Can Larix sp. Mill. Provide Suitable Habitats for Insects and Lichens Associated with Stems of Picea abies (L.) H. Karst. in Northern Europe?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Observation
2.2. Assessment of Insects Associated with Tree Stems
2.3. Assessment of Epiphytic Lichens
2.4. Statistical Analysis
3. Results
3.1. Insects
3.2. Lichens
4. Discussion
4.1. Insects
4.2. Lichens
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buras, A.; Menzel, A. Projecting Tree Species Composition Changes of European Forests for 2061–2090 Under RCP 4.5 and RCP 8.5 Scenarios. Front. Plant Sci. 2019, 9, 1986. [Google Scholar] [CrossRef] [PubMed]
- Rigling, A.; Bigler, C.; Eilmann, B.; Feldmeyer-Christe, E.; Gimmi, U.; Ginzler, C.; Graf, U.; Mayer, P.; Vacchiano, G.; Weber, P.; et al. Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Glob. Chang. Biol. 2013, 19, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Fekete, I.; Lajtha, K.; Kotroczó, Z.; Várbíró, G.; Varga, C.; Tóth, J.A.; Demeter, I.; Veperdi, G.; Berki, I. Long-term effects of climate change on carbon storage and tree species composition in a dry deciduous forest. Glob. Chang. Biol. 2017, 23, 3154–3168. [Google Scholar] [CrossRef] [PubMed]
- Scherrer, D.; Massy, S.; Meier, S.; Vittoz, P.; Guisan, A. Assessing and predicting shifts in mountain forest composition across 25 years of climate change. Divers Distrib. 2017, 23, 517–528. [Google Scholar] [CrossRef]
- Bigler, C.; Bräker, O.U.; Bugmann, H.; Dobbertin, M.; Rigling, A. Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 2006, 9, 330–343. [Google Scholar] [CrossRef]
- Kohler, M.; Sohn, J.; Nägele, G.; Bauhus, J. Can drought tolerance of Norway spruce (Picea abies) be increased through thinning? Eur. J. For. Res. 2010, 129, 1109–1118. [Google Scholar] [CrossRef]
- Lévesque, M.; Saurer, M.; Siegwolf, R.; Eilmann, B.; Brang, P.; Bugmann, H.; Rigling, A. Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Glob. Chang. Biol. 2013, 19, 3184–3199. [Google Scholar] [CrossRef]
- Zang, C.; Hartl-Meier, C.; Dittmar, C.; Rothe, A.; Menzel, A. Patterns of drought tolerance in major European temperate forest trees: Climatic drivers and levels of variability. Glob. Chang. Biol. 2014, 20, 3767–3779. [Google Scholar] [CrossRef]
- Huang, W.; Fonti, P.; Larsen, J.B.; Ræbild, A.; Callesen, I.; Pedersen, N.B.; Hansen, J.K. Projecting tree-growth responses into future climate: A study case from a Danish-wide common garden. Agric. For. Meteorol. 2017, 247, 240–251. [Google Scholar] [CrossRef]
- Martínez-Sancho, E.; Dorado-Liñán, I.; Hacke, U.G.; Seidel, H.; Menzel, A. Contrasting hydraulic architectures of Scots pine and sessile oak at their southernmost distribution limits. Front. Plant Sci. 2017, 8, 598. [Google Scholar] [CrossRef] [Green Version]
- Rehschuh, R.; Mette, T.; Menzel, A.; Buras, A. Soil properties affect the drought susceptibility of Norway spruce. Dendrochronologia 2017, 45, 81–89. [Google Scholar] [CrossRef]
- Buras, A.; Schunk, C.; Zeiträg, C.; Herrmann, C.; Kaiser, L.; Lemme, H.; Straub, C.; Taeger, S.; Gößwein, S.; Klemmt, H.J. Are Scots pine forest edges particularly prone to drought-induced mortality? Environ. Res. Lett. 2018, 13, 25001. [Google Scholar] [CrossRef]
- Honkaniemi, J.; Rammer, W.; Seidl, R. Norway spruce at the trailing edge: The effect of landscape configuration and composition on climate resilience. Landscape Ecol. 2020, 35, 591–606. [Google Scholar] [CrossRef] [PubMed]
- Johann, E.; Agnoletti, M.; Axelsson, A.L.; Bürgi, M.; Östlund, L.; Rochel, X.; Schmidt, U.E.; Schuler, A.; Skovsgaard, J.P.; Winiwater, V. History of secondary Norway Spruce forests in Europe. In Norway Spruce Conversion Options and Consequences; Hansen, J., Klimo, E., Spiecker, H., Eds.; Brill: Leiden, The Netherlands; Boston, MA, USA, 2004; pp. 25–62. [Google Scholar]
- Jandl, R. Climate-induced challenges of Norway spruce in Northern Austria. Trees For. People 2020, 1, 100008. [Google Scholar] [CrossRef]
- Schlyter, P.; Stjernquist, I.; Bärring, L.; Jönsson, A.M.; Nilsson, C. Assessment of the impacts of climate change and weather extremes on boreal forests in northern Europe, focusing on Norway spruce. Clim. Res. 2006, 31, 75–84. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Cullmann, D.; Schelhaas, M.J.; Nabuurs, G.J.; Zimmermann, N.E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 2013, 3, 203–207. [Google Scholar] [CrossRef]
- Pretzsch, H.; Schütze, G.; Uhl, E. Resistance of European tree species to drought stress in mixed versus pure forests: Evidence of stress release by inter-specific facilitation. Plant Biol. 2013, 15, 483–495. [Google Scholar] [CrossRef]
- Zeng, H.; Garcia-Gonzalo, J.; Peltola, H.; Kellomaki, S. The effects of forest structure on the risk of wind damage at a landscape level in a boreal forest ecosystem. Ann. For. Sci. 2010, 67, 111. [Google Scholar] [CrossRef]
- Seidl, R.; Rammer, W.; Blennow, K. Simulating wind disturbance impacts on forest landscapes: Tree-level heterogeneity matters. Environ. Model Softw. 2014, 51, 1–11. [Google Scholar] [CrossRef]
- Peltola, H.; Kellomäki, S.; Väisänen, H.; Ikonen, V.P. A mechanistic model for assessing the risk of wind and snow damage to singletrees and stands of Scots pine, Norway spruce, and birch. Can. J. For. Res. 1999, 29, 647–661. [Google Scholar] [CrossRef]
- Seidl, R.; Spies, T.A.; Peterson, D.L.; Stephens, S.L.; Hicke, J.A. Searching for resilience: Addressing the impacts of changing disturbance regimes on forest ecosystem services. J. Appl. Ecol. 2016, 53, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Stadelmann, G.; Bugmann, H.; Wermelinger, B.; Bigler, C. Spatial interactions between storm damage and subsequent infestations by the European spruce bark beetle. For. Ecol. Manag. 2014, 318, 167–174. [Google Scholar] [CrossRef]
- Lausch, A.; Heurich, M.; Fahse, L. Spatio-temporal infestation patterns of Ips typographus (L.) in the Bavarian Forest National Park, Germany. Ecol. Indic. 2013, 31, 73–81. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; De·que, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Hlásny, T.; Barka, I.; Roessiger, J.; Kulla, L.; Trombik, J.; Sarvašová, Z.; Bucha, T.; Kovalčík, M.; Čihák, T. Conversion of Norway spruce forests in the face of climate change: A case study in Central Europe. Eur. J. Forest Res. 2017, 136, 1013–1028. [Google Scholar] [CrossRef]
- Seidl, R.; Vigl, F.; Rössler, G.; Neumann, M.; Rammer, W. Assessing the resilience of Norway spruce forests through a model-based reanalysis of thinning trials. For. Ecol. Manag. 2017, 388, 3–12. [Google Scholar] [CrossRef]
- Walentowski, H.; Falk, W.; Mette, T.; Kunz, J.; Bräuning, A.; Meinardus, C.; Zang, C.; Sutcliffe, L.; Luschner, C. Assessing future suitability of tree species under climate change by multiple methods: A case study in southern Germany. Ann. For. Res. 2017, 60, 101–126. [Google Scholar] [CrossRef]
- Goßner, M.; Ammer, U. The effects of Douglas-fir on tree-specific arthropod communities in mixed species stands with European beech and Norway spruce. Eur. J. Forest Res. 2006, 125, 221–235. [Google Scholar] [CrossRef]
- Gossner, M.M. Introduced tree species in central Europe—Consequences for arthropod communities and species interactions. In Introduced Tree Species in European Forests: Opportunities and Challenges; Krumm, F., Vitková, L., Eds.; European Forest Institute: Freiburg, Germany, 2016; pp. 264–282. [Google Scholar]
- Lepage, B.; Basinger, J. The evolutionary history of the genus Larix (Pinaceae). In General Technical Report—Intermountain Research Station, USDA Forest Service, Proceedings of the Ecology and Management of Larix Forests: A Look Ahead, Whitefish, MT, USA, 5–9 October 1992; Schmidt, W.C., McDonald, K.J., Eds.; No.INT-GTR-319; US Department of Agriculture: Washington, DC, USA, 1995; Volume 5, pp. 19–29. [Google Scholar]
- Danusevičius, J. Maumedžių veisimo patirtis ir perspektyvos Lietuvoje. Mūsų Girios 2006, 8, 8–10. (In Lithuanian) [Google Scholar]
- Lithuanian Statistical Yearbook of Forestry. 2017. Available online: http://www.amvmt.lt/images/veikla/stat/miskustatistika/2017/01%20Misku%20ukio%20statistika%202017_m.pdf (accessed on 21 February 2022).
- Da Ronch, F.; Caudullo, G.; Tinner, W.; de Rigo, D. Larix decidua and other larches in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publications Office of the EU: Luxembourg, 2016; pp. 108–110. Available online: https://boris.unibe.ch/80793/1/Larix_decidua.pdf (accessed on 10 March 2022).
- Liu, Q.J. Structure and dynamics of the subalpine coniferous forest on Changbai mountain, China. Plant Ecol. 1997, 132, 97–105. [Google Scholar] [CrossRef]
- Zielonka, T.; Holeska, J.; Malcher, P. Disturbance events in a mixed spruce-larch forest in the Tatra Mts., Western Carpathians—A Tentative reconstruction. Baltic Forestry 2009, 15, 161–167. [Google Scholar]
- Gradeckas, A.; Malinauskas, A. Miško Želdynu Veisimo Biologiniai Ir Ekologiniai Veiksniai Bei Patirtis Lietuvoje; Lututė: Kaunas, Lithuania, 2005; p. 404. (In Lithuanian) [Google Scholar]
- Žiogas, A.; Juronis, V.; Snieškienė, V. Pathological condition of Larix in Lithuania. In Insects and Fungi in Storm Areas; Proceedings of the IUFRO Working Party 7.03.10; Forest Research Institute: Zvolen, Slovakia, 2009; pp. 115–117. [Google Scholar]
- Salman, I.N.A.; Ferrante, M.; Möller, D.M.; Gavish-Regev, E.; Lubin, Y. Trunk Refugia: A Simple, Inexpensive Method for Sampling Tree Trunk Arthropods. J. Insect Sci. 2020, 20, 5. [Google Scholar] [CrossRef] [PubMed]
- Price, P.W.; Denno, R.F.; Eubanks, M.D.; Finke, D.L.; Kaplan, I. Insect Ecology: Behaviour, Populations and Communities; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- Brockerhoff, E.G.; Liebhold, A.M. Ecology of forest insect invasions. Biol. Invasions 2017, 19, 3141–3159. [Google Scholar] [CrossRef]
- Hauck, M. Site factors controlling epiphytic lichen abundance in northern coniferous forests. Flora 2011, 206, 81–90. [Google Scholar] [CrossRef]
- Cislaghi, C.; Nimis, P.L. Lichens, air pollution and lung cancer. Nature 1997, 387, 463–464. [Google Scholar] [CrossRef] [PubMed]
- Giordani, P. Is the diversity of epiphytic lichens a reliable indicator of air pollution? A case study from Italy. Environ. Pollut. 2007, 146, 317–323. [Google Scholar] [CrossRef]
- Jovan, S.; McCune, B. Regional variation in epiphytic macrolichen communities in northern and central California forests. Bryologist 2004, 107, 328–339. [Google Scholar] [CrossRef]
- Geiser, L.H.; Neitlich, P.N. Air pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens. Environ. Pollut. 2007, 145, 203–218. [Google Scholar] [CrossRef]
- Giordani, P.; Incerti, G. The influence of climate on the distribution of lichens: A case study in a borderline area (Liguria, NW Italy). Plant Ecol. 2008, 195, 257–272. [Google Scholar] [CrossRef]
- Hedenås, H.; Ericson, L. Epiphytic macrolichens as conservation indicators: Successional sequence in Populus tremula stands. Biol. Conserv. 2000, 93, 43–53. [Google Scholar] [CrossRef]
- Johansson, P. Consequences of disturbance on epiphytic lichens in boreal and near boreal forests. Biol. Conserv. 2008, 141, 1933–1944. [Google Scholar] [CrossRef]
- Giordani, P.; Brunialti, G.; Bacaro, G.; Nascimbene, J. Functional traits of epiphytic lichens as potential indicators of environmental conditions in forest ecosystems. Ecol. Indic. 2012, 18, 413–420. [Google Scholar] [CrossRef]
- Roper, T. Lichen Abundance and Diversity in Relation to Host Tree Species and Lakeshore Proximity. Conspec. Boreal. 2018, 3, 8. [Google Scholar]
- Navasaitis, M. Dendrologija, 2nd ed.; Margi Raštai: Vilnius, Lithuania, 2008; pp. 169–183. (In Lithuanian) [Google Scholar]
- Scheepers, D.; Eloy, M.C.; Briquet, M. Identification of larch species (Larix decidua, Larix kaempferi and Larix X eurolepis) and estimation of hybrid fraction in seed lots by RAPD fingerprints. Theor. Appl. Genet. 2000, 100, 71–74. [Google Scholar] [CrossRef]
- Vaičys, M. Miško dirvožemiu klasifikacija. In Lietuvos Dirvožemiai; Mokslas: Vilnius, Lithuania, 2001; pp. 1040–1043. (In Lithuanian) [Google Scholar]
- Karazija, S. Miško Tipologija. In Miško Ekologija; Padaiga, V., Stravinskienė, V., Eds.; Enciklopedija: Vilnius, Lithuania, 2008; pp. 220–254. (In Lithuanian) [Google Scholar]
- Nageleisen, L.M.; Bouget, C. Forest insect studies: Methods and techniques, key considerations for standardization. In An Overview of the Reflections of the Entomological Forest Inventories Working Group (Inv. Ent. For.); ONF: Paris, France, 2009; p. 144. [Google Scholar]
- Tamutis, V.; Aleseev, V. A survey of Lepturinae Latreille, 1802 (Coleoptera: Cerambycidae) of the south- eastern Baltic region (Lithuania and the Kaliningrad Region). Biologia 2020, 66, 169–235. [Google Scholar] [CrossRef]
- Tamutis, V.; Tamutė, B.; Ferenca, R. A catalogue of Lithuanian beetles (Insecta, Coleoptera). ZooKeys 2011, 121, 1–494. [Google Scholar] [CrossRef]
- Alonso-Zarazaga, M.A.; Barrios, H.; Borovec, R.; Bouchard, P.; Caldara, R.; Colonnelli, E.; Gültekin, L.; Hlaváč, P.; Korotyaev, B.; Lyal, C.H.; et al. Cooperative Catalogue of Palaearctic Coleoptera Curculionoidea. Monogr. Electrónicas SEA 2017, 8, 5–547. Available online: https://www.biotaxa.org (accessed on 21 February 2022).
- Ivinskis, P. Lietuvos drugiai; Annotated Catalogue; Petro ofsetas: Vilsnius, Lithuania, 2004; p. 379. (In Lithuanian) [Google Scholar]
- Zubrik, M.; Kunca, A.; Novotny, J. Atlas Poškodni Lesnych Drevin Hmyz a Huby; Národné lesnícke centrum–Lesnícky výskumný ústav: Zvolen Slovakia, 2008; p. 178. [Google Scholar]
- Pileckis, S. Lietuvos vabalai; Mokslo Ir Enciklopedijų Leidykla: Vilnius, Lithuania, 1996; p. 303. (In Lithuanian) [Google Scholar]
- Asta, J.; Erhardt, W.; Ferretti, M.; Fornasier, F.; Kirschbaum, U.; Nimis, P.I.; Purvis, O.W.; Pirintsos, S.; Scheidegger, C.; van Haluwyn, C.; et al. Mapping lichen diversity as an indicator of environmental quality. In Monitoring with Lichens—Monitoring Lichens; Nimis, P.L., Scheidegger, C., Wolseley, P.A., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 2002; pp. 273–279. [Google Scholar]
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed.; W.H. Freeman and Company: New York, NY, USA, 1995. [Google Scholar]
- Magurran, A.E. Ecological Diversity and Its Measurement; Princeton University Press: Princeton, NJ, USA, 1988; p. 192. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- ter Braak, C.J.F.; Smilauer, P. Canoco Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination, Version 4; Microcomputer Power: Ithaca, NY, USA, 1998; p. 351. [Google Scholar]
- Brockerhoff, E.G.; Ecroyd, C.E.; Langer, E.R. Biodiversity in New Zealand plantation forests: Policy trends, incentives, and the state of our knowledge. N. Z. J. For. 2001, 46, 31–37. [Google Scholar]
- Rymer, L. Pine plantations in Australia as habitat for native animals. Environ. Conserv. 1981, 8, 95–96. [Google Scholar] [CrossRef]
- Michelsen, A.; Lisanework, N.; Friis, I.; Holst, N. Comparisons of understory vegetation and soil fertility in plantations and adjacent natural forests in the Ethiopian highlands. J. Appl. Ecol. 1996, 33, 627–642. [Google Scholar] [CrossRef]
- Sinclair, J.E.; New, T.R. Pine plantations in southern eastern Australia support highly impoverished ant assemblages. J. Insect Conserv. 2004, 8, 277–286. [Google Scholar] [CrossRef]
- Corley, J.; Sackmann, P.; Rusch, V.; Bettinelli, J.; Paritsis, J. Effects of pine silviculture on the ant assemblages (Hymenoptera: Formicidae) of the Patagonian steppe. For. Ecol. Manag. 2006, 222, 162–166. [Google Scholar] [CrossRef]
- Clout, M.N.; Gaze, P.D. Effects of plantations forestry on birds in New Zealand. J. Appl. Ecol. 1984, 21, 795–815. [Google Scholar] [CrossRef]
- Carlson, A. A comparison of birds inhabiting pine plantation and indigenous forest patches in a tropical mountain area. Biol. Conserv. 1986, 35, 195–204. [Google Scholar] [CrossRef]
- Paritsis, J.; Aizen, M.A. Effects of exotic conifer plantations on the biodiversity of understory plants, epigeal beetles and birds in Nothofagus dombeyi forests. For. Ecol. Manag. 2008, 255, 1575–1583. [Google Scholar] [CrossRef]
- Djupström, L.B.; Weslien, J.; Schroeder, L.M. Dead wood and saproxylic beetles in set-aside and non-set-aside forests in a boreal region. For. Ecol. Manag. 2008, 255, 3340–3350. [Google Scholar] [CrossRef]
- Jonsell, M.; Weslien, J.; Ehnström, B. Substrate requirements of red-listed saproxylic invertebrates in Sweden. Biodivers Conserv. 1998, 7, 749–764. [Google Scholar] [CrossRef]
- Siitonen, J. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol. Bull. 2001, 49, 11–41. [Google Scholar]
- Jonsell, M.; Nittérus, K.; Stighäll, K. Saproxylic beetles in natural and man-made deciduous high stumps retained for conservation. Biol. Conserv. 2004, 118, 163–173. [Google Scholar] [CrossRef]
- Lassauce, A.; Lieutier, F.; Bouget, C. Wood-fuel harvesting and biodiversity conservation in temperate forests: Effects of logging residue characteristics on saproxylic beetle assemblages. Biol. Conserv. 2012, 147, 204–212. [Google Scholar] [CrossRef]
- Erwin, T.L. Tropical forests: Their richness in Coleoptera and other arthropod species. Coleopt. Bull. 1982, 36, 74–75. [Google Scholar]
- Basset, Y.; Cizek, L.; Cuénoud, P.; Didham, R.K.; Guilhaumon, F.; Missa, O.; Novotny, V.; Ødegaard, F.; Roslin, T.; Schmidl, J.; et al. Arthropod diversity in a tropical forest. Science 2012, 338, 1481–1484. [Google Scholar] [CrossRef] [PubMed]
- Bar-Ness, Y.D.; McQuillan, P.B.; Whitman, M.; Junker, R.R.; Cracknell, M.; Barrows, A. Sampling Forest canopy arthropod biodiversity with three novel minimal-cost trap designs. Aust. J. Entomol. 2012, 51, 12–21. [Google Scholar] [CrossRef]
- Hyvärinen, E.; Kouki, J.; Martikainen, P. A comparison of three trapping methods used to survey forest dwelling Coleoptera. Eur. J. Entomol. 2006, 103, 397–407. [Google Scholar] [CrossRef]
- Hilszczañski, J.; Plewa, R.; Jaworski, T.; Sierpiñski, A. Microrhagus pyrenaeus Bonvouloir, 1872—A false click beetle new for the fauna of Poland with faunistic and ecological data on Eucnemidae (Coleoptera, Elateroidea). Spixiana 2015, 38, 77–84. [Google Scholar]
- Fanti, F.; Michalski, A.R. An unusual fossil Malthodes with long elytra (Insecta Coleoptera Cantharidae). G. Ital. Di Entomol. 2018, 15, 127–132. [Google Scholar]
- Seedre, M. Saproxylic Beetles in Artificially Created High Stumps of Spruce and Birch Three Years after Cutting. Master’s Thesis, Southern Swedish Forest Research Centre, Alnarp, Sweden, 2005. Available online: https://www.academia.edu/6066983/ (accessed on 18 February 2022).
- Wermelinger, B.; Duelli, P.; Obrist, M.K. Dynamics of saproxylic beetles (Coleoptera) in windthrow areas in alpine spruce forests. For. Snow Landsc. Res. 2002, 77, 133–148. [Google Scholar]
- Marini, L.; Lindelöw, Å.; Jönsson, A.M.; Wulff, S.; Schroeder, L.M. Population dynamics of the spruce bark beetle: A long-term study. Oikos 2013, 122, 1768–1776. [Google Scholar] [CrossRef]
- Baier, P. Untersuchungen zur abundanzdynamischen Relevanz der Beifange von Nemusuma eluzzgatum (L.) (Col., Ostomidae) in C H A L C O P R A X ~ bekoderten Flugbarrierefallen fur Pityogenes chalcographus (L.) (Col., Scolytidae). J. Appl. Ent. 1994, 117, 51–57. [Google Scholar] [CrossRef]
- Belova, O.; Milišauskas, Z.; Padaiga, V.; Valenta, V.; Vasiliauskas, A.; Zolubas, P.; Žiogas, A. Miško Apsaugos Vadovas, 1st ed.; Lututė: Kaunas, Lithuania, 2000; p. 351. (In Lithuanian) [Google Scholar]
- Zahradník, P.; Zahradníková, M. The relationships between Pityogenes chalcographus and Nemozoma elongatum in clear-cuts with different types of management. Plant Protect. Sci. 2020, 56, 30–34. [Google Scholar] [CrossRef]
- Skrzecz, I.; Bulka, M. Insect assemblages in Norway spruce [Picea abies (L.) Karst.] stumps in the Eastern Sudetes. Folia For. Pol. 2010, 52, 98–107. [Google Scholar]
- Akkuzu, E.; Sariyildiz, T.; Kucuk, M.; Duman, A. Ips typographus (L.) and Thanasimus formicarius (L.) populations influenced by aspect and slope position in Artvin-Hatila valley national park, Turkey. Afr. J. Biotechnol. 2009, 8, 877–882. [Google Scholar]
- Warzee, N.; Gregoire, J.C. Thanasimus formicarius (Coleoptera: Cleridae): Why a Large Range of Prey for a Specialized Predator? In Proceedings of the Forest Insect Population Dynamics and Host Influences, International Symposium of IUFRO, Kanazawa, Japan, 14–19 September 2003; pp. 16–18. [Google Scholar]
- Kenis, M.; Wermelinger, B.; Gregoire, J.C. Research on parasitoids and predators of Scolytidae—A review. In Bark and Wood Insects in Living Trees in Europe, a Synthesis; Lieutuer, F., Day, K.R., Battisti, A., Gregoire., J.C., Evans, H.E., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 237–290. [Google Scholar]
- Ranius, T.; Jansson, N. The influence of forest regrowth, original canopy co ver and tree size on saproxylic beetles associated with old oaks. Biol. Conserv. 2000, 95, 85–94. [Google Scholar] [CrossRef]
- Dervišević, M.; Graora, D. The life cycle and efficacy of Anthribus nebulosus Forster. in reducing soft scale populations in Belgrade. Fresenius Environ. Bull. 2019, 28, 1981–1985. [Google Scholar]
- Lynikienė, J.; Tamutis, V.; Gedminas, A.; Marčiulynas, A.; Menkis, A. First Report of the Larch Longhorn (Tetropium gabrieli Weise, Coleoptera: Cerambycidae: Spondylidinae) on Larix sp. in Lithuania. Insects 2021, 12, 9–11. [Google Scholar] [CrossRef]
- Speight, M.C.D. Saproxylic Invertebrates and Their Conservation; Council of Europe: Strasbourg, France, 1989; p. 78. [Google Scholar]
- Muona, J. A revision of the Nearctic Eucnemidae. Acta Zool. Fenn. 2000, 212, 1–106. [Google Scholar]
- Stokland, J.N.; Siitonen, J.; Jansson, B.G. Biodiversity in Dead Wood, 1st ed.; Cambridge University Press: Cambridge, UK, 2012; p. 521. [Google Scholar]
- Seibold, S.; Bassler, C.; Baldrian, P.; Reinhard, L.; Thorn, S.; Ulyshen, M.; Weiss, I.; Muller, J. Dead-wood addition promotes non-saproxylic epigeal arthropods, but effects are mediated by canopy openness. Biol. Conserv. 2016, 204, 181–188. [Google Scholar] [CrossRef]
- Ulyshen, M.D.; Šobotník, J. An Introduction to the Diversity, Ecology, and Conservation of Saproxylic Insects. In Saproxylic Insects; Ulyshen, M., Ed.; Zoological Monographs; Springer: Cham, Switzerland, 2018; Volume 1. [Google Scholar] [CrossRef]
- Albrecht, L. Die Bedeutung des toten Holzes im Wald. Forstwiss. Cent. Bl. 1991, 110, 106–113. [Google Scholar] [CrossRef]
- Glück, E.; Spelda, J. Sukzession der Destruentencoenosen von Sturmwurfflächen. Veröffentlichungen Proj. Angew. Okol. 1996, 16, 367–377. [Google Scholar]
- Irmler, U.; Heller, K.; Warning, J. Age and tree species as factors influencing the populations of insects living in dead wood (Coleoptera, Diptera: Sciaridae, Mycetophilidae). Pedobiologia 1996, 40, 134–148. [Google Scholar]
- Økland, B.; Bakke, A.; Hågvar, S.; Kvamme, T. What factors influence the diversity of saproxylic beetles? A multi-scaled study from a spruce forest in southern Norway. Biodivers Conserv. 1996, 5, 75–100. [Google Scholar] [CrossRef]
- Köhler, F. Totholzkäfer in Naturwaldzellen des nördlichen Rheinlands. LÖBF-Schr.reihe Landesanst. Ökol. Bodenordn. Forsten Nord. Westfal. 2000, 18, 352. Available online: https://katalog.slub-dresd (accessed on 10 February 2022).
- Schiegg, K. Effects of dead wood volume and connectivity on saproxylic insect species diversity. Ecoscience 2000, 7, 290–298. [Google Scholar] [CrossRef]
- Balfour, H.H.; Edelman, J.C.K.; Cook, F.E.; Barton, W.I.; Buzicky, A.W.; Siem, R.A.; Bauer, H. Isolates of California encephalitis (La Crosse) virus from field-collected eggs and larvae of Aedes triseriatus: Identification of the overwintering site of California encephalitis. J. Infect. Dis. 1975, 131, 712–716. [Google Scholar] [CrossRef]
- Pekár, S. Some observations on overwintering of spiders (Araneae) in two contrasting orchards in the Czech Republic. Agr. Ecosyst. Environ. 1999, 73, 205–210. [Google Scholar] [CrossRef]
- Jonsell, M.; Weslien, J. Felled or standing retained wood—It makes a difference for saproxylic beetles. For. Ecol. Manag. 2003, 175, 425–435. [Google Scholar] [CrossRef]
- Grove, S.L. Saproxylic insect ecology and the sustainable management of forests. Ann. Rev. Ecol. Syst. 2002, 33, 1–23. [Google Scholar] [CrossRef]
- Langor, D.; Hammond, H.; Spence, J.; Jacobs, J.; Cobb, T. Saproxylic insect assemblages in Canadian forests: Diversity, ecology, and conservation. Can. Entomol. 2008, 140, 453–474. [Google Scholar] [CrossRef]
- Lindgren, B.S. Trypodendron lineatum (Olivier) (Coleoptera: Scolytidae) breeding in bigleaf maple. Acer. Macrophyllum. J. Entomol. Soc. B. C. 1986, 83, 44. Available online: https://agris.fao.org/agris-search/search.do?recordID=US201302689267 (accessed on 10 February 2022).
- Hanson, H.S. Ecological Notes on the Sirex Wood Wasps and their Parasites. Bull. Entomol. Res. 1939, 30, 27–65. [Google Scholar] [CrossRef]
- Schnaider, Z. Atlas Uszkodzen Drzew i Krzewow Powodowanych Przez Owady i Pajęczaki; Panstwowe Wydawnictwo Naukowe: Warszawa, Poland, 1976; p. 74. [Google Scholar]
- Unger, A.; Schniewind, A.P.; Unger, W. Conservation of Wood Artifacts: A Handbook; Herrmann, B., Ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1998; pp. 80–81. [Google Scholar]
- Simila, M.; Kouki, J.; Martikainen, P. Saproxylic beetles in managed and seminatural Scots pine forests: Quality of dead wood matters. For. Ecol. Manag. 2003, 174, 365–381. [Google Scholar] [CrossRef]
- Weslien, J.; Schroeder, L.M. Population levels of bark beetles and associate insects in managed and unmanaged spruce stand. For. Ecol. Manag. 1999, 115, 267–275. [Google Scholar] [CrossRef]
- Jankowiak, R.; Rossa, R.; Miśta, K. Survey of fungal species vectored by Ips cembrae to European larch trees in Raciborskie forests (Poland). Czech Mycol. 2007, 59, 227–239. [Google Scholar] [CrossRef]
- Wagner, M.R.; Clancy, K.M.; Lieutier, F.D.P.T. Mechanisms and Deployment of Resistance in Trees to Insects; Kluwer Academic: Dordrecht, The Netherlands, 2002; p. 339. [Google Scholar]
- Müller, J.; Wende, B.; Strobl, C.; Eugster, M.; Gallenberger, I.; Floren, A.; Gossner, M.M. Forest management and regional tree composition drive the host preference of saproxylic beetle communities. J. Appl. Ecol. 2015, 52, 753–762. [Google Scholar] [CrossRef]
- Marmor, L.; Tõrra, T.; Saag, L.; Randlane, T. Species Richness of Epiphytic Lichens in Coniferous Forests: The Effect of Canopy Openness. Ann. Bot. Fenn. 2012, 49, 352–358. [Google Scholar] [CrossRef]
- Green, G.A.; Nash, T.H.; Lange, O.L. Physiological ecology of carbon dioxide exchange. In Lichen Biology; Nash, T.H., Ed.; Cambridge University Press: Cambridge, UK, 2008; pp. 152–181. [Google Scholar]
- Nascimbene, J.; Marini, L.; Motta, R.; Nimis, P.L. Influence of tree age, tree size and crown structure on lichen communities in mature Alpine spruce forests. Biodivers Conserv. 2009, 18, 1509–1522. [Google Scholar] [CrossRef]
- Nascimbene, J.; Marini, L.; Nimis, P.L. Epiphytic lichen diversity in old-growth and managed Picea abies stands in Alpine spruce forests. For. Ecol. Manag. 2010, 260, 603–609. [Google Scholar] [CrossRef]
- Jüriado, I.; Liira, J.; Paal, J.; Suija, A. Tree and stand level variables influencing diversity of lichens on temperate broad-leaved trees in boreo-nemoral floodplain forests. Biodivers Conserv. 2009, 18, 105–125. [Google Scholar] [CrossRef]
- Király, I.; Nascimbene, J.; Tinya, F.; Ódor, P. Factors influencing epiphytic bryophyte and lichen species richness at different spatial scales in managed temperate forests. Biodivers Conserv. 2013, 22, 209–223. [Google Scholar] [CrossRef]
- Fritz, Ö.; Heilmann-Clausen, J. Rot holes create key microhabitats for epiphytic lichens and bryophytes on beech (Fagus sylvatica). Biol. Conserv. 2010, 143, 1008–1016. [Google Scholar] [CrossRef]
- Hauck, M.; Javkhlan, S. Epiphytic lichen diversity and its dependence on bark chemistry in the northern Mongolian dark taiga. Flora Morphol. Distrib. Funct. Ecol. Plants 2009, 204, 278–288. [Google Scholar] [CrossRef]
- Hauck, M.; Spribille, T. The significance of precipitation and substrate chemistry for epiphytic lichen diversity in spruce-fir forests of the Salish Mountains, northwestern Montana. Flora Morphol. Distrib. Funct. Ecol. Plants 2005, 6, 547–562. [Google Scholar] [CrossRef]
- Schmull, M.; Hauck, M.; Vann, D.R.; Johnson, A.H.; Runge, M. Site factors determining epiphytic lichen distribution in a dieback-affected spruce-fir forest on Whiteface Mountain, New York: Stemflow chemistry. Can. J. Bot. 2002, 80, 1131–1140. [Google Scholar] [CrossRef]
Site * | Geographical Position | Age (y) | Mean Height (m) | Mean Diameter (cm) | Stocking Level | Forest Site Type ** | Forest Vegetation Type *** | Tree Species Composition (%) **** |
---|---|---|---|---|---|---|---|---|
S1 | 54°33′18.88″ N, 23°53′14.53″ E | 47 | 21.7 | 23.5 | 1.3 | Ncs | ox | 100S |
L1 | 54°33′19.82″ N, 23°53′17.18″ E | 47 | 28.1 | 34.3 | 0.9 | Ncs | ox | 100L |
S2 | 54°51′36.84″ N, 24°4′25.17″ E | 57 | 25.2 | 29.0 | 0.9 | Ncp | ox | 40S 20L 20Q 10T 10B |
L2 | 54°51′37.18″ N, 24°4′29.02″ E | 37 | 28.5 | 33.7 | 0.8 | Ncp | ox | 90L10T |
S3 | 55°17′10.6″ N, 23°26′11.7″ E | 55 | 23.6 | 26.0 | 0.9 | Lds | hox | 100S |
L3 | 55°17′10.56″ N, 23°26′23.63″ E | 50 | 29.1 | 43.5 | 0.7 | Ldp | aeg | 100L |
S4 | 55°3′19.44″ N, 23°31′8.07″ E | 67 | 24.6 | 26.2 | 0.8 | Ncp | ox | 80S 10P 10S |
L4 | 55°3′18.74″ N, 23°31′4.2 ″ E | 72 | 35.9 | 42.8 | 0.8 | Ncl | ox | 90L 10P |
S5 | 55°55′53.91″ N, 25°36′33.16″ E | 35 | 19.0 | 24.0 | 0.6 | Ldp | oxn | 80S 20Q |
L5 | 55°57′51.93″ N, 25°37′7.89″ E | 80 | 28.0 | 34.0 | 0.6 | Ldp | aeg | 70L 20Pt 10B |
S6 | 55°30′46.23″ N, 25°5′33.21″ E | 50 | 19.0 | 18.0 | 0.9 | Ncl | ox | 50S 30P 20T |
L6 | 55°30′46.9″ N, 25°5′35.92″ E | 55 | 25.0 | 24.0 | 0.9 | Lcl | ox | 50P 30L 20S |
S7 | 55°15′4.99″N, 24°48′58.27″ E | 38 | 17.5 | 19.4 | 0.6 | Ncl | ox | 90S 10P |
L7 | 55°15′53.53″ N, 24°48′50.76″ E | 38 | 24.7 | 29.4 | 0.9 | Ncl | ox | 100 L |
S8 | 54°48′57.86″ N, 23°25′24.43″ E | 66 | 25.5 | 27.9 | 1.0 | Nbl | m | 80S 20P |
L8 | 54°49′24.5″ N, 23°25′29.83″ E | 66 | 32.7 | 32.2 | 0.8 | Ncl | ox | 80L 20P |
S9 | 54°0′24.82″ N, 23°44′31.7″ E | 84 | 25.4 | 28.0 | 0.7 | Nbl | v | 60S 10P 10S 20S |
L9 | 54°0′20.68″ N, 23°38′7.07″ E | 59 | 32.2 | 38.6 | 0.6 | Ncl | ox | 100L |
S10 | 55°23′12.67″ N, 24°7′10.42″ E | 58 | 24.4 | 20.5 | 1.2 | Nds | hox | 90S 10B |
L10 | 55°23′14.38″ N, 24°7′13.74″ E | 58 | 26.4 | 29.2 | 0.7 | Nds | hox | 90L 10B |
Site | Tree State | Tree Species | Relative Abundance, % (No. of Insects) | Richness, % (No. of Insect Species) | Shannon H | Sørensen Cs * |
---|---|---|---|---|---|---|
S1/L1 | Live | Picea | 0.4 (74) | 22.1 (21) | 2.34 | 0.44 |
Larix | 0.3 (69) | 15.8 (15) | 2.16 | |||
Dead | Picea | 0.3 (63) | 24.2 (23) | 2.53 | - | |
Larix | - | - | - | |||
Total | 1.0 (206) | 40.0 (38) | 2.35 | 0.48 | ||
S2/L2 | Live | Picea | 0.5 (109) | 25.3 (24) | 2.46 | 0.36 |
Larix | 0.2 (32) | 15.8 (15) | 2.33 | |||
Dead | Picea | 29.1 (5885) | 25.3 (24) | 0.07 | 0.42 | |
Larix | 0.1 (16) | 9.5 (9) | 1.85 | |||
Total | 29.9 (6042) | 43.2 (41) | 0.22 | 0.50 | ||
S3/L3 | Live | Picea | 0.4 (82) | 18.9 (18) | 2.14 | 0.39 |
Larix | 1.1 (221) | 18.9 (18) | 1.86 | |||
Dead | Picea | 0.71 (144) | 27.4 (26) | 2.32 | 0.40 | |
Larix | 1.6 (325) | 25.3 (24) | 1.63 | |||
Total | 3.8 (772) | 48.4 (46) | 2.24 | 0.54 | ||
S4/L4 | Live | Picea | 0.5 (102) | 29.5 (28) | 2.81 | 0.46 |
Larix | 0.4 (91) | 21.1 (20) | 2.16 | |||
Dead | Picea | 4.5 (918) | 34.7 (33) | 0.86 | 0.57 | |
Larix | 0.3 (64) | 24.2 (23) | 2.52 | |||
Total | 5.8 (1175) | 56.8 (54) | 1.68 | 0.60 | ||
S5/L5 | Live | Picea | 0.6 (127) | 18.9 (18) | 2.06 | 0.46 |
Larix | 0.5 (99) | 22.1 (21) | 2.58 | |||
Dead | Picea | 1.4 (286) | 28.4 (27) | 2.21 | - | |
Larix | - | - | - | |||
Total | 2.5 (512) | 44.2 (42) | 2.66 | 0.41 | ||
S6/L6 | Live | Picea | 0.6 (120) | 23.2 (22) | 1.76 | 0.41 |
Larix | 0.4 (78) | 17.9 (17) | 1.94 | |||
Dead | Picea | 0.9 (194) | 29.5 (28) | 2.48 | 0.46 | |
Larix | 0.7 (146) | 25.3 (24) | 2.01 | |||
Total | 2.7 (538) | 53.7 (51) | 2.49 | 0.56 | ||
S7/L7 | Live | Picea | 31.5 (6369) | 30.5 (29) | 0.25 | 0.49 |
Larix | 0.6 (122) | 25.3 (24) | 2.22 | |||
Dead | Picea | 1.2 (241) | 30.5 (29) | 2.32 | 0.46 | |
Larix | 0.8 (165) | 29.5 (28) | 2.24 | |||
Total | 34.1 (6897) | 62.1 (59) | 0.64 | 0.54 | ||
S8/L8 | Live | Picea | 0.5 (110) | 28.4 (27) | 2.57 | 0.59 |
Larix | 0.3 (54) | 17.9 (17) | 2.25 | |||
Dead | Picea | 8.4 (1705) | 36.8 (35) | 1.05 | 0.56 | |
Larix | 0.4 (82) | 20.0 (19) | 2.49 | |||
Total | 9.6 (1951) | 51.6 (49) | 1.53 | 0.60 | ||
S9/L9 | Live | Picea | 1.0 (207) | 25.3 (24) | 2.10 | 0.58 |
Larix | 0.5 (95) | 25.3 (24) | 2.38 | |||
Dead | Picea | 6.0 (1222) | 35.8 (34) | 0.99 | 0.39 | |
Larix | 0.6 (117) | 23.2 (22) | 2.39 | |||
Total | 8.1 (1641) | 55.8 (53) | 1.74 | 0.52 | ||
S10/L10 | Live | Picea | 0.6 (120) | 28.4 (27) | 2.71 | 0.55 |
Larix | 0.3 (70) | 17.9 (17) | 2.00 | |||
Dead | Picea | 1.0 (200) | 33.7 (32) | 2.68 | 0.57 | |
Larix | 0.5 (102) | 25.3 (24) | 2.68 | |||
Total | 2.4 (492) | 53.7 (51) | 2.84 | 0.57 | ||
All sites | Live Picea | 36.7 (7420) | 70.5 (67) | |||
Live Larix | 4.6 (931) | 71.6 (68) | ||||
Dead Picea | 53.7 (10,858) | 80 (76) | ||||
Dead Larix | 5.0 (1017) | 67.4 (64) | ||||
All total | 100 (20,226) | 100 (95) |
Order/Family | Species | Picea abies Trees | Larix sp. Trees | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
June | July | August | Total | June | July | August | Total | ||||||||||
D * | L ** | D | L | D | L | D | L | D | L | D | L | D | L | D | L | ||
Coleoptera/Curculionidae | Crypturgus pusillus Erich. | 91.6 | 80.0 | 69.8 | 87.0 | 59.2 | - | 83.8 | 82.7 | - | - | 0.3 | - | - | - | 0.2 | - |
Hymenoptera/Ichneomonidae | Ichneomonidae sp. | 1.9 | 3.1 | 6.9 | 5.1 | 8.0 | 22.8 | 3.6 | 5.0 | 23.2 | 26.2 | 24.8 | 29.1 | 30.0 | 28.1 | 24.6 | 27.8 |
Coleoptera/Eucnemidae | Eucnemidae sp. 1 | 1.2 | 3.9 | 2.1 | 1.3 | 1.2 | 3.9 | 1.4 | 2.1 | 25.9 | 23.2 | 31.9 | 18.8 | 5.4 | 5.6 | 27.0 | 19.0 |
Coleoptera/Eucnemidae | Eucnemidae sp. 2 | 0.7 | 3.2 | 2.6 | 1.5 | 1.8 | 6.3 | 1.3 | 2.1 | 4.9 | 13.9 | 7.5 | 14.8 | 4.1 | 8.2 | 6.1 | 13.7 |
Coleoptera/Elateridae | Dalopius marginatus L. | 0.7 | 2.9 | - | - | - | - | 0.4 | 0.8 | 19.0 | 11.5 | - | - | - | - | 7.8 | 4.5 |
Coleoptera/Anobiidae | Hadrobregmus pertinax L. | 0.2 | - | 3.8 | 0.1 | - | - | 1.2 | 0.1 | 1.7 | - | 5.0 | 1.8 | - | - | 3.2 | 0.9 |
Coleoptera/Elateridae | Conoderus sp. | - | - | 2.7 | 0.5 | 1.7 | 2.8 | 0.9 | 0.4 | 0.5 | 0.6 | 3.4 | 3.1 | 7.3 | 1.2 | 2.6 | 1.9 |
Coleoptera/Cleridae | Tillus elongatus L. | 0.1 | 0.6 | 1.2 | 0.7 | 0.3 | - | 0.4 | 0.7 | 2.9 | 1.9 | 5.9 | 5.5 | - | 0.5 | 4.1 | 3.5 |
Coleoptera/Cleridae | Thanasimus formicarius L. | 0.4 | 0.6 | 1.7 | 0.5 | 1.8 | 0.7 | 0.9 | 0.5 | 1.5 | 1.7 | 1.0 | 0.5 | - | - | 1.1 | 0.9 |
Coleoptera/Anthribidae | Anthribus nebulosus Forst. | 0.1 | 0.6 | 0.5 | 0.6 | 2.0 | 15.3 | 0.3 | 1.0 | 1.1 | 0.3 | 0.6 | 1.8 | 7.4 | 10.3 | 1.4 | 2.2 |
Coleoptera/Ptinidae | Anobium rufipes Fabr. | 0.1 | 0.3 | 1.5 | 0.3 | 0.3 | 2.5 | 0.5 | 0.4 | - | 2.3 | 3.3 | - | - | - | 1.6 | 0.9 |
Coleoptera/Scolytidae | Polygraphus poligraphus L. | 0.2 | - | 0.0 | 0.1 | 12.1 | 1.0 | 0.7 | 0.1 | 0.8 | - | 0.2 | - | 0.6 | 1.1 | 0.5 | 0.1 |
Hymenoptera/Formicidae | Formica rufa L. | 0.1 | 0.7 | 0.1 | 0.3 | 1.8 | 16.0 | 0.2 | 0.8 | - | 0.8 | - | 0.3 | 0.6 | 4.1 | 0.1 | 0.9 |
Coleoptera/Scolytidae | Trypodendron lineatum Ol. | 0.8 | 0.4 | 0.2 | - | 0.3 | 0.7 | 0.6 | 0.1 | 1.6 | 0.3 | - | 0.2 | 3.2 | 4.5 | 1.0 | 0.7 |
Coleoptera/Cantharidae | Malthodes sp. | - | 0.3 | 0.2 | 0.3 | 0.6 | 0.8 | 0.1 | 0.3 | 0.3 | 1.4 | 1.2 | 3.1 | 1.8 | - | 0.9 | 2.1 |
Coleoptera/Scolytidae | Pityogenes chalcographus L. | 0.1 | 0.1 | 1.4 | 0.1 | - | - | 0.5 | 0.1 | - | 0.3 | - | - | - | - | - | 0.1 |
Coleoptera/Nitidulidae | Glischrochilus hortensis Geoffr. | 0.2 | 0.2 | 0.3 | - | - | 0.3 | 0.2 | 0.1 | 1.3 | 0.9 | 0.8 | 0.3 | - | - | 0.9 | 0.5 |
Coleoptera/Trogossitidae | Nemozoma elongatum L. | 2.2 | 0.1 | 0.6 | - | 0.3 | - | 0.3 | 0.1 | - | - | - | - | - | - | - | - |
Coleoptera/Dermestidae | Megatoma undata L. | 0.1 | 0.1 | 0.5 | 0.1 | - | - | 0.2 | 0.1 | 0.5 | 1.2 | 0.2 | - | - | - | 0.3 | 0.5 |
Hymenoptera/Myrmicidae | Myrmica sp. | - | - | 0.2 | 0.1 | 0.5 | 5.5 | 0.1 | 0.2 | - | - | - | 0.9 | 1.3 | 3.9 | 0.1 | 0.9 |
Total of 20 species | 98.7 | 97.2 | 96.4 | 98.9 | 91.9 | 78.6 | 97.7 | 97.9 | 85.1 | 86.5 | 86.3 | 80.0 | 61.8 | 67.5 | 83.5 | 81.1 |
Site | Tree Species | Bark Sheets | Exit Holes | ||||||
---|---|---|---|---|---|---|---|---|---|
Richness, % (No. of Insect Species) | Bark Area Colonized, % | Shannon H | Sørensen Cs | Richness, % (No. of Insect Species) | Amount, % (No. of Exit Holes) | Shannon H | Sørensen Cs | ||
S1/L1 | Picea | 44.4 (4) | 54.2 | 1.03 | - | 62.5 (5) | 3.3 (109) | 0.79 | - |
Larix | - | - | - | - | - | - | |||
Total | 44.4 (4) | 54.2 | - | 62.5 (5) | 3.3 (109) | - | |||
S2/L2 | Picea | 22.2 (2) | 18.3 | 0.56 | 0.67 | 50.0 (4) | 0.9 (3)1 | 0.84 | 1.00 |
Larix | 44.4 (4) | 49.2 | 0.23 | 50.0 (4) | 3.2 (108) | 0.91 | |||
Total | 44.4 (4) | 40.0 | 0.58 | 50.0 (4) | 4.2 (139) | 1.08 | |||
S3/L3 | Picea | 22.2 (2) | 35.7 | 0.69 | 0.67 | 50.0 (4) | 2.9 (96) | 0.95 | 0.33 |
Larix | 11.1 (1) | 58.0 | 0.00 | 25.0 (2) | 0.3 (10) | 0.33 | |||
Total | 22.2 (2) | 45.0 | 0.57 | 62.5 (5) | 3.2 (106) | 1.18 | |||
S4/L4 | Picea | 44.4 (4) | 42.5 | 0.97 | 0.00 | 75.0 (6) | 8.2 (273) | 1.46 | 0.44 |
Larix | 22.2 (2) | 75.0 | 0.64 | 37.5 (3) | 1.6 (53) | 1.08 | |||
Total | 66.7 (6) | 49.0 | 1.48 | 87.5 (7) | 9.8 (326) | 1.64 | |||
S5/L5 | Picea | 44.4 (4) | 55.0 | 1.27 | - | 50.0 (4) | 3.0 (100) | 0.60 | - |
Larix | - | - | - | - | - | - | |||
Total | 44.4 (4) | 55.0 | - | 50.0 (4) | 3.0 (100) | - | |||
S6/L6 | Picea | 55.6 (5) | 13.8 | 1.10 | 0.57 | 62.5 (5) | 9.0 (300) | 1.13 | 0.50 |
Larix | 22.2 (2) | 38.0 | 0.60 | 37.5 (3) | 3.2 (108) | 0.77 | |||
Total | 55.6 (5) | 23.1 | 1.01 | 75.0 (6) | 12.3 (408) | 1.34 | |||
S7/L7 | Picea | 22.2 (2) | 71.0 | 0.59 | 0.40 | 62.5 (5) | 18.3 (609) | 0.83 | 0.60 |
Larix | 33.3 (3) | 69.0 | 1.08 | 62.5 (5) | 1.8 (60) | 1.33 | |||
Total | 44.4 (4) | 70.0 | 1.24 | 87.5 (7) | 20.1 (669) | 1.09 | |||
S8/L8 | Picea | 22.2 (2) | 23.5 | 0.52 | 0.00 | 87.5 (7) | 10.0 (333) | 0.81 | 0.73 |
Larix | 11.1 (1) | 20.0 | 0.00 | 50.0 (4) | 3.2 (106) | 0.79 | |||
Total | 33.3 (3) | 22.0 | 0.98 | 87.5 (7) | 13.2 (439) | 0.93 | |||
S9/L9 | Picea | 44.4 (4) | 53.3 | 1.00 | 0.33 | 87.5 (7) | 16.7 (556) | 1.35 | 0.55 |
Larix | 22.2 (2) | 59.0 | 0.63 | 50.0 (4) | 7.3 (242) | 0.72 | |||
Total | 55.6 (5) | 55.9 | 1.43 | 100 (8) | 24.0 (798) | 1.72 | |||
S10/L10 | Picea | 22.2 (2) | 31.4 | 0.66 | 0.80 | 37.5 (3) | 3.1 (102) | 0.85 | 0.40 |
Larix | 33.3 (3) | 29.2 | 0.43 | 25.0 (2) | 3.3 (111) | 0.48 | |||
Total | 33.3 (3) | 30.4 | 1.07 | 50.0 (4) | 3.4 (113) | 1.21 | |||
All sites | Picea | 88.9 (8) | 39.0 | 1.65 | 0.80 | 100 (8) | 75.4 (2509) | 1.44 | 0.80 |
Larix | 77.8 (7) | 47.3 | 1.55 | 87.5 (7) | 24.6 (819) | 1.61 | |||
All total | 100 (9) | 42.2 | 1.94 | 100 (8) | 100 (3328) | 1.77 |
Order/Family | Insect Species | Bark Sheets | Exit Holes | ||
---|---|---|---|---|---|
Picea abies | Larix sp. | Picea abies | Larix sp. | ||
Coleoptera/Cerambycidae | Callidium sp. Fabr. | 18.0 | 35.7 | - | - |
Coleoptera/Cerambycidae | Cerambycidae sp. Latr | 0.2 | 27.2 | 4.3 | 22.0 |
Coleoptera/Curculionidae | Ips typographus L. | 11.0 | - | 7.1 | - |
Coleoptera/Cerambycidae | Molorchus sp. Fabr. | 27.7 | 5.6 | - | - |
Coleoptera/Curculionidae | Polygraphus poligraphus L. | 31.0 | - | - | - |
Coleoptera/Curculionidae | Rhagium sp. Fabr. | 7.0 | 17.5 | - | - |
Coleoptera/Curculionidae | Scolytinae sp. Latr. | 3.8 | 2.9 | 1.2 | 22.6 |
Hymenoptera/Siricidae | Siricidae sp. Fabr. | 1.2 | 0.3 | - | - |
Coleoptera/Cerambycidae | Tetropium sp. Kirby | - | 10.8 | - | - |
Coleoptera/Curculionidae | Pityogenes chalcographus L. | - | - | 44.2 | 6.3 |
Coleoptera/Curculionidae | Trypodendron lineatum Oliv. | - | - | 16.6 | 17.8 |
Coleoptera/Buprestidae | Buprestidae sp. Leach | - | - | 0.9 | 28.6 |
Coleoptera/Curculionidae | Hylurgops palliatus Gyll. | - | - | 25.5 | - |
Hymenoptera/Siricidae | Sirex juvencus L. | - | - | 0.2 | 2.7 |
Site | Tree State | Tree Species | Richness, % (No. of Lichen Species) | Bark Area Colonized, % | Shannon H | Sørensen Cs * |
---|---|---|---|---|---|---|
S1/L1 | Live | Picea | 66.6 (8) | 89.5 | 1.18 | 0.71 |
Larix | 50.0 (6) | 71.2 | 1.25 | |||
Dead | Picea | 66.6 (8) | 95.5 | 1.06 | - | |
Larix | - | - | - | |||
Total | 75.0 (9) | 85.8 | 1.31 | 0.80 | ||
S2/L2 | Live | Picea | 58.3 (7) | 51.8 | 1.61 | 0.62 |
Larix | 50.0 (6) | 28.5 | 1.35 | |||
Dead | Picea | 58.3 (7) | 40.4 | 1.44 | 0.73 | |
Larix | 33.3 (4) | 26.8 | 1.09 | |||
Total | 75.0 (9) | 47.7 | 1.54 | 0.62 | ||
S3/L3 | Live | Picea | 8.3 (1) | 20.0 | 0.00 | 0.20 |
Larix | 75.0 (9) | 77.2 | 1.52 | |||
Dead | Picea | - | - | - | - | |
Larix | 33.3 (4) | 86.1 | 1.11 | |||
Total | 75.0 (9) | 50.2 | 1.44 | 0.20 | ||
S4/L4 | Live | Picea | 50.0 (6) | 37.3 | 1.17 | 0.62 |
Larix | 58.3 (7) | 81.1 | 1.13 | |||
Dead | Picea | 16.7 (2) | 17.8 | 0.53 | 0.29 | |
Larix | 41.7 (5) | 49.5 | 0.85 | |||
Total | 83.3 (10) | 48.7 | 1.17 | 0.57 | ||
S5/L5 | Live | Picea | 16.7 (2) | 19.0 | 0.65 | 0.36 |
Larix | 75.0 (9) | 83.2 | 1.13 | |||
Dead | Picea | 41.7 (5) | 40.2 | 1.00 | - | |
Larix | - | - | - | |||
Total | 75.0 (9) | 49.6 | 1.32 | 0.71 | ||
S6/L6 | Live | Picea | 25.0 (3) | 26.0 | 1.03 | 0.75 |
Larix | 41.7 (5) | 84.9 | 0.67 | |||
Dead | Picea | 8.3 (1) | 5.0 | 0.00 | 0.29 | |
Larix | 50.0 (6) | 89.2 | 0.82 | |||
Total | 50.0 (6) | 54.2 | 0.96 | 0.80 | ||
S7/L7 | Live | Picea | 66.7 (8) | 58.3 | 1.13 | 0.80 |
Larix | 58.3 (7) | 71.7 | 0.70 | |||
Dead | Picea | 8.3 (1) | 12.0 | 0.00 | 0.00 | |
Larix | 16.7 (2) | 31.0 | 0.14 | |||
Total | 75.0 (9) | 44.4 | 1.11 | 0.80 | ||
S8/L8 | Live | Picea | 58.3 (7) | 46.8 | 0.96 | 0.71 |
Larix | 58.3 (7) | 57.4 | 1.42 | |||
Dead | Picea | 58.3 (7) | 55.9 | 1.34 | 0.75 | |
Larix | 75.0 (9) | 49.2 | 1.36 | |||
Total | 83.3 (10) | 52.5 | 1.42 | 0.75 | ||
S9/L9 | Live | Picea | 8.3 (1) | 17.0 | 0.00 | 0.40 |
Larix | 33.3 (4) | 80.9 | 1.21 | |||
Dead | Picea | 25.0 (3) | 28.7 | 0.58 | 0.67 | |
Larix | 25.0 (3) | 90.1 | 0.86 | |||
Total | 50.0 (6) | 59.9 | 1.10 | 0.25 | ||
S10/L10 | Live | Picea | 66.7 (8) | 24.8 | 1.39 | 0.80 |
Larix | 58.3 (7) | 4.8 | 1.17 | |||
Dead | Picea | 41.7 (5) | 22.5 | 1.28 | 0.33 | |
Larix | 8.3 (1) | 68.0 | 0.00 | |||
Total | 75.0 (9) | 56.3 | 1.16 | 0.80 | ||
All sites | Live Picea | 83.3 (10) | 40.4 | 1.42 | 0.86 | |
Live Larix | 91.7 (11) | 78.0 | 1.48 | |||
Dead Picea | 66.7 (8) | 34.3 | 1.38 | 0.89 | ||
Dead Larix | 83.3 (10) | 63.2 | 1.11 | |||
All Total | 100 (12) | 54.8 | 1.45 | 0.86 |
Family | Lichen Species | Picea abies | Larix sp. | Total | ||
---|---|---|---|---|---|---|
Dead | Living | Dead | Living | |||
Stereocaulaceae | Lepraria sp. Ach. | 60.4 | 59.9 | 76.4 | 71.4 | 69.9 |
Parmeliaceae | Hypogimnia physodes (L.) Nyl. | 3.3 | 4.8 | 14.3 | 6.5 | 8.1 |
Phlyctidaceae | Phlyctis argena Spreng. | 13.6 | 19.9 | 1.9 | 1.9 | 5.8 |
Unknown | Unidentified sp. 1 | 4.1 | 5.1 | 4.3 | 6.5 | 5.4 |
Lecanoraceae | Lecidea elaeochroma Ach. | 6.7 | 7.7 | 1.4 | 2.4 | 3.4 |
Unknown | Unidentified sp. 2 | - | - | - | 7.0 | 3.2 |
Parmeliaceae | Parmelia sulcate Taylor. | 5.5 | 1.0 | 0.9 | 1.3 | 1.6 |
Unknown | Unidentified sp. 3 | 4.8 | 1.1 | 0.2 | 0.3 | 0.9 |
Physciaceae | Physcia stellaris (L.) Nyl. | 1.6 | 0.2 | 0.3 | 1.0 | 0.8 |
Teloschistaceae | Xanthoria parietina (L.) Th.Fr. | - | 0.3 | 0.1 | 1.2 | 0.6 |
Unknown | Unidentified sp. 4 | - | - | 0.1 | 0.6 | 0.3 |
Unknown | Unidentified sp. 5 | - | 0.1 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lynikienė, J.; Gedminas, A.; Marčiulynas, A.; Marčiulynienė, D.; Menkis, A. Can Larix sp. Mill. Provide Suitable Habitats for Insects and Lichens Associated with Stems of Picea abies (L.) H. Karst. in Northern Europe? Diversity 2022, 14, 729. https://doi.org/10.3390/d14090729
Lynikienė J, Gedminas A, Marčiulynas A, Marčiulynienė D, Menkis A. Can Larix sp. Mill. Provide Suitable Habitats for Insects and Lichens Associated with Stems of Picea abies (L.) H. Karst. in Northern Europe? Diversity. 2022; 14(9):729. https://doi.org/10.3390/d14090729
Chicago/Turabian StyleLynikienė, Jūratė, Artūras Gedminas, Adas Marčiulynas, Diana Marčiulynienė, and Audrius Menkis. 2022. "Can Larix sp. Mill. Provide Suitable Habitats for Insects and Lichens Associated with Stems of Picea abies (L.) H. Karst. in Northern Europe?" Diversity 14, no. 9: 729. https://doi.org/10.3390/d14090729
APA StyleLynikienė, J., Gedminas, A., Marčiulynas, A., Marčiulynienė, D., & Menkis, A. (2022). Can Larix sp. Mill. Provide Suitable Habitats for Insects and Lichens Associated with Stems of Picea abies (L.) H. Karst. in Northern Europe? Diversity, 14(9), 729. https://doi.org/10.3390/d14090729