Return to Agrobiodiversity: Participatory Plant Breeding
Abstract
:1. The Importance of Biodiversity
2. Decentralized-Participatory Plant Breeding
3. Organization of a Participatory Plant Breeding Program
4. The Scientific Basis of PPB
5. Participatory Plant Breeding Globally
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Loreau, M.; de Mazancourt, C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett. 2013, 16, 106–115. [Google Scholar] [CrossRef]
- Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmerer, K.S.; de Haan, S. Agrobiodiversity and a sustainable food future. Nat. Plants 2017, 3, 17047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renard, D.; Tilman, D. National food production stabilized by crop diversity. Nature 2019, 571, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Kremen, C.; Miles, A. Ecosystem Services in Biologically Diversified versus Conventional Farming Systems: Benefits, Externalities, and Trade-Offs. Ecol. Soc. 2012, 17, 40. [Google Scholar] [CrossRef]
- Tollefson, J. Why deforestation and extinctions make pandemics more likely. Nature 2020, 584, 175. [Google Scholar] [CrossRef]
- Brumlop, S.; Weedon, O.; Link, W.; Finckh, M.R. Effective population size (Ne) of organically and conventionally grown composite cross winter wheat populations depending on generation. Eur. J. Agron. 2019, 109, 125922. [Google Scholar] [CrossRef]
- Frankel, O.H. The development and maintenance of superior genetic stocks. Heredity 1950, 4, 89–102. [Google Scholar] [CrossRef]
- Barah, B.C.; Binswanger, H.P.; Rana, B.S.; Rao, N.G.P. The use of risk aversion in plant breeding; Concept and application. Euphytica 1981, 30, 451–458. [Google Scholar] [CrossRef]
- Lin, C.S.; Binns, M.R. A method of analysing cultivar x location x year experiments: A new stability parameter. Theor. Appl. Genet. 1988, 76, 425–430. [Google Scholar] [CrossRef]
- Evans, L.T. Crop Evolution, Adaptation and Yield; Cambridge University Press: New York, NY, USA, 1993. [Google Scholar]
- Leimu, R.; Fischer, M. A Meta-Analysis of Local Adaptation in Plants. PLoS ONE 2008, 3, e4010. [Google Scholar] [CrossRef] [Green Version]
- Hereford, J. A Quantitative Survey of Local Adaptation and Fitness Trade-Offs. Am. Nat. 2009, 173, 579–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kissing Kucek, L.; Dawson, J.C.; Darby, H.; Mallory, E.; Davis, M.; Sorrells, M.E. Breeding wheat for weed-competitive ability: II–measuring gains from selection and local adaptation. Euphytica 2021, 217, 203. [Google Scholar] [CrossRef]
- Mulvany, P. Sustaining agricultural biodiversity and heterogeneous seeds. In Rethinking Food and Agriculture. Woodhead Publishing Series in Food Science, Technology and Nutrition; Kassam, A., Kassam, L., Eds.; Woodhead Publishing: Swanston, Cambridge, UK, 2021; pp. 285–321. [Google Scholar]
- Chaudhary, P.; Bhatta, S.; Aryal, K.P.; Joshi, B.K. Threats, drivers and conservation imperative of agrobiodiversity. J. Agric. Environ. 2021, 21, 44–61. [Google Scholar]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Wolff, F. Industrial Transformation and Agriculture: Agrobiodiversity Loss as Sustainability Problem. In Governance for Industrial Transformation, Proceedings of the 2003 Berlin Conference on the Human Dimensions of Global Environmental Change; Klaus, J., Manfred, B., Anna, W., Eds.; Environmental Policy Research Centre: Berlin, Germany, 2004; pp. 338–355. [Google Scholar]
- Ortiz-Bobea, A.; Ault, T.R.; Carrillo, C.M.; Chambers, R.G.; Lobell, D.B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Chang. 2021, 11, 306–312. [Google Scholar] [CrossRef]
- Cobb, J.N.; Juma, R.U.; Biswas, P.S.; Arbelaez, J.D.; Rutkoski, J.; Atlin, G.; Hagen, T.; Quinn, M.; Ng, E.H. Enhancing the rate of genetic gain in public-sector plant breeding programs: Lessons from the breeder’s equation. Theor. Appl. Genet. 2019, 132, 627–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceccarelli, S. Wide Adaptation. How Wide? Euphytica 1989, 40, 197–205. [Google Scholar] [CrossRef]
- Ceccarelli, S. Efficiency of plant breeding. Crop. Sci. 2015, 55, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Gail, M.; Simon, R. Testing for qualitative interactions between treatment effects and patient subsets. Biometrics 1985, 41, 361–372. [Google Scholar] [CrossRef]
- Allard, R.W.; Bradshaw, A.D. Implications of Genotype-Environmental Interactions in Applied Plant Breeding. Crop. Sci. 1964, 4, 503–508. [Google Scholar] [CrossRef] [Green Version]
- Allard, R.W.; Hansche, P.E. Some parameters of population variability and their implications in plant breeding. Adv. Agron. 1964, 16, 281–325. [Google Scholar]
- Ceccarelli, S.; Grando, S. From Participatory to Evolutionary Plant breeding. In Farmers and Plant Breeding: Current Approaches and Perspectives; Tveitereid Westengen, O., Winge, T., Eds.; Routledge: London, UK, 2019; pp. 231–243. [Google Scholar]
- Allard, R.W. Principles of Plant Breeding; John Wiley and Sons, Inc.: New York, NY, USA, 1960; p. 485. [Google Scholar]
- Ceccarelli, S. Plant Breeding with Farmers—A Technical Manual; ICARDA: Aleppo, Syria, 2012; p. xi + 126. [Google Scholar]
- Ceccarelli, S. Participatory barley breeding in Syria: Policy bottlenecks and responses. In Farmers’ Crop Varieties and Farmers’ Rights. Challenges in Taxonomy and Law; Halewood, M., Ed.; Routledge: Abingdon, Oxon, UK, 2016; pp. 84–96. [Google Scholar]
- Singh, M.; El-Shama’a, K. Experimental Designs for Precision in Phenotyping. In Phenomics in Crop Plants: Trends, Options and Limitations; Kumar, J., Pratap, A., Kumar, S., Eds.; Springer: New Delhi, India, 2015; pp. 235–247. [Google Scholar]
- Cullis, B.R.; Smith, A.B.; Coombes, N.E. On the Design of Early Generation Variety Trials with Correlated Data. J. Agric. Biol. Environ. Stat. 2006, 11, 381–393. [Google Scholar] [CrossRef]
- Coombes, N.E. DiGGeR Design Search Tool in R. 2009. Available online: http://nswdpibiom.org/austatgen/software/ (accessed on 11 November 2020).
- Colley, M.R.; Dawson, J.C.; McCluskey, C.; Myers, J.R.; Tracy, W.F.; Lammerts van Bueren, E.T. Exploring the emergence of participatory plant breeding in countries of the Global North—A review. J. Agric. Sci. 2021, 159, 320–338. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Galiè, A.; Grando, S. Participatory breeding for climate change–related traits. In Genomics and Breeding for Climate-Resilient Crops; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 1, pp. 331–376. [Google Scholar]
- Ceccarelli, S.; Galiè, A.; Grando, S. Participatory Plant Breeding in North Africa and the Near East: Nearly 25 years on. In Seeds that Give: Participatory Plant Breeding–Revisited (in press); Vernooy, R., Song, Y., Eds.; China Agricultural Press: Beijing, China, 2022. [Google Scholar]
- Ceccarelli, S.; Grando, S.; Bailey, E.; Amri, A.; El Felah, M.; Nassif, F.; Rezgui, S.; Yahyaoui, A. Farmer Participation in Barley Breeding in Syria, Morocco and Tunisia. Euphytica 2001, 122, 521–536. [Google Scholar] [CrossRef]
- Yan, W.; Hunt, L.A.; Sheng, Q.; Szlavnics, Z. Cultivar Evaluation and Mega Environment Investigation Based on the GGE Biplot. Crop. Sci. 2000, 40, 597–605. [Google Scholar] [CrossRef]
- Atlin, G.N.; Cooper, M.; Bjørnstad, A.A. A comparison of formal and participatory breeding approaches using selection theory. Euphytica 2001, 122, 463–475. [Google Scholar] [CrossRef]
- Sperling, L.; Loevinsohn, M.E.; Ntabomvura, B. Rethinking the farmer’s role in plant breeding: Local bean experts and on-station selection in Rwanda. Exp. Agric. 1993, 29, 509–519. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S.; Tutwiler, R.; Baha, J.; Martini, A.M.; Salahieh, H.; Goodchild, A.; Michael, M. A Methodological Study on Participatory Barley Breeding. I. Selection Phase. Euphytica 2000, 111, 91–104. [Google Scholar] [CrossRef]
- Lacoste, M.; Cook, S.; McNee, M.; Gale, D.; Ingram, J.; Bellon-Maurel, V.; MacMillan, T.; Sylvester-Bradley, R.; Kindred, D.; Bramley, R.; et al. On-Farm Experimentation to transform global agriculture. Nat. Food 2022, 3, 11–18. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S. Decentralized-Participatory Plant Breeding: An Example of Demand Driven Research. Euphytica 2007, 155, 349–360. [Google Scholar] [CrossRef]
- Teeken, B.; Olaosebikan, O.; Haleegoah, J.; Oladejo, E.; Madu, T.; Bello, A.; Parkes, E.; Egesi, C.; Kulakow, P.; Kirscht, H.; et al. Cassava Trait Preferences of Men and Women Farmers in Nigeria: Implications for Breeding. Econ. Bot. 2018, 72, 263–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceccarelli, S.; Grando, S. Participatory plant breeding: Who did it, who does it and where? Exp. Agric. 2019, 56, 1–11. [Google Scholar] [CrossRef]
- Campanelli, G.; Acciarri, N.; Campion, B.; Delvecchio, S.; Leteo, F.; Fusari, F.; Angelini, P.; Ceccarelli, S. Participatory Tomato Breeding for Organic Conditions in Italy. Euphytica 2015, 204, 179–197. [Google Scholar] [CrossRef]
- Alary, V.; Yigezu, A.Y.; Bassi, F.M. Participatory Farmers-Weighted Selection (PWS) Indices to Raise Adoption of Durum Cultivars. Crop. Breed. Genet. Genom. 2020, 2, e200014. [Google Scholar]
- Thiele, G.; Dufour, D.; Vernier, P.; Mwanga, R.O.M.; Parker, M.L.; Geldermann, E.S.; Teeken, B.; Wossen, T.; Gotor, E.; Kikulwe, E.; et al. A review of varietal change in roots, tubers and bananas: Consumer preferences and other drivers of adoption and implications for breeding. Int. J. Food Sci. Technol. 2021, 56, 1076–1092. [Google Scholar] [CrossRef]
- Kholova, J.; Urban, M.O.; Cock, J.; Arcos, J.; Arnaud, E.; Aytekin, D.; Azevedo, V.; Barnes, A.P.; Ceccarelli, S.; Chavarriaga, P.; et al. In pursuit of a better world: Crop improvement and the CGIAR. J. Exp. Bot. 2021, 72, 5158–5179. [Google Scholar] [CrossRef]
- Desclaux, D.; Ceccarelli, S.; Navazio, J.; Coley, M.; Trouche, G.; Aguirre, S.; Weltzien, E.; Lançon, J. Centralized or Decentralized Breeding: The Potentials of Participatory Approaches for Low-Input and Organic Agriculture. In Organic Crop Breeding; Lammerts van Bueren, E.T., Myers, J.R., Eds.; Wiley-Blackwell Publishing: Hoboken, NJ, USA, 2012; pp. 99–123. [Google Scholar]
- Ceccarelli, S.; Grando, S. Organic agriculture and evolutionary populations to merge mitigation and adaptation strategies to fight climate change. South Sustain. 2020, 1, e002. [Google Scholar]
- Posadinu, C.M.; Rodriguez, M.; Madau, F.; Attene, G. The value of agrobiodiversity: An analysis of consumers preference for tomatoes. Renew. Agric. Food Syst. 2021, 36, 1–11. [Google Scholar] [CrossRef]
- Botelho, A.; Dinis, I.; Lourenço-Gomes, L.; Moreira, J.; Costa Pinto, L.; Simões, O. The role of consumers in agrobiodiversity conservation: The case of traditional varieties of apples in Portugal. Agroecol. Sustain. Food Syst. 2018, 42, 796–811. [Google Scholar] [CrossRef]
- Revord, R.S.; Miller, G.; Meier, N.A.; Webber, J.B.; Romero-Severson, J.; Gold, M.A.; Lovell, S.T. A Roadmap for Participatory Chestnut Breeding for Nut Production in the Eastern United States. Front. Plant Sci. 2022, 12, 735597. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.S. Participatory Varietal Selection, Participatory Plant Breeding, and Varietal Change; World Bank: Washington, DC, USA, 2006; Available online: https://openknowledge.worldbank.org/handle/10986/9182 (accessed on 2 February 2022).
- Isbell, F.; Craven, D.; Connolly, J.; Loreau, M.; Schmid, B.; Beierkuhnlein, C.; Bezemer, T.M.; Bonin, C.; Bruelheide, H.; de Luca, E.; et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 2015, 526, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Bonny, S. Corporate Concentration and Technological Change in the Global Seed Industry. Sustainability 2017, 9, 1632. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceccarelli, S.; Grando, S. Return to Agrobiodiversity: Participatory Plant Breeding. Diversity 2022, 14, 126. https://doi.org/10.3390/d14020126
Ceccarelli S, Grando S. Return to Agrobiodiversity: Participatory Plant Breeding. Diversity. 2022; 14(2):126. https://doi.org/10.3390/d14020126
Chicago/Turabian StyleCeccarelli, Salvatore, and Stefania Grando. 2022. "Return to Agrobiodiversity: Participatory Plant Breeding" Diversity 14, no. 2: 126. https://doi.org/10.3390/d14020126
APA StyleCeccarelli, S., & Grando, S. (2022). Return to Agrobiodiversity: Participatory Plant Breeding. Diversity, 14(2), 126. https://doi.org/10.3390/d14020126