

We extend gratitude to the anonymous reviewers and to the editor for their help in improving our paper. We also extend gratitude to Brian Crilly for his editorial assistance.

Conflicts of Interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Appendix A

Table A1. Table with the values taken to obtain the PCA of Figure 2, bioclimatic diagnosis, volcanoes closest to the localities studied, and percentage of soil types per pixel of SoilGrids database in a locality (Synthesis of the Supplementary Table S3).
Table A1. Table with the values taken to obtain the PCA of Figure 2, bioclimatic diagnosis, volcanoes closest to the localities studied, and percentage of soil types per pixel of SoilGrids database in a locality (Synthesis of the Supplementary Table S3).
Locality
Number
Locality of
Table S1
Endemisms and Semi-Endemisms of Arequipa
Region
Regional
Distribution
in Peru
Locality of
Arequipa
Region
Bioclimatic
Diagnosis
HItPDISTAndAreRegLepCalCamLuvFluSchGypKstPhaVerVolcano
117Ambrosia pannosaARTingoMes sem222442813412.7200261419110600000Misti
279Heiseria
irmscheriana
ARMejiaThe ulha30641381.0301119120910000000Cerro
Nicholson
382Helogyne hutchisoniiARAticoThe ha575111992.560302116550000000Sara-Sara
4101Lomanthus mollendoensisARAtiquipaThe sem50053211198.0508152001512000000Sara-Sara
5130Paquirea
lanceolata
AROrcopampaSup suh379019360014.326014160340700000Andahua-Orcopampa
6182Senecio smithianusARAtiquipaThe sem275530111106.160111920099000000Sara-Sara
7214Wedelia hoffmannianaARMejiaThe ulha4445520138.48011201613000110000Sara-Sara
8524Aldama dilloniorumAR MO TACerro VerdeMes sem2600438116200926222200500000Misti
9525IdemAR MO TAYuraMes sem31003461888.17170211001511000000Chachani
10526IdemAR MO TAChachaniMes sem2800374134410014120227000000Chachani
11527IdemAR MO TAOjuliSup sem25002431797.38010191818110000000Misti
121092Ambrosia dentataAR ICJahuayThe ulha3005030146.6101123139000130000Sara-Sara
131094IdemAR ICAticoThe ha2775171991.820251827700600000Sara-Sara
141100IdemAR ICChalaThe sem43053111488.980152215700006000Sara-Sara
151101IdemAR ICLos CerrillosThe ulha8005320149.12013171416001000000Sara-Sara
161103IdemAR ICAtiquipaThe ar50053097102.27011162201014000000Sara-Sara
1719Aphyllocladus denticulatusAR MO TAHuancarquiMes ar26004173727.19010161811100000000Huambo
18653IdemAR MO TAPolobayaMes sem290040712247.570827916000110000Huaynaputina
19654IdemAR MO TAQuebrada
Escalerilla
Mes ar27542477613.900232311160400000Ubinas
20655IdemAR MO TASocabayaMes sem216047514113.2101024162070000000Misti
21656IdemAR MO TAYuraMes sem220042618811.891682113090000000Chachani
221177IdemAR MO TAAticoThe ha12745211991.270026280706200000Sara-Sara
231178IdemAR MO TAQuicachaMes sem267343322636.980028211080800000Sara-Sara
241716IdemAR MO TAPuycaCry hum365942100953.6200916018000011100Cerro Auquihuato
251717IdemAR MO TAPampamarcaOro hum330013899331.0900011021120008140Cerro
Auquihuato
261488Aristeguietia
cursonii
AR MO TASalamancaSup hum3600297100111.290091272711000000Coropuna
2721IdemAR MO TACotahuasiOro hhum420090160314.9900102242513000000Nevados Firura
28321Diplostephium
meyenii
AR AY MO TAArequipaMes sem23634711411601416141580000000Misti
29324IdemAR AY MO TAChiguataOro dry4000853242.7512015110320600000Pichu-Pichu
30330IdemAR AY MO TAMistiSup dry36402353242.1514011110237000000Misti
31332IdemAR AY MO TAChachaniOro dry4000723292.2710015140208000000Chachani
32337IdemAR AY MO TAPampa de ArrierosSup dry370020944214.4913011902611000000Chachani
33338IdemAR AY MO TARio de LomasSup sem28501921796.1600172013147000000Misti
34339IdemAR AY MO TAYuraMes sem270038323410150161810110000000Chachani
35341IdemAR AY MO TAYura, ChinganaMes sem30003371347210121301013000000Chachani
361017IdemAR AY MO TACahuachoSup dry338031638112.5491114110011000000Sara-Sara
371477IdemAR AY MO TACondesuyosCry shu43004473311.430013266270500000Nevados
Firura
381478IdemAR AY MO TAChuqui-bambaMes ar23004044521.230017249149000000Coropuna
391688IdemAR AY MO TATauríaOro hum400014492626.46140111202810000000Sara-Sara
4057IdemAR AY MO TAPolobaya-PocsiMes sem310035220219.78151111100016000000Misti
41659Gochnatia arequipensisAR AY MO TAArequipaMes sem275539812217.6791022211100000000Pichu-Pichu
42662IdemAR AY MO TAArequipa, aeropuertoMes sem260042613413.7400261519115000000Chachani
43663IdemAR AY MO TACerro VerdeMes sem260043211626.9901024202070000000Cerro
Nicholson
44665IdemAR AY MO TAChiguataMes sem30003702513.2910015902901200000Pichu-Pichu
45668IdemAR AY MO TAMistiSup dry36242353242.6110121302113000000Misti
46669IdemAR AY MO TAMollebayaSup sem240024514111.618172108100000000Misti
47670IdemAR AY MO TAChachaniMes dry30503423295.1610012190178000000Chachani
48672IdemAR AY MO TAQuebrada LajasMes sem230046215212.410631161800700000Chachani
49673IdemAR AY MO TASocabayaMes sem234446014122.040918161970000000Misti
50674IdemAR AY MO TAQuequeMes sem230045916614.70026181890600000Cerro Nicholson
511179IdemAR AY MO TAAtiquipaThe sem350551105103.76013152101212000000Sara-Sara
521389IdemAR AY MO TACabanacondeSup dry320030649619.9280131401311000000Sabancaya
531718IdemAR AY MO TACotahuasiMes sem270034114426.640010170239000070Nevados Firura
541057Helogyne apaloideaAR MOCaravelíMes sem262649020737.93082712006000000Sara-Sara
551058IdemAR MOAticoThe ha505901987.6400323001305110000Sara-Sara
5699Lomanthus icaensisAR ICAcaríThe ar65053537126.4401618111300090000Sara-Sara
571244IdemAR ICLos CerrillosThe ar86553285143.65001915140013120000Sara-Sara
581254Lomanthus mollendoensisARToroThe sem350557109103.560102321087000000Sara-Sara
591255IdemARAtiquipaThe sem200532110104.11011162201014000000Sara-Sara
601662IdemARIslayThe ulha10490380.4800262001010400000Cerro Nicholson
611664IdemARRio TamboThe ar6805785094.070271229600009000Huaynaputina
621666IdemARMollendoThe ar9285176273.4400313301060110000Cerro Nicholson
63102Lomanthus okopanusAR ICLomas de CháparraThe sem50061114376.1500392107010130000Sara-Sara
641258IdemAR ICLomas de OcopaThe sem700532110100.120111920099000000Sara-Sara
65105Lophopappus cuneatusAR TAArequipaMes sem244738612322.1901416141580000000Pichu-Pichu
661393IdemAR TACayllomaOro suh320011975025.4100112002014000500Sabancaya
671499IdemAR TAChuqui-bambaOro suh390016070615.2191314130180000000Coropuna
681394Lophopappus foliosusAR MOCabanacondeSup suh370023269312.9500811017140001200Sabancaya
69106IdemAR MOChivayOro suh40008368836.7400111402510000900Sabancaya
701401Mutisia arequipensisAR AYCayllomaOro suh320011975025.28508192390000000Sabancaya
711727IdemAR AYCotahuasiOro hum428472120210.8009245269000000Nevados Firura
721728IdemAR AYPuycaOro hum360082103013.54000130171000011100Nevados Firura
731730IdemAR AYHuaynacotasOro hum3931144123820.890001502316000086Nevados Firura
741731IdemAR AYTauríaOro hum4200110143422.717011130368000000Solimana
751732IdemAR AYToroOro hum44006114873.676071704001000000Solimana
761770IdemAR AYSaylaSup suh360023875519.63700902522000060Sara-Sara
77706Mutisia orbignyanaAR MO TAArequipaSup sem31563122641.9160150121411000000Misti
78709IdemAR MO TAArequipa-CuscoSup sem337526426113.1500161511209000000Chachani
791299IdemAR MO TAPampacolcaOro suh39001486006.8200121102615600000Coropuna
801300IdemAR MO TAAndahuaSup suh36112386688.61109150240700000Andahua-Orcopampa
811303IdemAR MO TACastillaSup suh360017075429.380010170249000800Andahua-Orcopampa
821402IdemAR MO TAChivayOro suh440010457434.140011270187900000Sabancaya
831403IdemAR MO TAPuquinaSup suh360028657520.9111015130167000000Huambo
841404IdemAR MO TACayllomaSup suh363921457430.08001490197000007Sabancaya
851406IdemAR MO TACabanacondeSup suh370019975415.55908802610000000Huambo
861407IdemAR MO TAHuamboSup suh38001876001.19015120347000000Huambo
871502IdemAR MO TACondesuyosSup suh380017853313.821201980169000000Coropuna
88122Onoseris minimaAR MOArequipaOro dry4436893520.837016170279000000Misti
89124Ophryosporus bipinnatifidusAR MOCachendoThe ar40059748110.8091300090000911Huaynaputina
90126Ophryosporus hoppiiAR MO TAAtiquipaThe sem300502113105.23010192101212000000Sara-Sara
91459IdemAR MO TAArequipaMes sem27003981222.531109100318000000Pichu-Pichu
92958IdemAR MO TACamanáThe ar60061144106.59015102911000110000Huambo
93960IdemAR MO TAOcoñaThe ar2055895290.6101525157100000000Coropuna
941287IdemAR MO TAAplaoThe ar6575225046.47012200121002200000Huambo
951552IdemAR MO TAMollendoThe ha2305072669.170221625900006000Cerro Nicholson
96142Pluchea absinthioidesARArequipaMes sem228747614814.8680222010110000000Misti
97745IdemARTiabayaThe sem210050411015.87035230700900040Misti
98144Polyachyrus annuusAR IC MO TAAticoThe ar5063050106.390222026850000000Coropuna
99991IdemAR IC MO TAMollendoThe ar6505344763.670024400004230004Cerro
Nicholson
100992IdemAR IC MO TACamanáThe ar3006114496.2015102911000110000Huambo
101994IdemAR IC MO TAArantasThe ar6806144781.380037290157800000Cerro Nicholson
1021214IdemAR IC MO TAChalaThe sem5054114388.110025250811000009Sara-Sara
1031645IdemAR IC MO TAMejíaThe ar2005764689.480181131770000000Misti
1041649IdemAR IC MO TAIslayThe ar1815944778.2201510300700110000Cerro Nicholson
105806Senecio calcicolaAR ICChucarapiThe ar75057853104.47021026800087000Huaynaputina
106807IdemAR ICQuebrada GuerrerosMes sem276637211622.0508192016001100000Misti
1071004IdemAR ICArantasThe ar9805344781.920038280130870000Cerro Nicholson
1081668IdemAR ICMollendoThe ar5605265377.980121714007600000Cerro Nicholson
1091673IdemAR ICIslayThe ar1759748108.7909110001010000011Huaynaputina
1101675IdemAR ICIslayThe ar2505965578.580151135700070000Cerro Nicholson
1111676IdemAR ICTintayamiThe ar7005665176.690241224900060000Cerro Nicholson
112808Senecio crassilodixAR AY MO TAArequipaOro dry420011040727.119014216300000000Misti
113809IdemAR AY MO TAChiguataOro dry43219440824.70080132213700000Ubinas
114810IdemAR AY MO TAChachaniOro dry4200723202.5110014120227000000Chachani
115164IdemAR AY MO TAOrcopampaOro suh42009761916.050081701710000080Andahua-Orcopampa
116174Senecio neoviscosusAR MOBaños de JesúsSup sem28002412076.997023161590000000Misti
117180SenecioscorzonerifoliusAR MO TAArequipa-CuscoSup sem385026823614.5308131213220000000Chachani
118187Senecio yurensisAR MOBaños de JesúsSup sem27002441879.400151617157000000Misti
119912IdemAR MOArequipaSup sem38002291966.4611016181590000000Misti
120914IdemAR MOArequipa, aeropuertoMes sem290042320411.140027141495000000Chachani
121919IdemAR MOCerro San IgnacioMes sem250043111717.590925241660000000Misti
122920IdemAR MOCerro VerdeMes sem260044610725.0501027161900000000Misti
123922IdemAR MOChiguataMes sem21003702640.60026166228000000Pichu-Pichu
124926IdemAR MOChiliMes sem250045010318.4300331401081500000Cerro Nicholson
125927IdemAR MOLlutaSup dry388426151810.127015130269000000Chachani
126928IdemAR MOMistiSup dry38311903988.778071902011000000Misti
127929IdemAR MOChachaniSup dry36002773202.4510019170206000000Chachani
128931IdemAR MOPolobaya-ChapiMes ar254045610042.310022142370900000Huaynaputina
129932IdemAR MOQuebrada HondaMes sem260047112213.6310014150275000000Pichu-Pichu
130933IdemAR MOTiabayaMes sem243044411021.310292306051200000Misti
131936IdemAR MOYuraMes sem29853462737.92190141101513000000Chachani
132945IdemAR MOYura-HuancaMes sem270041823616.4207181711130000000Cerro Nicholson
133946IdemAR MOYura-HuancaMes sem250040928010.610828188110000000Chachani
1341005IdemAR MOTambilloThe ha11995422671.35010191913000120000Huambo
1351459IdemAR MOSan Antonio de ChucaOro suh44426065737.2600121917290400000Huarancante
1361756IdemAR MOCotahuasiMes sem260034114410.197091603310000000Solimana
137227Werneria esquilachensisAR MO TAPichu-PichuOro dry49261423241.038016140208000000Pichu-Pichu
138951IdemAR MO TATunel El CimbralOro dry4279823933.0315019146200000000Pichu-Pichu
Symbols: AR—Arequipa, AY—Ayacucho, IC—Ica, MO—Moquegua, TA—Tacna. Bioclimatic diagnosis and bioclimatic belts: The—Thermotropical, Mes—Mesotropical, Sup—Supratropical, Oro—Orotropical, Cry—Cryorotropical. Ombrotypes: ulha—Ultrahyperarid, ha—Hyperarid, ar—Arid, sem—Semiarid, dry—Dry, suh—Subhumid, hum—Humid, hhum—Hyperhumid, H—Altitude (m), It—Thermicity Index, P—Annual precipiation (mm). DIST—Smaller distance from the volcanoes (Km). Soil types: And—Andosols, Are—Arenosols, Reg—Regosols, Lep—Leptosols, Cal—Calcisols, Cam—Cambisols, Luv—Luvisols, Flu—Fluvisols, Sch—Solonchaks, Gyp—Gypsisols, Kst—Kastanozems, Pha—Phaeozems, Ver—Vertisols.

References

  1. Brako, L.; Zarucchi, J.L. Catalogue of the Flowering Plants and Gymnosperms of Peru; Missouri Botanical Garden: St. Louis, MO, USA, 1993. [Google Scholar]
  2. Ulloa Ulloa, C.; Acevedo-Rodríguez, P.; Beck, S.; Belgrano, M.J.; Bernal, R.; Berry, P.E.; Brako, L.; Celis, M.; Davidse, G.; Forzza, R.C.; et al. An integrated assessment of the vascular plant species of the Americas. Science 2017, 358, 1614–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. Calvo, J.; Granda, A.; Beltrán, H. Contributions to the Andean Senecioneae (Compositae) V. Novelties for Peru, new synonyms, and taxonomic notes. Phytotaxa 2019, 424, 282–292. [Google Scholar] [CrossRef]
  4. Calvo, J.; Granda, A.; Funk, V.A. New combinations and synonyms in discoid caespitose Andean Senecio (Senecioneae, Compositae). PhytoKeys 2019, 132, 111–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  5. Weddell, H.A. Chloris Andina. Essai d’Une Flore de la Région Alpine des Cordilléres de l’Amérique du Sud; P. Bertrand Publishing: Paris, France, 1855; Volume I. [Google Scholar] [CrossRef]
  6. Linnaeus, C. Supplementum Plantarum; Impensis Orphanotrophei: Brunsvigae, Germany, 1781. [Google Scholar] [CrossRef]
  7. Ruiz, H.; Pavón, J. Flora Peruvianae et Chilensis Prodromus; Imprenta de Sancha: Madrid, Spain, 1794. [Google Scholar] [CrossRef] [Green Version]
  8. Humboldt, A.; Bonpland, A.; Kunth, C.S. Nova Genera et Species Plantarum; Libreriae Graeco-Latino-Germanicae: Lutetiae Parisiorum, France, 1820; Volume IV. [Google Scholar] [CrossRef] [Green Version]
  9. Lessing, C.F. Synopsis Generum Compositarum; Sentibus Dunckeri et Humelotii: Berlin, Germany, 1832. [Google Scholar] [CrossRef] [Green Version]
  10. Weberbauer, A. El Mundo Vegetal de los Andes Peruanos; Ministerio de Agricultura: Lima, Perú, 1945. [Google Scholar]
  11. Cuatrecasas, J. Studies on Andean Compositae IV. Brittonia 1960, 12, 182–195. [Google Scholar] [CrossRef]
  12. Cabrera, A.L. Revisión del género Mutisia (Compositae). Opera Lilloana 1965, 13, 1–227. [Google Scholar]
  13. Ferreyra, R. Flora of Peru. Asteraceae, part VI. Tribe Mutisieae. Fieldiana Bot. 1995, 35, 1–101. [Google Scholar]
  14. Cabrera, A.L. Revisión del género Gochnatia (Compositae). Rev. Mus. Plata 1971, 66, 1–160. [Google Scholar]
  15. Dillon, M.O.; Luebert, F. Synopsis of Plazia Ruiz & Pav. (Onoserideae, Asteraceae), including a new species from northern Peru. PhytoKeys 2014, 34, 1–13. [Google Scholar] [CrossRef]
  16. Cuatrecasas, J. Senecioneae andinae novae. Collect. Bot. 1953, 3, 261–307. [Google Scholar]
  17. Cabrera, A.L. Notas sobre los Senecio sudamericanos VIII. Notas Mus. Eva Perón 1955, 18, 191–240. [Google Scholar]
  18. Cabrera, A.L. El género Senecio (Compositae) en Bolivia. Darwiniana 1985, 26, 79–217. [Google Scholar]
  19. Vision, T.J.; Dillon, M.O. Sinopsis de Senecio, L. (Senecioneae, Asteraceae) para el Perú. Arnaldoa 1996, 4, 23–46. [Google Scholar]
  20. Beltrán, H. Sinopsis del género Werneria (Asteraceae: Senecioneae) del Perú. Arnaldoa 2017, 24, 45–62. [Google Scholar] [CrossRef] [Green Version]
  21. Hind, D.J.N. A new genus, Rockhausenia (Compositae: Senecioneae: Senecioninae). Kew Bull. 2022, 77, 691–714. [Google Scholar] [CrossRef]
  22. Funk, V.A. Xenophyllum, a new Andean genus extracted from Werneria s.l. (Compositae: Senecioneae). Novon 1997, 7, 235–241. [Google Scholar] [CrossRef]
  23. Beltrán, H. Sinopsis del género Xenophyllum (Asteraceae: Senecioneae) del Perú. Arnaldoa 2016, 23, 351–362. [Google Scholar]
  24. Galán de Mera, A.; Linares Perea, E. La Vegetación de la Región Arequipa (Perú); Universidad Nacional de San Agustín: Arequipa, Perú, 2012. [Google Scholar]
  25. Galán de Mera, A.; Linares Perea, E.; Campos de la Cruz, J.; Vicente Orellana, J.A. Nuevas observaciones sobre la vegetación del Sur del Perú. Del Desierto Pacífico al Altiplano. Acta Bot. Malac. 2009, 34, 107–144. [Google Scholar] [CrossRef] [Green Version]
  26. Tilling, R.I. Volcanism and associated hazards: The Andean perspective. Adv. Geosci. 2009, 22, 125–157. [Google Scholar] [CrossRef] [Green Version]
  27. Kennan, L. Large-scale geomorphology in the central Andes of Peru and Bolivia: Relation to tectonic, magmatic and climatic processes. In Geomorfology and Global Tectonics; Summerfield, M.A., Ed.; Wiley: London, UK, 2000; pp. 167–196. [Google Scholar]
  28. De Silva, S.L.; Francis, P.W. Volcanoes of the Central Andes; Springer: New York, NY, USA, 1991. [Google Scholar]
  29. Thouret, J.C.; Juvigne, E.; Gourgaud, A.; Boivin, P.; D’Avila, J. Reconstruction of the AD 1600 Huaynaputina eruption based on the correlation of geologic evidence with early Spanish chronicles. J. Volcanol. Geotherm. Res. 2002, 115, 529–570. [Google Scholar] [CrossRef]
  30. Bullar, F.M. Volcanoes of Southern Peru. Bull. Volcanol. 1962, 24, 443–453. [Google Scholar] [CrossRef]
  31. Lebti, P.P.; Thouret, J.-C.; Wörner, G.; Fornari, M. Neogene and Quaternary ignimbrites in the area of Arequipa, Southern Peru: Stratigraphical and petrological correlations. J. Volcanol. Geotherm. Res. 2006, 154, 251–275. [Google Scholar] [CrossRef]
  32. Dimopoulos, P.; Raus, T.; Mucina, L.; Tsiripidis, I. Vegetation patterns and primary succesion on sea-born volcanic islands (Santorini archipelago, Aegean Sea, Greece). Phytocoenologia 2010, 40, 167–192. [Google Scholar] [CrossRef] [Green Version]
  33. Schwarzer, C.; Cáceres Huamaní, F.; Cano, A.; La Torre, M.I.; Weigend, M. 400 years for long-distance dispersal and divergence in the northern Atacama desert—Insights from the Huaynaputina pumice slopes of Moquegua, Peru. J. Arid Environ. 2010, 74, 1540–1551. [Google Scholar] [CrossRef]
  34. Ghermandi, L.; Gonzalez, S.; Franzese, J.; Oddi, F. Effect of volcanic ash deposition on the early recovery of gap vegetation in Northwestern Patagonian steppes. J. Arid Environ. 2015, 122, 154–160. [Google Scholar] [CrossRef]
  35. Martín Osorio, M.E.; Wildpret Martín, W.-H.; González Negrín, R.; Wildpret de la Torre, W. Study of the current vegetation of the historical lava flows of the Arafo Volcano, Tenerife, Canary Islands, Spain. Mediterr. Bot. 2020, 41, 193–212. [Google Scholar] [CrossRef]
  36. Thiers, B.M. Index Herbariorum. Available online: http://sweetgum.nybg.org/science/ih/ (accessed on 11 January 2022).
  37. Rivas-Martínez, S.; Navarro, G.; Penas, A.; Costa, M. Biogeographic Map of South America. A preliminary survey. Int. J. Geobot. Res. 2011, 1, 21–40. [Google Scholar] [CrossRef]
  38. QGIS Geographic Information System. Available online: https://www.qgis.org (accessed on 13 September 2022).
  39. Rivas-Martínez, S.; Sánchez-Mata, D.; Costa, M. North American Boreal and Western temperate forest vegetation (Syntaxonomical synopsis of the potential natural plant communities of North America, II). Itinera Geobot. 1999, 12, 5–316. [Google Scholar]
  40. Galán de Mera, A.; Campos de la Cruz, J.; Linares Perea, E.; Montoya Quino, J.; Torres Marquina, I.; Vicente Orellana, J.A. A phytosociological classification of the Peruvian vegetation. bioRxiv 2021. [Google Scholar] [CrossRef]
  41. Galán de Mera, A.; Linares Perea, E.; Trujillo Vera, C.; Villasante Benavides, F. Termoclima y humedad en el sur del Perú. Bioclimatología y bioindicadores en el departamento de Arequipa. Zonas Áridas 2010, 14, 71–83. [Google Scholar]
  42. METEOBLUE. Available online: https://www.meteoblue.com (accessed on 12 June 2022).
  43. Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef] [Green Version]
  44. Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.M.; Ruiperez González, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  45. IUSS Working Group WRB. World Reference for Soils Resources 2006; FAO: Rome, Italy, 2006. [Google Scholar]
  46. Venzke, E. Volcanoes of the World, v. 4.11.2; Smithsonian Institution: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
  47. Google Earth. Satellite photograph of Peru. Available online: https://www.google.com/earth (accessed on 7 September 2022).
  48. Hammer, Ø. PAST: Paleontological Statistics; University of Oslo: Oslo, Norway, 1999–2021.
  49. Rodríguez Rodríguez, E.F.; Alvítez Izquierdo, E.; Pollack Velásquez, L.; Melgarejo Salas, N.; Sagástegui Alva, A. Catálogo de Asteraceae de la Región La Libertad, Perú. Sagasteguiana 2016, 4, 73–106. [Google Scholar]
  50. Beltrán, H. (Universidad Nacional Mayor de San Marcos, Lima, Perú); Cano, A. (Universidad Nacional Mayor de San Marcos, Lima, Perú). Las Asteraceae de la Región Ancash. Personal communication. 2022. [Google Scholar]
  51. Beltrán, H. Distribución y riqueza de Asteráceas en las cuencas hidrográficas del departamento de Lima, Perú. Arnaldoa 2018, 25, 799–828. [Google Scholar] [CrossRef]
  52. Whaley, O.K.; Orellana-García, A.; Pecho-Quispe, J.O. An Annotated Checklist to Vascular Flora of the Ica Region, Peru—With notes on endemic species, habitat, climate and agrobiodiversity. Phytotaxa 2019, 389, 1–125. [Google Scholar] [CrossRef]
  53. Moreira-Muñoz, A.; Muñoz-Schick, M. Classification, diversity, and distribution of Chilean Asteraceae: Implications for biogeography and conservation. Divers. Distrib. 2007, 13, 818–828. [Google Scholar] [CrossRef]
  54. Tovar, C.; Melcher, I.; Kusumoto, B.; Cuesta, F.; Cleef, A.; Meneses, R.I.; Halloy, S.; Llambi, L.D.; Beck, S.; Muriel, P.; et al. Plant dispersal strategies of high tropical alpine communities across the Andes. J. Ecol. 2020, 108, 1910–1922. [Google Scholar] [CrossRef]
  55. Galán de Mera, A.; Vicente Orellana, J.A.; Lucas García, J.A.; Probanza Lobo, A. Phytogeographical sectoring of the Peruvian coast. Glob. Ecol. Biogeogr. 1997, 6, 349–367. [Google Scholar] [CrossRef]
  56. Pfiffner, O.A.; González, L. Mesozoic-Cenozoic evolution of the western margin of South America: Case study of the Peruvian Andes. Geosciences 2013, 3, 262–310. [Google Scholar] [CrossRef]
  57. Villaseñor, J.L. The genera of Asteraceae endemic to Mexico and adjacent regions. Aliso 1990, 12, 685–692. [Google Scholar] [CrossRef]
  58. Devoré, M.L.; Stuessy, T.F. The place and time of origin of the Compositae with additional comments on the Clyceraceae and Goodeniaceae. In Advances in Compositae Systematics; Hind, D.J.N., Jeffrey, C., Pope, G.V., Eds.; The Royal Botanic Garden Kew: London, UK, 1995; pp. 23–40. [Google Scholar]
  59. Ricardi, S.; Gaviria, M.H.; Estrada, J. La flora del superpáramo venezolano y sus relaciones fitogeográficas a lo largo de los Andes. Plantula 1997, 1, 171–187. [Google Scholar]
  60. Livermore, R.; Nankivell, A.; Eagles, G.; Morris, P. Paleogene opening of Drake Passage. Earth Planet. Sci. Lett. 2005, 236, 459–470. [Google Scholar] [CrossRef] [Green Version]
  61. Hemp, A. Vegetation of Kilimanjaro: Hidden endemics and missing bamboo. Afr. J. Ecol. 2006, 44, 305–328. [Google Scholar] [CrossRef]
  62. Swanson, F.J.; Jones, J.A.; Crisafulli, C.M.; Lara, A. Effects of volcanic and hydrologic processes on forest vegetation: Chaitén Volcano, Chile. Andean Geol. 2013, 40, 359–391. [Google Scholar] [CrossRef] [Green Version]
  63. Rivas-Martínez, S.; Fernández-González, F.; Sánchez-Mata, D.; Pizarro, J. Vegetación de la Sierra de Guadarrama. Itinera Geobot. 1990, 4, 3–132. [Google Scholar]
  64. Beltrán, H.; Galán de Mera, A. Las Angiospermas del Departamento de Lima (Perú): Diversidad y patrones de distribución. Arnaldoa 2021, 28, 217–242. [Google Scholar] [CrossRef]
  65. Brecheisen, Z.; Hamp-Adams, N.; Tomasek, A.; Foster, E.J.; Filley, T.; Villalta Soto, M.; Zuniga Reynoso, L.; De Lima Moraes, A.; Schulze, D.G. Using remote sensing to discover historic context of human-environmental water resource dynamics. J. Contemp. Water Res. Educ. 2020, 171, 74–92. [Google Scholar] [CrossRef]
  66. Laguna Lumbreras, E. The Micro-Reserves as a Tool for Conservation of Threatened Plants in Europe; Council of Europe Publishing: Strasbourg, France, 2001. [Google Scholar]
Figure 1. Distribution map of the volcanoes of the Arequipa Region, northwestern Moquegua Region and southwestern Ayacucho: 1: Misti, 2: Cerro Nicholson, 3: Sara-Sara, 4: Andahua-Orcopampa, 5: Chachani, 6: Huambo, 7: Huaynaputina, 8: Ubinas, 9: Cerro Auquihuato, 10: Coropuna, 11: Nevados Firura, 12: Pichu-Pichu, 13: Sabancaya, 14: Solimana, 15: Huarancante.
Figure 1. Distribution map of the volcanoes of the Arequipa Region, northwestern Moquegua Region and southwestern Ayacucho: 1: Misti, 2: Cerro Nicholson, 3: Sara-Sara, 4: Andahua-Orcopampa, 5: Chachani, 6: Huambo, 7: Huaynaputina, 8: Ubinas, 9: Cerro Auquihuato, 10: Coropuna, 11: Nevados Firura, 12: Pichu-Pichu, 13: Sabancaya, 14: Solimana, 15: Huarancante.
Diversity 15 00033 g001
Figure 2. Bioclimatic belts in Peru according to Galán-de-Mera et al. (modified) [40]. 1: Infratropical, 2: Thermotropical, 3: Mesotropical, 4: Supratropical, 5: Orotropical, 6: Cryorotropical.
Figure 2. Bioclimatic belts in Peru according to Galán-de-Mera et al. (modified) [40]. 1: Infratropical, 2: Thermotropical, 3: Mesotropical, 4: Supratropical, 5: Orotropical, 6: Cryorotropical.
Diversity 15 00033 g002
Figure 3. Principal component analysis (PCA) correlating endemisms and semi-endemisms collected in Arequipa with altitude (H), precipitation (P), thermicity index (It), distance to volcanoes (DIST), and soil types (And: Andosols, Are: Arenosols, Reg: Regosols, Lep: Leptosols, Cal: Calcisols, Cam: Cambisols, Luv: Luvisols, Flu: Fluvisols, Sch: Solonchaks, Gyp: Gypsisols, Kst: Kastanozems, Pha: Phaeozems, Ver: Vertisols). Component 1 and 2 comprise 33.28% and 12.504% of the variance respectively. Bioclimatic belts: thermotropical (red dots), mesotropical (green dots), supratropical (orange dots), orotropical (light blue dots), cryorotropical (lilac dots).
Figure 3. Principal component analysis (PCA) correlating endemisms and semi-endemisms collected in Arequipa with altitude (H), precipitation (P), thermicity index (It), distance to volcanoes (DIST), and soil types (And: Andosols, Are: Arenosols, Reg: Regosols, Lep: Leptosols, Cal: Calcisols, Cam: Cambisols, Luv: Luvisols, Flu: Fluvisols, Sch: Solonchaks, Gyp: Gypsisols, Kst: Kastanozems, Pha: Phaeozems, Ver: Vertisols). Component 1 and 2 comprise 33.28% and 12.504% of the variance respectively. Bioclimatic belts: thermotropical (red dots), mesotropical (green dots), supratropical (orange dots), orotropical (light blue dots), cryorotropical (lilac dots).
Diversity 15 00033 g003
Figure 4. Correlation matrix of variables included in the PCA according to Pearson’s parametric test. The blue spectrum means positive correlations, while the red one means negative correlations.
Figure 4. Correlation matrix of variables included in the PCA according to Pearson’s parametric test. The blue spectrum means positive correlations, while the red one means negative correlations.
Diversity 15 00033 g004
Figure 5. Distribution of localities with endemic and semi-endemic Asteraceae in the Arequipa Region among.bioclimatic belts (A) and ombrotypes (B).
Figure 5. Distribution of localities with endemic and semi-endemic Asteraceae in the Arequipa Region among.bioclimatic belts (A) and ombrotypes (B).
Diversity 15 00033 g005
Figure 6. Distribution of the endemisms and semi-endemisms of Asteraceae of the Arequipa Region on the bioclimatic belts. Those on a single bioclimatic belt are bioindicators.
Figure 6. Distribution of the endemisms and semi-endemisms of Asteraceae of the Arequipa Region on the bioclimatic belts. Those on a single bioclimatic belt are bioindicators.
Diversity 15 00033 g006
Figure 7. (A) Distribution of Asteraceae collections among the different soil groups according to the quadrants marked by the axes in Figure 3 (Ver: Vertisols, Gyp: Gypsisols, Sch: Solonchaks, Are: Arenosols, Lep: Leptosols, Flu: Fluvisols, Cal: Calcisols, Reg: Regosols, And: Andosols, Cam: Cambisols, Kst: Kastanozems, Pha: Phaeozems, Luv: Luvisols). (B) Proximity of collections of endemisms and semi-endemisms from the volcanoes of Arequipa and northwest Moquegua (MI: Misti, CE: Cerro Nicholson, SAR: Sara-Sara, AND: Andahua-Orcopampa, CHA: Chachani, HUA: Huambo, AYN: Huaynaputina, UBI: Ubinas, AUQ: Cerro Auquihuato, COR: Coropuna, FIR: Nevados Firura, PIC: Pichu-Pichu, SAB: Sabancaya, SOL: Solimana, HRC: Huarancante.
Figure 7. (A) Distribution of Asteraceae collections among the different soil groups according to the quadrants marked by the axes in Figure 3 (Ver: Vertisols, Gyp: Gypsisols, Sch: Solonchaks, Are: Arenosols, Lep: Leptosols, Flu: Fluvisols, Cal: Calcisols, Reg: Regosols, And: Andosols, Cam: Cambisols, Kst: Kastanozems, Pha: Phaeozems, Luv: Luvisols). (B) Proximity of collections of endemisms and semi-endemisms from the volcanoes of Arequipa and northwest Moquegua (MI: Misti, CE: Cerro Nicholson, SAR: Sara-Sara, AND: Andahua-Orcopampa, CHA: Chachani, HUA: Huambo, AYN: Huaynaputina, UBI: Ubinas, AUQ: Cerro Auquihuato, COR: Coropuna, FIR: Nevados Firura, PIC: Pichu-Pichu, SAB: Sabancaya, SOL: Solimana, HRC: Huarancante.
Diversity 15 00033 g007
Figure 8. Distribution of Diplostephium meyenii (red dots), Gochnatia arequipensis (green dots), and Senecio yurensis (yellow dots) in Arequipa Region.
Figure 8. Distribution of Diplostephium meyenii (red dots), Gochnatia arequipensis (green dots), and Senecio yurensis (yellow dots) in Arequipa Region.
Diversity 15 00033 g008
Figure 9. Distribution of Aldama dilloniorum (yellow dots), Onoseris minima (red dots), Senecio neoviscosus (light blue dots), and Werneria esquilachensis (green dots) in the surroundings of the Chachani, Misti, and Pichu-Pichu volcanoes, including localities from Moquegua.
Figure 9. Distribution of Aldama dilloniorum (yellow dots), Onoseris minima (red dots), Senecio neoviscosus (light blue dots), and Werneria esquilachensis (green dots) in the surroundings of the Chachani, Misti, and Pichu-Pichu volcanoes, including localities from Moquegua.
Diversity 15 00033 g009
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Galán-de-Mera, A.; Linares-Perea, E.; Beltrán, H. The Influence of Volcanism, Soils, and Climate in the Endemicity Levels of Asteraceae in the Arequipa Region (Southern Peru). Diversity 2023, 15, 33. https://doi.org/10.3390/d15010033

AMA Style

Galán-de-Mera A, Linares-Perea E, Beltrán H. The Influence of Volcanism, Soils, and Climate in the Endemicity Levels of Asteraceae in the Arequipa Region (Southern Peru). Diversity. 2023; 15(1):33. https://doi.org/10.3390/d15010033

Chicago/Turabian Style

Galán-de-Mera, Antonio, Eliana Linares-Perea, and Hamilton Beltrán. 2023. "The Influence of Volcanism, Soils, and Climate in the Endemicity Levels of Asteraceae in the Arequipa Region (Southern Peru)" Diversity 15, no. 1: 33. https://doi.org/10.3390/d15010033

APA Style

Galán-de-Mera, A., Linares-Perea, E., & Beltrán, H. (2023). The Influence of Volcanism, Soils, and Climate in the Endemicity Levels of Asteraceae in the Arequipa Region (Southern Peru). Diversity, 15(1), 33. https://doi.org/10.3390/d15010033

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop