Comparative Evaluation of Free Web Tools ImageJ and Photopea for the Surface Area Quantification of Planar Substrates and Organisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Exemplary Study Substrates
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Müller, M.; Mönkemöller, V.; Hennig, S.; Hübner, W.; Huser, T. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat. Commun. 2016, 7, 10980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, A.M.; Bidet, K.; Yinglin, A.; Ler, S.G.; Hogue, K.; Blackstock, W.; Gunaratne, J.; Garcia-Blanco, M.A. Quantitative mass spectrometry of DENV-2 RNA-interacting proteins reveals that the DEAD-box RNA helicase DDX6 binds the DB1 and DB2 3′ UTR structures. RNA Biol. 2011, 8, 1173–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Abràmoff, M.D.; Magalhães, P.J.; Ram, S.J. Image processing with imageJ. Biophotonics Int. 2004, 11, 36–41. [Google Scholar] [CrossRef]
- Rasband, W. ImageJ. 1997. [Google Scholar]
- Wiedenmann, J.; D’Angelo, C.; Smith, E.G.; Hunt, A.N.; Legiret, F.E.; Postle, A.D.; Achterberg, E.P. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Chang. 2013, 3, 160–164. [Google Scholar] [CrossRef]
- Helber, S.B.; Winters, G.; Stuhr, M.; Belshe, E.F.; Bröhl, S.; Schmid, M.; Reuter, H.; Teichberg, M. Nutrient History Affects the Response and Resilience of the Tropical Seagrass Halophila stipulacea to Further Enrichment in Its Native Habitat. Front. Plant Sci. 2021, 12, 678341. [Google Scholar] [CrossRef] [PubMed]
- Bednarz, V.N.; Cardini, U.; Van Hoytema, N.; Al-Rshaidat, M.M.D.; Wild, C. Seasonal variation in dinitrogen fixation and oxygen fluxes associated with two dominant zooxanthellate soft corals from the northern Red Sea. Mar. Ecol. Prog. Ser. 2015, 519, 141–152. [Google Scholar] [CrossRef]
- Machery, E. What is a replication? Philos. Sci. 2020, 87, 545–567. [Google Scholar] [CrossRef]
- Zaitsev, Y. An Introduction to the Black Sea Ecology; Smil Edition and Publishing Agency Ltd.: Odessa, Ukraine, 2008; ISBN 9789668127830. [Google Scholar]
- Thibaut, T.; Pinedo, S.; Torras, X.; Ballesteros, E. Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Albères coast (France, North-western Mediterranean). Mar. Pollut. Bull. 2005, 50, 1472–1489. [Google Scholar] [CrossRef] [PubMed]
- Naumann, M.S.; Niggl, W.; Laforsch, C.; Glaser, C.; Wild, C. Coral surface area quantification-evaluation of established techniques by comparison with computer tomography. Coral Reefs 2009, 28, 109–117. [Google Scholar] [CrossRef]
- Gutierrez-Heredia, L.; Benzoni, F.; Murphy, E.; Reynaud, E.G. End to End Digitisation and Analysis of Three-Dimensional Coral Models, from Communities to Corallites. PLoS ONE 2016, 11, e0149641. [Google Scholar] [CrossRef] [PubMed]
- Lavy, A.; Eyal, G.; Neal, B.; Keren, R.; Loya, Y.; Ilan, M. A quick, easy and non-intrusive method for underwater volume and surface area evaluation of benthic organisms by 3D computer modelling. Methods Ecol. Evol. 2015, 6, 521–531. [Google Scholar] [CrossRef]
- House, J.E.; Brambilla, V.; Bidaut, L.M.; Christie, A.P.; Pizarro, O.; Madin, J.S.; Dornelas, M. Moving to 3D: Relationships between coral planar area, surface area and volume. PeerJ 2018, 2018, e4280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Mean Surface Area [cm2]—ImageJ | Time Required [s]—ImageJ | Mean Surface Area [cm2]—Photopea | Time Required [s]—Photopea | Mean Time Saved [%] |
---|---|---|---|---|---|
Cys. sp. I | 114.96 ± 4.41 | 1088.33 ± 161.1 | 122.28 ± 7.42 | 579.33 ± 136.59 | 48.61 ± 4.28 |
Cys sp. II | 174.93 ± 1.69 | 920.33 ± 228.58 | 152.96 ± 7.81 | 496.33 ± 163.32 | 49.36 ± 4.51 |
Cys sp. III | 161.48 ± 8.14 | 837.33 ± 250.05 | 159.17 ± 9.08 | 512.67 ± 160.04 | 39.54 ± 6.51 |
Cys sp. IV | 123.08 ± 7.20 | 856.00 ± 240.62 | 119.79 ± 9.25 | 467.67 ± 156.77 | 48.32 ± 9.59 |
Cys sp. V | 177.15 ± 7.24 | 865.67 ± 292.82 | 142.97 ± 5.05 | 440.33 ± 120.25 | 45.04 ± 12.90 |
Cys sp. VI | 168.30 ± 2.84 | 877.33 ± 247.31 | 175.97 ± 11.99 | 364.67 ± 83.89 | 56.55 ± 6.76 |
P. crispa I | 123.99 ± 0.38 | 729.00 ± 266.31 | 117.83 ± 5.72 | 427.00 ± 51.81 | 25.49 ± 15.69 |
P. crispa II | 127.07 ± 5.38 | 833.00 ± 244.02 | 107.74 ± 5.72 | 417.67 ± 80.49 | 44.77 ± 9.88 |
P. crispa III | 121.47 ± 3.18 | 799.67 ± 268.57 | 122.72 ± 1.67 | 395.33 ± 73.61 | 41.89 ± 12.94 |
P. crispa IV | 129.87 ± 9.63 | 814.00 ± 232.73 | 137.72 ± 4.94 | 379.00 ± 68.00 | 49.35 ± 6.16 |
P. crispa V | 158.02 ± 3.92 | 846.33 ± 273.25 | 170.59 ± 7.05 | 403.67 ± 93.55 | 46.76 ± 12.57 |
P. crispa VI | 138.37 ± 6.14 | 760.33 ± 222.24 | 139.36 ± 4.58 | 387.33 ± 74.47 | 44.15 ± 9.50 |
Average | 852.27 ± 24.96 | 439.25 ± 17.63 | |||
Total | 10,227.32 ± 2927.64 | 5271 ± 1262.81 | 44.98 ± 2.07 |
Method | Applicability | Costs | Time Investment per Sample | Accuracy | Efficiency | Reference |
---|---|---|---|---|---|---|
Photopea | 2D | Free | Low | High | High | Present Study |
ImageJ | 2D | Free | High | High | Low | Present study, Abràmoff et al. (2004) [4] |
Simple Geometry | 2D | Free | Low to Medium | Low to Medium | Low to Medium | Naumann et al. (2009) [12] |
Advanced Geometry | 2D, 3D | Free | Medium | Medium | Medium | Naumann et al. (2009) [12] |
Cloud-based 3D Modelling with Autodesk ReCap | 2D, 3D | Free trial version | Medium to High | Varying depending on water movement | Medium to High | Gutierrez-Heredia et al. (2016) [13], Lavy et al. (2015) [14] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Khaled, Y.C.; Kler Lago, A.; Mezger, S.D.; Wild, C. Comparative Evaluation of Free Web Tools ImageJ and Photopea for the Surface Area Quantification of Planar Substrates and Organisms. Diversity 2022, 14, 272. https://doi.org/10.3390/d14040272
El-Khaled YC, Kler Lago A, Mezger SD, Wild C. Comparative Evaluation of Free Web Tools ImageJ and Photopea for the Surface Area Quantification of Planar Substrates and Organisms. Diversity. 2022; 14(4):272. https://doi.org/10.3390/d14040272
Chicago/Turabian StyleEl-Khaled, Yusuf C., Alexandra Kler Lago, Selma D. Mezger, and Christian Wild. 2022. "Comparative Evaluation of Free Web Tools ImageJ and Photopea for the Surface Area Quantification of Planar Substrates and Organisms" Diversity 14, no. 4: 272. https://doi.org/10.3390/d14040272
APA StyleEl-Khaled, Y. C., Kler Lago, A., Mezger, S. D., & Wild, C. (2022). Comparative Evaluation of Free Web Tools ImageJ and Photopea for the Surface Area Quantification of Planar Substrates and Organisms. Diversity, 14(4), 272. https://doi.org/10.3390/d14040272