Which Are the Best Site and Stand Conditions for Silver Fir (Abies alba Mill.) Located in the Carpathian Mountains?
Abstract
:1. Introduction
- (a)
- there is a strong connection and a certain dependence between the production classes from the forest areas of different mountain massifs?
- (b)
- are the productivity classes are influenced by a series of parameters?
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Methods
2.3. Statistical Calculations
3. Results
3.1. Altitude
3.2. Field Aspect
3.3. Field Slope
3.4. Soil Type and Subtype
3.5. The Participation Percentage of Silver Firs in the Stand Composition
3.6. Distance from the Road
3.7. Stand Structure
3.8. Crown Density
3.9. The Characteristics of Superior Productivity Silver Fir Stands
4. Discussion
4.1. Altitude
4.2. Field Aspect
4.3. Field Slope
4.4. The Soil
4.5. Participation Percentage of Silver Fir in the Stand’s Composition
4.6. Stand Crown Density
- ➢
- ➢
- ➢
- ➢
- ➢
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barredo, J.I.; Brailescu, C.; Teller, A.; Sabatini, F.M.; Mauri, A. Mapping and Assessment of Primary and Old-Growth Forests in Europe; Publications Office of the European Union: Luxemburg, 2021. [Google Scholar]
- Morin, X.; Fahse, L.; Jactel, H.; Scherer-Lorenzen, M.; García-Valdés, R.; Bugmann, H. Long-term response of forest productivity to climate change is mostly driven by change in tree species composition. Sci. Rep. 2018, 8, 5627. [Google Scholar] [CrossRef] [Green Version]
- Ducci, F.; De Rogatis, A.; Proietti, R.; Curtu, L.A.; Marchi, M.; Belletti, P. Establishing a baseline to monitor future climate-change-effects on peripheral populations of Abies alba in central Apennines. Ann. For. Res. 2021, 64, 33–66. [Google Scholar] [CrossRef]
- Kutnar, L.; Kermavnar, K.; Pintar, A.M. Climate change and disturbances will shape future temperate forests in the transitionzone between Central and SE Europe. Ann. For. Res. 2021, 64, 67–86. [Google Scholar]
- Medlyn, B.E.; Duursma, R.A.; Zeppel, M.J.B. Forest productivity under climate change: A checklist for evaluating model studies. WIREs Clim. Chang. 2011, 2, 332–355. [Google Scholar]
- Trumbore, S.; Brando, P.; Hartmann, H. Forest health and global change. Science 2015, 349, 814–818. [Google Scholar] [CrossRef] [Green Version]
- Barbu, I.; Barbu, C. Silver Fir (Abies alba Mill.) in Romania; Editura Tehnică Silvică: Bucharest, Romania, 2005; p. 220. [Google Scholar]
- Pretzsch, H.; Biber, P.; Schütze, G.; Uhl, E.; Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 2014, 5, 4967. [Google Scholar] [CrossRef] [Green Version]
- Sperlich, D.; Nadal-Sala, D.; Gracia, C.; Kreuzwieser, J.; Hanewinkel, M.; Yousefpour, R. Gains or losses in forest productivity under climate change? The uncertainty of CO2 fertilization and climate effects. Climate 2020, 8, 141. [Google Scholar] [CrossRef]
- Mauri, A.; de Rigo, D.; Caudullo, G. Abies alba in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publications Office of the European Union: Luxemburg, 2016; p. e01493b+. [Google Scholar]
- Rolland, C.; Michalet, R.; Desplanque, C.; Petetin, A.; Aimé, S. Ecological requirements of Abies alba in the French Alps derived from dendro-ecological analysis. J. Veg. Sci. 1999, 10, 297–306. [Google Scholar] [CrossRef]
- Kerr, G.; Stokes, V.; Peace, A.; Jinks, R. Effects of provenance on the survival, growth and stem form of European silver fir (Abies alba Mill.) in Britain. Eur. J. For. Res. 2015, 134, 349–363. [Google Scholar] [CrossRef] [Green Version]
- Kempf, M.; Zarek, M.; Paluch, J. The pattern of genetic variation, survival and growth in the Abies Alba Mill. Population within the introgression zone of two refugial lineages in the carpathians. Forests 2020, 11, 849. [Google Scholar] [CrossRef]
- Ruosch, M.; Spahni, R.; Joos, F.; Henne, P.D.; Van der Knaap, W.O.; Tinner, W. Past and future evolution of A. alba forests in Europe–comparison of a dynamic vegetation model with palaeo data and observations. Glob. Chang. Biol. 2016, 22, 727–740. [Google Scholar] [CrossRef]
- Forzieri, G.; Girardello, M.; Ceccherini, G.; Spinoni, J.; Feyen, L.; Hartmann, H.; Beck, P.S.A.; Camps-Valls, G.; Chirici, G.; Mauri, A.; et al. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 2021, 12, 1081. [Google Scholar] [CrossRef]
- Hilmers, T.; Avdagi, A.; Bartkowicz, L.; Bielak, K.; Binder, F.; Bonina, A.; Dobor, L.; Forrester, D.I.; Hobi, M.L.; Ibrahimspahi, A.; et al. The productivity of mixed mountain forests comprised of Fagus sylvatica, Picea abies, and Abies alba across Europe. For. Int. J. For. Res. 2019, 92, 512–522. [Google Scholar] [CrossRef] [Green Version]
- Barbu, C.O. Impact of white mistletoe (Viscum album ssp. Abietis) infection on needles and crown morphology of silver fir (Abies alba Mill.). Not. Bot. Horti Agrobot. 2012, 40, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Clinovschi, F. Dendrologie; Editura Universităţii Suceava: Suceava, Romania, 2005; p. 299. [Google Scholar]
- Teodosiu, M.; Mihai, G.; Fussi, B.; Ciocîrlan, E. Genetic diversity and structure of silver fir (Abies alba Mill.) at the south-eastern limit of its distribution range. Ann. For. Res. 2019, 62, 139–156. [Google Scholar] [CrossRef]
- Bošela, M.; Lukac, M.; Castagneri, D.; Sedmák, R.; Biber, P.; Carrer, M.; Konôpka, B.; Nola, P.; Nagel, A.T.; Popa, I.; et al. Contrasting effects of environmental change on the radial growth of co-occurring beech and fir trees across Europe. Sci. Total Environ. 2018, 615, 1460–1469. [Google Scholar]
- Klopčič, M.; Simoncic, T.; Boncina, A. Comparison of regeneration and recruitment of shade-tolerant and light-demanding tree species in mixed uneven-aged forests: Experiences from the Dinaric region. For. Int. J. For. Res. 2015, 88, 552–563. [Google Scholar]
- Dumitras, M.; Kucsicsa, G.; Dumitrică, C.; Popovici, E.-A.; Vrînceanu, A.; Mitrică, B.; Mocanu, I.; Serban, P.R. Estimation of future changes in aboveground forest carbon stock in Romania. A prediction based on forest-cover pattern Scenario. Forests 2020, 11, 914. [Google Scholar]
- Fedorca, A.; Fedorca, M.; Ionescu, O.; Jurj, R.; Ionescu, G.; Popa, M. Sustainable landscape planning to mitigate wildlife-vehicle collisions. Land 2021, 10, 737. [Google Scholar]
- Mountain Partnership. Implementing the 2030 Agenda for Mountains [WWW Document]. 2017. Available online: https://www.fao.org/mountain-partnership/our-work/advocacy/2030-agenda-for-sustainable-development/en/ (accessed on 26 January 2022).
- Mountain Partnership. Mountains and the Sustainable Development Goals; FAO: Rome, Italy, 2014. [Google Scholar]
- Murariu, G.; Dincă, L.; Tudose, N.; Crisan, V.; Georgescu, L.; Munteanu, D.; Dragu, M.D.; Rosu, B.; Mocanu, G.D. Structural characteristics of the main resinous stands from Southern Carpathians, Romania. Forests 2021, 12, 1029. [Google Scholar] [CrossRef]
- Kobal, M.; Grčman, H.; Zupan, M.; Levanič, T.; Simončič, P.; Kadunc, A.; Hladnik, D. Influence of soil properties on silver fir (Abies alba Mill.) growth in the Dinaric Mountains. For. Ecol. Manag. 2015, 337, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Pinto, P.E.; Gégout, J.C.; Hervé, J.C.; Dhôte, J.F. Respective importance of ecological conditions and stand composition on Abies alba Mill. dominant height growth. For. Ecol. Manag. 2008, 255, 619–629. [Google Scholar] [CrossRef]
- Bosela, M.; Popa, I.; Gömöry, D.; Longauer, R.; Tobin, B.; Kyncl, J.; Kyncl, T.; Nechita, C.; Petráš, R.; Sidor, C.G.; et al. Effects of post-glacial phylogeny and genetic diversity on the growth variability and climate sensitivity of European silver fir. J. Ecol. 2016, 104, 716–724. [Google Scholar] [CrossRef] [Green Version]
- Mohytych, V.; Sułkowska, M.; Klisz, M. Reproduction of silver fir (Abies alba Mill) forests in the Ukrainian Carpathians. Folia For. Pol. 2019, 61, 156–158. [Google Scholar] [CrossRef]
- Lasch, P.; Lindner, M.; Erhard, M.; Lasch, P.; Lindner, M.; Erhard, M.; Suckow, F.; Wenzel, A. Regional impact assessment on forest structure and functions under climate change-The Brandenburg case study. Artic. For. Ecol. Manag. 2002, 17. [Google Scholar] [CrossRef]
- Dincă, L.; Murariu, G.; Enescu, C.M.; Achim, F.; Georgescu, L.; Murariu, A.; Timis-Gânsac, V.; Holonec, L. Productivity differences between southern and northern slopes of Southern Carpathians (Romania) for Norway spruce, silver fir, birch and black alder. Not. Bot. Horti Agrobot. 2020, 48, 1070–1084. [Google Scholar] [CrossRef]
- Dincă, L.; Achim, F. The management of forests situated on fields susceptible to landslides and erosion from the Southern Carpathians. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2019, 19, 183–188. [Google Scholar]
- Tudoran, G.M.; Cicsa, A.; Boroeanu, M.; Dobre, A.C.; Pascu, I.S. Forest Dynamics after Five Decades of Management in the Romanian Carpathians. Forests 2021, 12, 783. [Google Scholar] [CrossRef]
- Kern, Z.; Popa, I. Climate–growth relationship of tree species from a mixed stand of Apuseni Mts., Romania. Dendrochronologia 2007, 24, 109–115. [Google Scholar] [CrossRef]
- Popa, I.; Cheval, S. Early winter temperature reconstruction of Sinaia area (Romania) derived from tree-rings of Silver Fir (Abies alba Mill.). Rom. J. Meteorol. 2007, 9, 47–54. [Google Scholar]
- Dinulică, F.; Marcu, V.; Borz, S.A.; Vasilescu, M.-M.; Petritan, I.C. Wind contribution to yearly silver fir (Abies alba Mill.) compression wood development in the Romanian Carpathians. iForest 2016, 9, 927–936. [Google Scholar] [CrossRef] [Green Version]
- Sellan, G.; Thompson, J.; Majalap, N.; Brearley, F. Soil characteristics influence species composition and forest structure differentially among tree size classes in a Bornean heath forest. Plant Soil 2019, 483, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Sidor, G.C.; Popa, I.; Vlad, R.; Cherubini, P. Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania). Trees 2015, 29, 985–997. [Google Scholar] [CrossRef]
- Maaten-Theunissen, M.; Kahle, H.P.; van der Maaten, E. Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Ann. For. Sci. 2013, 70, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Bouriaud, O.; Popa, I. Site and species influence on tree growth response to climate in Vrancea Mountains. Proc. Rom. Acad. 2007, 9, 63–72. [Google Scholar]
- Forest management plans of the forest districts: Campina (2020), Azuga (1999), Sinaia (2002), Pietrosita (2005), Rucar (1996), Câmpulung (2006), Aninoasa (2005), Domnesti (2004), Musatesti (1994), Vidraru (2005), Cornet (1993), Suici (2008), Brezoi (1991), Voineasa (2003), Latorița (1994), Bumbești (2002), Polovragi (2001), Lupeni (2000), Petrosani (2001), Runcu (2000), Novaci (2002), Râșnov (1993), Zarnesti (1993), Șercaia (1986), Fagaras (1985), Voila (1985), Arpas (1986), Avrig (2005), Talmaciu (1980), Valea Sadului (1982), Valea Cibinului (1982), Cugir (1993), Bistra (1999), Orastie (1993), Gradiste (2004), Petrila (2000), Baru (1996), Pui (2005), Retezat (1996), Dobra (1997), Hunedoara (1993), Ana Lugojana (1999), Oțelul Roșu (2000), Rusca Montană (1991), Caransebeș (1995), Teregova (1992), Mehadia (1993), Băile Herculane (2001), Bocșa Română (2004), Păltiniș (1998), Reșița (2001), Văliug (1992), Oravița (2008), Anina (2007), Nera (2004), Deva (1991), Ilia (1998), Cosava (2002), Berzeasca (1995), Bocsa Montana (2003), Bozovici (2004), Moldova Noua (2006), Sasca Montana (2007), Remeți (2005), Huedin (2003), Sudrigiu (1998), Vașcău (2004), Beliș (2002), Someșul Rece (2005), Turda (2007), Gilau (2007), Gârda (2001), Valea Arieșului (1990), Baia de Arieș (1998), Câmpeni (1987), Baia de Cris (2007), Brad (1997), Beius (2002), Codru Moma (2002), Dobresti (1997), Barzava (1996), Gurahont (1994), Halmagiu (1994), Sebis-Moneasa (1994), Valea Mare (1997), Breaza (2003), Brodina (2004), Putna (2000), Tomnatec (2002), Frasin (1988), Moldovita (1994), Pojorata (2003), Vama (1990), Crucea (1999), Mălini (1998), Stulpicani (2000), Broșteni (1999), Borca (1999), Galu (1999), Ceahlau (2000), Tarcău (2001), Brates (2001), Bicaz (2003), Agas (1985), Comanesti (1994), Darmanesti (2005), Targu Ocna (2005), Oituz (2005), Manastirea Casin (2006), Sânmartin (2004), Miercurea Ciuc (1981), Izvorul Mureș (2002), Zetea (2007), Gheorgheni (2002), Borsec (2002), Tulghes (2002), Sovata (2000), Fâncel (2000), Lunca Bradului (1999), Răstolița (1999), Gurghiu (2000), Toplita (1991), Coșna (1999), Iacobeni (1998), Cârlibaba (1998), Rodna (1996), Sângiorz Bai (1992), Năsăud (1993), Ilva Mica (1995), Prundu Bargaului (1990), Sălăuța (1993), Strâmbu Băiuți (2007), Dragomirești (1996), Borsa (1999), Viseu (2008), Mara (2005), Sighet (2005), Poieni (2006), Ruscova (2005), Baia Mare (2002), Baia Sprie (1991), Tauti Magheraus (2001), Negresti-Oas (2005), Brasov (1993), Sacele (1993), Teliu (1993), Maneciu (1999), Nehoiasu (1999), Nehoiu (1999), Gura Teghii (2001), Intorsura Buzaului (1982), Comandau (1991), Covasna (1999), Bretcu (1995), Naruja (1991), Nereju (2004), Tulnici (1981), Lepșa (1980), Soveja (2001).
- Iticescu, C.; Murariu, G.; Georgescu, L.P.; Burada, A.; Țopa, M.C. Seasonal variation of the physico-chemical parameters and water quality index (WQI) of Danube Water in the transborder Lower Danube area. Rev. Chim. 2016, 67, 1843–1849. [Google Scholar]
- Iticescu, C.; Georgescu, L.P.; Murariu, G.; Topa, C.; Timofti, M.; Pintilie, V. Lower Danube Water Quality Quantified through WQI and Multivariate Analysis. Water 2019, 11, 1305. [Google Scholar] [CrossRef] [Green Version]
- Bebi, P.; Kienast, F.; Schönenberger, W. Assessing structures in mountain forests as a basis for investigating the forests’ dynamics and protective function. For. Ecol. Manag. 2001, 145, 3–14. [Google Scholar] [CrossRef]
- Čater, M.; Levanič, T. Beech and silver fir’s response along the Balkan’s latitudinal gradient. Sci. Reports. 2019, 91, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Versace, S.; Garfì, V.; Dalponte, M.; Febbraro, D.; Frizzera, L.; Damiano, G.; Tognetti, R. Species interactions in pure and mixed-species stands of silver fir and European beech in Mediterranean mountains. iForest Biogeosciences For. 2021, 14, 1–11. [Google Scholar] [CrossRef]
- Schwarz, J.A.; Bauhus, J. Benefits of Mixtures on Growth Performance of Silver Fir (Abies alba) and European Beech (Fagus sylvatica) Increase with tree size without reducing drought tolerance. Front. For. Glob. Chang. 2019, 2, 79. [Google Scholar] [CrossRef]
- Vallet, P.; Pérot, T. Silver fir stand productivity is enhanced when mixed with Norway spruce: Evidence based on large-scale inventory data and a generic modelling approach. J. Veg. Sci. 2011, 22, 932–942. [Google Scholar] [CrossRef]
- Toromani, E.; Sanxhaku, M.; Pasho, E. 2011. Growth responses to climate and drought in silver fir (Abies alba) along an altitudinal gradient in Southern Kosovo. Can. J. For. Res. 2011, 41, 1795–1807. [Google Scholar] [CrossRef]
- Micu, D.M.; Amihaesei, V.A.; Milian, N.; Cheval, S. Recent changes in temperature and precipitation indices in the Southern Carpathians, Romania (1961–2018). Theor. Appl. Climatol. 2021, 144, 691–710. [Google Scholar] [CrossRef]
- Cheval, S.; Bulai, A.; Croitoru, A.-E.; Dorondel Ștefan Micu, D.; Mihăilă, D.; Sfîcă, L.; Tișcovschi, A. Climate change perception in Romania. Theor. Appl. Climatol. 2022, 149, 253–272. [Google Scholar] [CrossRef] [PubMed]
- Busuioc, A.; Baciu, M.; Breza, T.; Dumitrescu, A.; Stoica, C.; Baghina, N. Changes in intensity of high temporal resolution precipitation extremes in Romania: Implications for Clausius-Clapeyron scaling. Clim. Res. 2017, 7, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Oliva, J.; Colinas, C. Decline of silver fir (Abies alba Mill.) stands in the Spanish Pyrenees: Role of management, historic dynamics and pathogens. For. Ecol. Manag. 2007, 252, 84–97. [Google Scholar] [CrossRef]
- Hu, S.; Ma, J.; Shugart, H.H.; Yan, X. Evaluating the impacts of slope aspect on forest dynamic succession in Northwest China based on FAREAST model. Environ. Res. Lett. 2008, 13, 034027. [Google Scholar] [CrossRef]
- Fontaine, M.; Aerts, R.; Özkan, K.; Mert, A.; Gülsoy, S.; Süel, H.; Waelkens, M.; Muys, B. Elevation and field aspect rather than soil types determine communities and site suitability in Mediterranean mountain forests of southern Anatolia, Turkey. For. Ecol. Manag. 2007, 247, 18–25. [Google Scholar] [CrossRef]
- Diaci, J.; Rozenbergar, D.; Anic, I.; Mikac, S.; Saniga, M.; Kucbel, S.; Visnjic, C.; Ballian, D. Structural dynamics and synchronous silver fir decline in mixed old-growth mountain forests in Eastern and Southeastern Europe. Forestry 2011, 84, 479–491. [Google Scholar] [CrossRef] [Green Version]
- Pernar, N.; Matic, S.; Baksic, D.; Klimo, E. The accumulation and properties of surface humus layer in mixed selection forests of fir on different substrates. Ecology 2008, 27, 41. [Google Scholar]
- Kara, F.; Topaçoğlu, O. Effects of canopy structure on growth and belowground/aboveground biomass of seedlings in uneven-aged trojan fir stands. Cerne 2018, 24, 312–322. [Google Scholar] [CrossRef] [Green Version]
- Salehiarjmand, H.; Ebrahimi, S.N.; Hadian, J.; Ghorbanpour, M. Essential oils main constituents and antibacterial activity of seeds from Iranian local landraces of dill (Anethum graveolens L.). J. Hortic. For. Biotechnol. 2014, 18, 1–9. [Google Scholar]
- Lebourgeois, F. Climatic signal in annual growth variation of silver fir (Abies alba Mill.) and spruce (Picea abies Karst.) from the French Permanent Plot Network (RENECOFOR). Ann. For. Sci. 2007, 64, 333–343. [Google Scholar] [CrossRef] [Green Version]
- Bałazy, R.; Kamińska, A.; Ciesielski, M.; Socha, J.; Pierzchalski, M. Modeling the Effect of Environmental and Topographic Variables Affecting the Height Increment of Norway Spruce Stands in Mountainous Conditions with the Use of LiDAR Data. Remote Sens. 2019, 11, 2407. [Google Scholar] [CrossRef] [Green Version]
- Vandekerckhove, L.; Poesen, J.; Wijdenes, D.O.; Gyssels, G. Short-term bank gully retreat rates in Mediterranean environments. Catena. 2001, 44, 133–161. [Google Scholar] [CrossRef]
- Filipiak, M. Distribution of silver-fir (Abies alba Mill.) in the Sudeten Mts. Biodivers. Res. Conserv. 2006, 3–4, 294–299. [Google Scholar]
- Abrudan, I.V.; Mather, R.A. The influence of site factors on the composition and structure of semi-natural mixed-species stands of beech (Fagus sylvatica), silver fir (Abies alba) and Norway spruce (Picea abies) in the upper draganul watershed of North-West Romania. Forestry 1999, 72, 87–93. [Google Scholar] [CrossRef]
- Dobrowolska, D.; Bončina, A.; Klumpp, R. Ecology and silviculture of silver fir (Abies alba Mill.): A review. J. For. Res. 2017, 22, 326–335. [Google Scholar] [CrossRef]
- Li, J.; Cao, X.; Wang, Y.; Yan, W.; Peng, Y.; Chen, X. Effects of thinning on soil nutrients in a chronosequence of Chinese fir in subtropical Chinaforests. Ann. For. Res. 2021, 64, 147–158. [Google Scholar]
- Onet, A.; Dincă, L.C.; Grenni, P.; Laslo, V.; Teusdea, A.C.; Vasile, D.L.; Enescu, R.E.; Crisan, V.E. Biological indicators for evaluating soil quality improvement in a soil degraded by erosion processes. J. Soils Sediments 2019, 19, 2393–2404. [Google Scholar] [CrossRef]
- Spârchez, G.; Dincă, L.; Marin, G.; Dincă, M.; Enescu, R.E. Variation of eutric cambisols’ chemical properties based on altitudinal and geomorphologic zoning. Environ. Eng. Manag. J. 2017, 16, 2911–2918. [Google Scholar]
- Elling, W.; Dittmar, C.; Pfaffelmoser, K.; Rötzer, T. Dendroecological assessment of the complex causes of decline and recovery of the growth of silver fir (Abies alba Mill.) in Southern Germany. For. Ecol. Manag. 2009, 257, 1175–1187. [Google Scholar] [CrossRef]
- Potočić, N.; Ćosić, T.; Pilaš, I. The influence of climate and soil properties on calcium nutrition and vitality of silver fir (Abies alba Mill.). Environ. Pollut. 2005, 137, 596–602. [Google Scholar] [CrossRef]
- Budeanu, M.; ApostoL, E.N.; Dincă, L.; Pleșca, I.M. In situ conservation of narrow crowned Norway spruce ideotype (Picea abies Pendula Form and Columnaris Variety) in Romania. Int. J. Conserv. Sci. 2021, 12, 1139–1152. [Google Scholar]
- Bert, G.D. Impact of ecological factors, climatic stresses, and pollution on growth and health of silver fir (Abies alba Mill.) in the Jura mountains: An ecological and dendrochronological study. Acta Oecol. 1993, 14, 229–246. [Google Scholar]
- Zielonka, A.; Drewnik, M.; Musielok, Ł.; Dyderski, M.K.; Struzik, D.; Smułek, G.; Ostapowicz, K. Biotic and abiotic determinants of soil organic matter stock and fine root biomass in mountain area temperate forests—Examples from cambisols under European Beech, Norway Spruce and Silver Fir (Carpathians, Central Europe). Forests 2021, 12, 823. [Google Scholar] [CrossRef]
- Ugarković, D.; Jazbec, A.; Seletković, I.; Tikvić, I.; Paulić, V.; Ognjenović, M.; Marušić, M.; Potočić, N. Silver fir decline in pure and mixed stands at western edge of spread in croatian dinarides depends on some stand structure and climate factors. Sustainability 2021, 13, 6060. [Google Scholar] [CrossRef]
- Šach, F.; Švihla, V.; Černohous, V.; Kantor, P. Management of mountain forests in the hydrology of a landscape, the Czech Republic-Review. J. For. Sci. 2014, 60, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Kadetov, N.G. Fir-spruce and lime-fir-spruce forests of Vyatka-Kama biome. In BIO Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 11, p. 00020. [Google Scholar]
- Kucbel, S.; Jaloviar, P.; Saniga, M.; Vencurik, J.; Klimaš, V. Canopy gaps in an old-growth fir-beech forest remnant of Western Carpathians. Eur. J. For. Res. 2010, 129, 249–259. [Google Scholar] [CrossRef]
- Paule, L. Biodiversity of the Western Carpathians’ Forest ecosystems. In Conservation of Forests in Central Europe; Paulenka, J., Paule, L., Eds.; Arbora Publishers: Zvolen, Slovakia, 1994; pp. 31–38. [Google Scholar]
- Shparyk, Y.S.; Berkela, Y.Y.; Viter, R.M.; Losiuk, V.P. Main types of forest stands dynamics in the Ukrainian Carpathians. Nat. Carpathians Annu. Sci. J. CBR Inst. Ecol. Carpathians NAS Ukr. 2018, 1, 50–57. [Google Scholar]
- Avon, C.; Bergès, L.; Dumas, Y.; Dupouey, J.L. Does the effect of forest roads extend a few meters or more into the adjacent forest? A study on understory plant diversity in managed oak stands. For. Ecol. Manag. 2010, 259, 1546–1555. [Google Scholar] [CrossRef]
- Bunnell, F.L.; Goward, T.; Houde, I.; Björk, C. Larch seed trees sustain arboreal lichens and encourage recolonization of regenerating stands. West. J. Appl. For. 2007, 22, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Podlaski, R. Can forest structural diversity be a response to anthropogenic stress? A case study in old-growth fir Abies alba Mill. stands. Ann. For. Sci. 2018, 75, 75–99. [Google Scholar] [CrossRef] [Green Version]
- Keren, S.; Diaci, J.; Motta, R.; Govedar, Z. Stand structural complexity of mixed old- growth and adjacent selection forests in the Dinaric Mountains of Bosnia and Herzegovina. For. Ecol. Manag. 2017, 400, 531–541. [Google Scholar] [CrossRef]
- Szmyt, J.; Barzdajn, W.; Kowalkowski, W.; Korzeniewicz, R. Moderate diversity in forest structure and its low dynamics are favored by uneven-aged silviculture—The lesson from medium-term experiment. Forests 2020, 11, 57. [Google Scholar] [CrossRef] [Green Version]
- Uhl, E.; Hilmers, T.; Pretzsch, H. From acid rain to low precipitation: The role reversal of norway spruce, silver fir, and european beech in a selection mountain forest and its implications for forest management. Forests 2021, 12, 894. [Google Scholar] [CrossRef]
- Spathelf, P. Reconstruction of crown length of Norway spruce (Picea abies (L.) Karst.) and Silver fir (Abies alba Mill.)-technique, establishment of sample methods and application in forest growth analysis. Ann. For. Sci. 2003, 60, 833–842. [Google Scholar] [CrossRef] [Green Version]
- Vitali, V.; Buntgen, U.; Bauhus, J. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Glob. Chang. Biol. 2017, 23, 5108–5119. [Google Scholar] [CrossRef]
Mountain Area | Altitude (m) for Productivity Classes | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Apuseni Mountains = AM | 870 | 1020 | 1054 | 1035 | 1055 |
Banatului Mountains = BM | 939 | 915 | 845 | 864 | 879 |
Eastern Carpathians = EC | 886 | 940 | 962 | 950 | 1010 |
Curvature Carpathians = CC | 1011 | 1003 | 996 | 1034 | 1026 |
Southern Carpathians = SC | 1042 | 1063 | 1096 | 1105 | 1110 |
Total Carpathians | 857 | 917 | 972 | 986 | 1033 |
Mountains | Prod Class | N | NE | NV | E | SE | S | SV | V |
---|---|---|---|---|---|---|---|---|---|
AM | 1 | 13 | 13 | 22 | 12 | 16 | 9 | 9 | 6 |
2 | 18 | 16 | 18 | 8 | 9 | 9 | 11 | 11 | |
3 | 16 | 15 | 17 | 9 | 11 | 7 | 13 | 12 | |
4 | 17 | 14 | 15 | 9 | 11 | 10 | 11 | 13 | |
5 | 7 | 3 | 23 | 6 | 13 | 23 | 19 | 6 | |
Total | 17 | 15 | 17 | 9 | 10 | 7 | 13 | 12 | |
BM | 1 | 9 | 17 | 18 | 9 | 16 | 10 | 12 | 9 |
2 | 13 | 12 | 15 | 10 | 14 | 13 | 15 | 8 | |
3 | 14 | 13 | 15 | 9 | 13 | 12 | 13 | 11 | |
4 | 16 | 12 | 14 | 8 | 13 | 16 | 9 | 12 | |
5 | 27 | 9 | - | 9 | - | 28 | 18 | 9 | |
Total | 14 | 13 | 15 | 9 | 14 | 12 | 13 | 10 | |
EC | 1 | 14 | 16 | 16 | 11 | 13 | 8 | 12 | 10 |
2 | 14 | 14 | 17 | 9 | 13 | 10 | 12 | 11 | |
3 | 14 | 14 | 16 | 10 | 13 | 10 | 12 | 11 | |
4 | 12 | 12 | 15 | 14 | 11 | 15 | 11 | 10 | |
5 | 18 | 9 | 12 | 14 | 12 | 12 | 18 | 5 | |
Total | 14 | 14 | 17 | 9 | 13 | 10 | 12 | 11 | |
CC | 1 | 10 | 14 | 17 | 9 | 16 | 9 | 13 | 12 |
2 | 12 | 15 | 17 | 9 | 12 | 10 | 14 | 11 | |
3 | 15 | 15 | 14 | 9 | 11 | 12 | 12 | 12 | |
4 | 14 | 12 | 15 | 9 | 11 | 12 | 11 | 16 | |
5 | 6 | 7 | 13 | 7 | 19 | 19 | 13 | 16 | |
Total | 14 | 15 | 15 | 9 | 11 | 11 | 13 | 12 | |
SC | 1 | 10 | 17 | 16 | 12 | 12 | 10 | 11 | 12 |
2 | 13 | 16 | 19 | 12 | 10 | 8 | 11 | 11 | |
3 | 12 | 17 | 19 | 10 | 10 | 7 | 12 | 13 | |
4 | 11 | 13 | 22 | 12 | 10 | 7 | 12 | 13 | |
5 | 14 | 12 | 26 | 8 | 6 | 9 | 10 | 15 | |
Total | 13 | 16 | 19 | 11 | 10 | 7 | 12 | 12 | |
TOTAL | 1 | 13 | 16 | 16 | 11 | 13 | 8 | 12 | 11 |
2 | 13 | 15 | 17 | 10 | 12 | 10 | 12 | 11 | |
3 | 14 | 15 | 16 | 9 | 11 | 10 | 13 | 12 | |
4 | 13 | 12 | 18 | 11 | 11 | 11 | 12 | 12 | |
5 | 13 | 10 | 21 | 9 | 9 | 13 | 13 | 12 | |
Total | 13 | 15 | 17 | 10 | 12 | 10 | 12 | 11 |
Mountain Area | Slope (%) for Productivity Classes | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Apuseni Mountains = AM | 23.88 | 25.97 | 27.56 | 37.80 | 41.00 |
Banatului Mountains = BM | 24.85 | 25.55 | 27.05 | 33.27 | 27.45 |
Eastern Carpathians = EC | 23.14 | 25.34 | 29.46 | 37.25 | 37.70 |
Curvature Carpathians = CC | 24.21 | 24.54 | 27.26 | 38.04 | 37.03 |
Southern Carpathians = SC | 25.94 | 26.63 | 31.91 | 39.17 | 44.27 |
Total Carpathians | 23.54 | 25.41 | 29.33 | 38.01 | 41.27 |
Mountain Area | Soil (%) | |||||
---|---|---|---|---|---|---|
Eutric Cambisol | Calcic Eutric Cambisol | Dystric Cambisol | Lythic Dystric Cambisol | Entic Podzol | Other Soils | |
Apuseni Mountains = AM CP2 | 35 | 3 | 43 | 1 | 0 | 18 |
AM-CP3 | 26 | 5 | 43 | 4 | 0 | 22 |
AP-Total | 28 | 5 | 41 | 5 | 3 | 18 |
Banatului Mountains = BM CP2 | 37 | 11 | 41 | 0 | 0 | 11 |
BM-CP3 | 41 | 8 | 34 | 1 | 0 | 16 |
BM-Total | 38 | 9 | 39 | 1 | 0 | 13 |
Eastern Carpathians = EC CP2 | 43 | 1 | 44 | 3 | 0 | 9 |
EC-CP3 | 30 | 0 | 37 | 12 | 2 | 19 |
EC-Total | 38 | 1 | 42 | 5 | 9 | 5 |
Curvature Carpathians = CC CP2 | 48 | 0 | 34 | 2 | 1 | 15 |
CC-CP3 | 39 | 0 | 44 | 7 | 2 | 8 |
CC-Total | 42 | 0 | 38 | 6 | 2 | 12 |
Southern Carpathians = SC CP2 | 46 | 0 | 25 | 3 | 2 | 24 |
SC-CP3 | 32 | 0 | 36 | 7 | 6 | 19 |
SC-Total | 35 | 0 | 29 | 7 | 4 | 25 |
Total Carpathians CP2 | 44 | 1 | 41 | 3 | 1 | 10 |
Total-CP3 | 33 | 3 | 39 | 8 | 3 | 14 |
Total-Total | 38 | 1 | 38 | 5 | 2 | 16 |
Mountain Area | Participation Percentage (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
Apuseni Mountains = AM CP1 | 44 | 38 | 6 | 3 | 9 | |||||
CP2 | 41 | 27 | 15 | 7 | 4 | 2 | 1 | 1 | 1 | 1 |
CP3 | 41 | 28 | 15 | 8 | 4 | 2 | 1 | 1 | ||
CP4 | 47 | 29 | 11 | 6 | 3 | 3 | 1 | |||
CP5 | 58 | 32 | 3 | 7 | ||||||
Total | 42 | 28 | 14 | 8 | 4 | 2 | 1 | 1 | ||
Banatului Mountains = BM-CP1 | 37 | 24 | 13 | 4 | 3 | 3 | 4 | 4 | 6 | 2 |
CP2 | 40 | 26 | 12 | 7 | 5 | 3 | 3 | 2 | 1 | 1 |
CP3 | 42 | 26 | 12 | 7 | 5 | 3 | 2 | 1 | 1 | 1 |
CP4 | 48 | 30 | 8 | 4 | 3 | 3 | 2 | 1 | 1 | |
CP5 | 27 | 46 | 9 | 9 | 9 | |||||
Total | 41 | 26 | 12 | 7 | 4 | 3 | 3 | 2 | 1 | 1 |
Eastern Carpathians = EC | 38 | 30 | 17 | 7 | 3 | 2 | 2 | 1 | ||
CP2 | 45 | 31 | 13 | 6 | 3 | 1 | 1 | |||
CP3 | 47 | 31 | 12 | 5 | 2 | 2 | 1 | |||
CP4 | 48 | 30 | 13 | 5 | 3 | 1 | ||||
CP5 | 44 | 35 | 12 | 5 | 2 | 2 | ||||
Total | 45 | 31 | 13 | 6 | 2 | 2 | 1 | |||
Curvature Carpathians = CC-CP1 | 21 | 25 | 21 | 12 | 9 | 6 | 3 | 1 | 1 | |
CP2 | 34 | 31 | 15 | 8 | 5 | 3 | 2 | 1 | 1 | |
CP3 | 40 | 32 | 15 | 6 | 3 | 2 | 1 | 1 | ||
CP4 | 44 | 32 | 14 | 6 | 2 | 1 | 1 | |||
CP5 | 50 | 34 | 6 | 6 | 4 | |||||
Total | 38 | 31 | 15 | 7 | 4 | 3 | 1 | 1 | ||
Southern Carpathians = SC-CP1 | 25 | 23 | 17 | 10 | 9 | 8 | 4 | 1 | 2 | 1 |
CP2 | 35 | 29 | 15 | 8 | 6 | 3 | 2 | 1 | 1 | |
CP3 | 43 | 34 | 14 | 5 | 2 | 1 | 1 | |||
CP4 | 42 | 35 | 14 | 5 | 2 | 2 | ||||
CP5 | 37 | 37 | 14 | 5 | 4 | 2 | 1 | |||
Total | 40 | 32 | 14 | 6 | 3 | 2 | 1 | 1 | 1 | |
Total Carpathians-CP1 | 35 | 29 | 17 | 7 | 4 | 3 | 2 | 1 | 1 | 1 |
CP2 | 41 | 30 | 14 | 7 | 4 | 2 | 1 | 1 | ||
CP3 | 44 | 31 | 13 | 6 | 2 | 2 | 1 | 1 | ||
CP4 | 45 | 32 | 13 | 5 | 2 | 1 | 1 | 1 | ||
CP5 | 42 | 36 | 11 | 5 | 3 | 2 | 1 | |||
Total | 42 | 31 | 14 | 6 | 3 | 2 | 1 | 1 |
Mountain Area | Distance from the Road (km) for Productivity Classes | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Apuseni Mountains = AM | 5.63 | 6.78 | 7.69 | 6.84 | 6.71 |
Banatului Mountains = BM | 5.92 | 6.28 | 9.43 | 10.72 | 9.10 |
Eastern Carpathians = EC | 7.50 | 8.13 | 8.94 | 8.73 | 7.51 |
Curvature Carpathians = CC | 7.14 | 7.12 | 7.87 | 10.86 | 6.94 |
Southern Carpathians = SC | 5.48 | 5.46 | 6.42 | 8.61 | 8.13 |
Total Carpathians | 7.19 | 7.34 | 7.36 | 8.69 | 7.28 |
Mountain Area | Structure | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Apuseni Mountains = AM-CP1 | 6 | 60 | 34 | |
CP2 | 5 | 57 | 38 | |
CP3 | 9 | 43 | 48 | |
CP4 | 2 | 33 | 63 | 2 |
CP5 | 45 | 55 | ||
Total | 7 | 45 | 47 | 1 |
Banatului Mountains = BM-CP1 | 5 | 55 | 37 | 3 |
CP2 | 8 | 46 | 43 | 3 |
CP3 | 19 | 56 | 24 | 1 |
CP4 | 7 | 68 | 24 | 1 |
CP5 | 9 | 55 | 36 | |
Total | 12 | 51 | 35 | 2 |
Eastern Carpathians = EC-CP1 | 2 | 55 | 42 | 1 |
CP2 | 4 | 40 | 55 | 1 |
CP3 | 7 | 41 | 51 | 1 |
CP4 | 6 | 42 | 51 | 1 |
CP5 | 9 | 44 | 47 | |
Total | 5 | 42 | 52 | 1 |
Curvature Carpathians = CC-CP1 | 10 | 27 | 58 | 5 |
CP2 | 10 | 24 | 61 | 5 |
CP3 | 15 | 25 | 55 | 5 |
CP4 | 7 | 27 | 59 | 7 |
CP5 | 13 | 34 | 34 | 19 |
Total | 12 | 25 | 58 | 5 |
Southern Carpathians = SC-CP1 | 9 | 23 | 64 | 4 |
CP2 | 8 | 26 | 59 | 7 |
CP3 | 25 | 17 | 53 | 5 |
CP4 | 19 | 14 | 58 | 9 |
CP5 | 29 | 20 | 42 | 9 |
Total | 19 | 20 | 55 | 6 |
Total Carpathians-CP1 | 4 | 50 | 44 | 2 |
CP2 | 6 | 36 | 55 | 3 |
CP3 | 15 | 31 | 51 | 3 |
CP4 | 11 | 28 | 55 | 6 |
CP5 | 20 | 30 | 43 | 7 |
Total | 10 | 35 | 52 | 3 |
Mountain Area | Crown Density | |||||||
---|---|---|---|---|---|---|---|---|
0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | |
Apuseni Mountains = AM-CP2 | 85 | 179 | 187 | 459 | 679 | 294 | ||
CP3 | 226 | 362 | 374 | 717 | 2283 | 2121 | 1117 | 98 |
CP4 | 81 | 132 | 194 | 86 | ||||
Total | 304 | 480 | 647 | 1053 | 2956 | 2908 | 1457 | 166 |
Banatului Mountains = BM-Cp1 | 188 | 427 | 227 | |||||
CP2 | 172 | 576 | 1301 | 3299 | 1135 | 93 | ||
CP3 | 50 | 218 | 723 | 1610 | 1139 | 223 | ||
CP4 | 91 | 106 | 90 | |||||
Total | 243 | 863 | 2309 | 5453 | 2591 | 353 | ||
Eastern Carpathians = EC-CP1 | 177 | 240 | 575 | 941 | 4113 | 6393 | 2148 | 291 |
CP2 | 879 | 1464 | 2412 | 5106 | 15,590 | 25,267 | 8601 | 1091 |
CP3 | 403 | 663 | 1250 | 2445 | 6672 | 8983 | 4540 | 354 |
CP4 | 124 | 211 | 503 | 328 | ||||
Total | 1480 | 2437 | 4377 | 8725 | 26,913 | 40,974 | 15,353 | 1742 |
Curvature Carpathians = CC1 | 147 | 415 | 652 | 185 | ||||
CP2 | 190 | 263 | 780 | 1610 | 4421 | 8958 | 2530 | 486 |
CP3 | 381 | 636 | 1057 | 4345 | 8474 | 4189 | 296 | |
CP4 | 94 | 478 | 531 | 133 | ||||
Total | 306 | 684 | 1518 | 2914 | 9669 | 18,640 | 7038 | 830 |
Southern Carpathians = SC1 | 167 | 161 | 523 | 555 | 86 | |||
CP2 | 187 | 268 | 658 | 1591 | 4282 | 6038 | 1912 | 319 |
CP3 | 163 | 497 | 821 | 1914 | 6072 | 9121 | 5088 | 493 |
CP4 | 270 | 488 | 1399 | |||||
Total | 379 | 827 | 1968 | 4263 | 12,511 | 16,630 | 7339 | 837 |
Total Carpathians-C1 | 195 | 277 | 750 | 1156 | 4836 | 7396 | 2491 | 343 |
CP2 | 1143 | 1884 | 3421 | 7460 | 21,632 | 35,283 | 11,943 | 1553 |
CP3 | 800 | 2533 | 2495 | 5293 | 15,750 | 21,835 | 11,884 | 1167 |
CP4 | 53 | 115 | 486 | 853 | 2187 | 1334 | 399 | |
Total | 2191 | 4809 | 7152 | 14,762 | 44,405 | 65,848 | 26,717 | 3063 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinca, L.; Marin, M.; Radu, V.; Murariu, G.; Drasovean, R.; Cretu, R.; Georgescu, L.; Timiș-Gânsac, V. Which Are the Best Site and Stand Conditions for Silver Fir (Abies alba Mill.) Located in the Carpathian Mountains? Diversity 2022, 14, 547. https://doi.org/10.3390/d14070547
Dinca L, Marin M, Radu V, Murariu G, Drasovean R, Cretu R, Georgescu L, Timiș-Gânsac V. Which Are the Best Site and Stand Conditions for Silver Fir (Abies alba Mill.) Located in the Carpathian Mountains? Diversity. 2022; 14(7):547. https://doi.org/10.3390/d14070547
Chicago/Turabian StyleDinca, Lucian, Mirabela Marin, Vlad Radu, Gabriel Murariu, Romana Drasovean, Romica Cretu, Lucian Georgescu, and Voichița Timiș-Gânsac. 2022. "Which Are the Best Site and Stand Conditions for Silver Fir (Abies alba Mill.) Located in the Carpathian Mountains?" Diversity 14, no. 7: 547. https://doi.org/10.3390/d14070547