Factors in the Distribution of Mycorrhizal and Soil Fungi
Abstract
:1. Introduction
2. Soil Properties
2.1. Soil Chemistry and Nutrient Gradients
2.2. Soil Moisture
2.3. Soil Structure
3. Plant Relations
4. Dispersal Vectors and Limitations
4.1. Wind Dispersal
4.2. Animal Dispersal
4.3. Water Dispersal
5. Ecological Islands
5.1. Real-Life Islands
5.2. Effective Islands
6. Other Factors
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Appendix A
Soil Fungi | Mycorrhiza | Arbuscular Mycorrhiza | Ectomycorrhiza | Root Endophyte Fungi | Saprotrophic Fungi | Orchid Mycorrhiza | Ericoid Mycorrhiza | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Scopus | No. | % | No. | % | No. | % | No. | % | No. | % | No. | % | No. | % | No. | % |
[BLANK] | 55,587 | 26,428 | 19,178 | 7272 | 2797 | 1737 | 774 | 562 | ||||||||
Distribution | 21,765 | 39% | 11,648 | 44% | 8285 | 43% | 4026 | 55% | 1263 | 45% | 943 | 54% | 455 | 59% | 290 | 52% |
Biogeography | 4421 | 8% | 2135 | 8% | 1287 | 7% | 1307 | 18% | 247 | 9% | 328 | 19% | 114 | 15% | 94 | 17% |
Propagation | 940 | 2% | 1029 | 4% | 614 | 3% | 171 | 2% | 125 | 4% | 17 | 1% | 198 | 26% | 10 | 2% |
Soil Fungi | Mycorrhiza | Arbuscular Mycorrhiza | Ectomycorrhiza | Root Endophyte Fungi | Saprotrophic Fungi | Orchid Mycorrhiza | Ericoid Mycorrhiza | |||||||||
GS | No. | % | No. | % | No. | % | No. | % | No. | % | No. | % | No. | % | No. | % |
[BLANK] | 3960,000 | 203,000 | 126,000 | 78,300 | 74,200 | 30,100 | 19,400 | 9060 | ||||||||
Distribution | 3,250,000 | 82% | 143,000 | 70% | 73,600 | 58% | 52,600 | 67% | 43,800 | 59% | 23,700 | 79% | 18,900 | 97% | 6170 | 68% |
Biogeography | 70,700 | 2% | 22,300 | 11% | 11,000 | 9% | 12,700 | 16% | 11,600 | 16% | 19,400 | 64% | 4030 | 21% | 1240 | 14% |
Propagation | 1,200,000 | 30% | 36,000 | 18% | 21,700 | 17% | 10,900 | 14% | 19,100 | 26% | 3680 | 12% | 10,400 | 54% | 1550 | 17% |
References
- Bar-On, Y.M.; Phillips, R.; Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 2018, 115, 6506–6511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, R.G.T.; Howlett, B.J. Indifferent, Affectionate, or Deceitful: Lifestyles and Secretomes of Fungi. PLoS Pathog. 2012, 8, e1002515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Qiu, Y.-L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 2006, 16, 299–363. [Google Scholar] [CrossRef] [PubMed]
- Baldrian, P.; Větrovský, T.; Lepinay, C.; Kohout, P. High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Divers. 2022, 114, 539–547. [Google Scholar] [CrossRef]
- Pimm, S.L.; Joppa, L.N. How Many Plant Species are There, Where are They, and at What Rate are They Going Extinct? Ann. Mo. Bot. Gard. 2015, 100, 170–176. [Google Scholar] [CrossRef]
- Lomolino, M.V.; Riddle, B.R.; Whittaker, R.J.; Brown, J.H. Biogeography: Biological Diversity across Space and Time; Sinauer Associates, Inc.: Sunderland, MA, USA, 2017. [Google Scholar]
- Tshwene-Mauchaza, B.; Aguirre-Gutiérrez, J. Climatic Drivers of Plant Species Distributions Across Spatial Grains in Southern Africa Tropical Forests. Front. For. Glob. Change 2019, 2, 69. [Google Scholar] [CrossRef]
- Lidicker, W.Z. A Clarification of Interactions in Ecological Systems. BioScience 1979, 29, 475–477. [Google Scholar] [CrossRef]
- Cheek, M.; Nic Lughadha, E.; Kirk, P.; Lindon, H.; Carretero, J.; Looney, B.; Douglas, B.; Haelewaters, D.; Gaya, E.; Llewellyn, T.; et al. New scientific discoveries: Plants and fungi. PLANT. People Planet 2020, 2, 371–388. [Google Scholar] [CrossRef]
- Hill, R. How We Discovered a Hidden World of Fungi inside the World’s Biggest Seed Bank. The Conversation. Available online: https://theconversation.com/how-we-discovered-a-hidden-world-of-fungi-inside-the-worlds-biggest-seed-bank-156051 (accessed on 22 March 2021).
- Li, D.-W. Biology of Microfungi; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Money, N.P. Against the naming of fungi. Fungal Biol. 2013, 117, 463–465. [Google Scholar] [CrossRef] [Green Version]
- Trejo-Aguilar, D.; Banuelos, J. Isolation and Culture of Arbuscular Mycorrhizal Fungi from Field Samples. Methods Mol. Biol. 2020, 2146, 1–18. [Google Scholar] [CrossRef]
- Guidot, A.; Debaud, J.-C.; Marmeisse, R. Correspondence between genet diversity and spatial distribution of above- and below-ground populations of the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol. Ecol. 2001, 10, 1121–1131. [Google Scholar] [CrossRef] [PubMed]
- Gherbawy, Y.; Voigt, K. Molecular Identification of Fungi; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Janowski, D.; Wilgan, R.; Leski, T.; Karliński, L.; Rudawska, M. Effective Molecular Identification of Ectomycorrhizal Fungi: Revisiting DNA Isolation Methods. Forests 2019, 10, 218. [Google Scholar] [CrossRef] [Green Version]
- Hagenbo, A.; Kyaschenko, J.; Clemmensen, K.E.; Lindahl, B.D.; Fransson, P. Fungal community shifts underpin declining mycelial production and turnover across a Pinus sylvestris chronosequence. J. Ecol. 2018, 106, 490–501. [Google Scholar] [CrossRef]
- Rudawska, M.; Wilgan, R.; Janowski, D.; Iwański, M.; Leski, T. Shifts in taxonomical and functional structure of ectomycorrhizal fungal community of Scots pine (Pinus sylvestris L.) underpinned by partner tree ageing. Pedobiologia 2018, 71, 20–30. [Google Scholar] [CrossRef]
- Macarthur, R.H.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 1967. [Google Scholar]
- Peay, K.G.; Bruns, T.D.; Kennedy, P.G.; Bergemann, S.E.; Garbelotto, M. A strong species-area relationship for eukaryotic soil microbes: Island size matters for ectomycorrhizal fungi. Ecol. Lett. 2007, 10, 470–480. [Google Scholar] [CrossRef]
- Belisle, M.; Peay, K.G.; Fukami, T. Flowers as Islands: Spatial Distribution of Nectar-Inhabiting Microfungi among Plants of Mimulus aurantiacus, a Hummingbird-Pollinated Shrub. Microb. Ecol. 2011, 63, 711–718. [Google Scholar] [CrossRef]
- Glassman, S.I.; Lubetkin, K.C.; Chung, J.A.; Bruns, T.D. The theory of island biogeography applies to ectomycorrhizal fungi in subalpine tree “islands” at a fine scale. Ecosphere 2017, 8, e01677. [Google Scholar] [CrossRef]
- Smith, G.R.; Steidinger, B.S.; Bruns, T.D.; Peay, K.G. Competition–colonization tradeoffs structure fungal diversity. ISME J. 2018, 12, 1758–1767. [Google Scholar] [CrossRef]
- Yang, T.; Tedersoo, L.; Fu, X.; Zhao, C.; Liu, X.; Gao, G.; Cheng, L.; Adams, J.M.; Chu, H. Saprotrophic fungal diversity predicts ectomycorrhizal fungal diversity along the timberline in the framework of island biogeography theory. ISME Commun. 2021, 1, 1–10. [Google Scholar] [CrossRef]
- Burke, D.J.; López-Gutiérrez, J.C.; Smemo, K.A.; Chan, C.R. Vegetation and Soil Environment Influence the Spatial Distribution of Root-Associated Fungi in a Mature Beech-Maple Forest. Appl. Environ. Microbiol. 2009, 75, 7639–7648. [Google Scholar] [CrossRef]
- Geml, J.; Pastor, N.; Fernandez, L.; Pacheco, S.; Semenova, T.A.; Becerra, A.G.; Wicaksono, C.Y.; Nouhra, E.R. Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol. Ecol. 2014, 23, 2452–2472. [Google Scholar] [CrossRef] [PubMed]
- Tedersoo, L.; Anslan, S.; Bahram, M.; Drenkhan, R.; Pritsch, K.; Buegger, F.; Padari, A.; Hagh-Doust, N.; Mikryukov, V.; Gohar, D.; et al. Regional-Scale In-Depth Analysis of Soil Fungal Diversity Reveals Strong pH and Plant Species Effects in Northern Europe. Front. Microbiol. 2020, 11, 1953. [Google Scholar] [CrossRef]
- Janowski, D.; Nara, K. Unique host effect of Tilia japonica on ectomycorrhizal fungal communities independent of the tree’s dominance: A rare example of a generalist host? Glob. Ecol. Conserv. 2021, 31, e01863. [Google Scholar] [CrossRef]
- Hardin, G. The Competitive Exclusion Principle. Science 1960, 131, 1292–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Blagodatskaya, E.V.; Anderson, T.-H. Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils. Soil Biol. Biochem. 1998, 30, 1269–1274. [Google Scholar] [CrossRef]
- Rousk, J.; Demoling, L.A.; Bahr, A.; Bååth, E. Examining the fungal and bacterial niche overlap using selective inhibitors in soil. FEMS Microbiol. Ecol. 2008, 63, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Aponte, C.; García, L.V.; Marañón, T.; Gardes, M. Indirect host effect on ectomycorrhizal fungi: Leaf fall and litter quality explain changes in fungal communities on the roots of co-occurring Mediterranean oaks. Soil Biol. Biochem. 2010, 42, 788–796. [Google Scholar] [CrossRef] [Green Version]
- Ingold, C.T.; Hudson, H.J. Ecology of saprotrophic fungi. Biol. Fungi 1993, 9, 145–157. [Google Scholar] [CrossRef]
- Carteron, A.; Beigas, M.; Joly, S.; Turner, B.L.; Laliberté, E. Temperate Forests Dominated by Arbuscular or Ectomycorrhizal Fungi Are Characterized by Strong Shifts from Saprotrophic to Mycorrhizal Fungi with Increasing Soil Depth. Microb. Ecol. 2020, 82, 377–390. [Google Scholar] [CrossRef]
- Bödeker, I.T.M.; Lindahl, B.D.; Olson, Å.; Clemmensen, K.E. Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently. Funct. Ecol. 2016, 30, 1967–1978. [Google Scholar] [CrossRef] [Green Version]
- Mäkipää, R.; Rajala, T.; Schigel, D.; Rinne, K.T.; Pennanen, T.; Abrego, N.; Ovaskainen, O. Interactions between soil- and dead wood-inhabiting fungal communities during the decay of Norway spruce logs. ISME J. 2017, 11, 1964–1974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voyron, S.; Ercole, E.; Ghignone, S.; Perotto, S.; Girlanda, M. Fine-scale spatial distribution of orchid mycorrhizal fungi in the soil of host-rich grasslands. New Phytol. 2016, 213, 1428–1439. [Google Scholar] [CrossRef] [PubMed]
- Landeweert, R.; Hoffland, E.; Finlay, R.D.; Kuyper, T.W.; van Breemen, N. Linking plants to rocks: Ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol. Evol. 2001, 16, 248–254. [Google Scholar] [CrossRef]
- Browning, M.H.R.; Hutchinson, T.C. The effects of aluminum and calcium on the growth and nutrition of selected ectomycorrhizal fungi of jack pine. Can. J. Bot. 1991, 69, 1691–1699. [Google Scholar] [CrossRef]
- Chevalier, G. Europe, a continent with high potential for the cultivation of the Burgundy truffle (Tuber aestivum/uncinatum). Acta Mycol. 2013, 47, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Moll, J.; Hoppe, B.; König, S.; Wubet, T.; Buscot, F.; Krüger, D. Spatial Distribution of Fungal Communities in an Arable Soil. PLoS ONE 2016, 11, e0148130. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, L.M.; Correia, P.M.; Ryel, R.J.; Martins-Loução, M.A. Spatial variability of arbuscular mycorrhizal fungal spores in two natural plant communities. Plant Soil 2003, 251, 227–236. [Google Scholar] [CrossRef]
- Griffin, D.M. Soil Water in the Ecology of Fungi. Annu. Rev. Phytopathol. 1969, 7, 289–310. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Bhatnagar, M. Microbial diversity in desert ecosystems. Curr. Sci. 2005, 89, 91–100. [Google Scholar]
- Augé, R. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 2001, 11, 3–42. [Google Scholar] [CrossRef]
- Navarro-Ródenas, A.; Ruíz-Lozano, J.M.; Kaldenhoff, R.; Morte, A. The aquaporin TcAQP1 of the desert truffle Terfezia claveryi is a membrane pore for water and CO2 transport. Mol. Plant Microbe Int. 2012, 25, 259–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guhr, A.; Borken, W.; Spohn, A.; Matzner, E. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization. Proc. Natl. Acad. Sci. USA 2015, 112, 14647–14651. [Google Scholar] [CrossRef] [Green Version]
- Aučina, A.; Rudawska, M.; Wilgan, R.; Janowski, D.; Skridaila, A.; Dapkūnienė, S.; Leski, T. Functional diversity of ectomycorrhizal fungal communities along a peatland–forest gradient. Pedobiologia 2019, 74, 15–23. [Google Scholar] [CrossRef]
- Onufrak, A.; Rúa, M.A.; Hossler, K. The Missing Metric: An Evaluation of Fungal Importance in Wetland Assessments. Wetlands 2019, 40, 825–838. [Google Scholar] [CrossRef] [Green Version]
- Borowik, A.; Wyszkowska, J. Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant Soil Environ. 2016, 62, 250–255. [Google Scholar] [CrossRef] [Green Version]
- Meisner, A.; Jacquiod, S.; Snoek, B.L.; ten Hooven, F.C.; van der Putten, W.H. Drought Legacy Effects on the Composition of Soil Fungal and Prokaryote Communities. Front. Microbiol. 2018, 9, 294. [Google Scholar] [CrossRef] [Green Version]
- Morris, S.J.; Boerner, R.E.J. Spatial distribution of fungal and bacterial biomass in southern Ohio hardwood forest soils: Scale dependency and landscape patterns. Soil Biol. Biochem. 1999, 31, 887–902. [Google Scholar] [CrossRef]
- Li, S.; Wang, P.; Chen, Y.; Wilson, M.C.; Yang, X.; Ma, C.; Lu, J.; Chen, X.; Wu, J.; Shu, W.; et al. Island biogeography of soil bacteria and fungi: Similar patterns, but different mechanisms. ISME J. 2020, 14, 1886–1896. [Google Scholar] [CrossRef]
- Guhr, A.; Kircher, S. Drought-Induced Stress Priming in Two Distinct Filamentous Saprotrophic Fungi. Microb. Ecol. 2020, 80, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Agerer, R. Exploration types of ectomycorrhizae. Mycorrhiza 2001, 11, 107–114. [Google Scholar] [CrossRef]
- Erlandson, S.R.; Savage, J.A.; Cavender-Bares, J.M.; Peay, K.G. Soil moisture and chemistry influence diversity of ectomycorrhizal fungal communities associating with willow along an hydrologic gradient. FEMS Microbiol. Ecol. 2015, 92, fiv148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessels, J.G.H. Fungal hydrophobins: Proteins that function at an interface. Trends Plant Sci. 1996, 1, 9–15. [Google Scholar] [CrossRef]
- Ritz, K.; Young, I.M. Interactions between soil structure and fungi. Mycologist 2004, 18, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Otten, W.; Gilligan, C.A.; Watts, C.W.; Dexter, A.R.; Hall, D. Continuity of air-filled pores and invasion thresholds for a soil-borne fungal plant pathogen, Rhizoctonia solani. Soil Biol. Biochem. 1999, 31, 1803–1810. [Google Scholar] [CrossRef]
- Kurakov, A.V.; Lavrent’ev, R.B.; Nechitailo, T.Y.; Golyshin, P.N.; Zvyagintsev, D.G. Diversity of facultatively anaerobic microscopic mycelial fungi in soils. Microbiology 2008, 77, 90–98. [Google Scholar] [CrossRef]
- Otten, W.; Harris, K.; Young, I.M.; Ritz, K.; Gilligan, C.A. Preferential spread of the pathogenic fungus Rhizoctonia solani through structured soil. Soil Biol. Biochem. 2004, 36, 203–210. [Google Scholar] [CrossRef]
- Giannakis, N.; Sanders, F.E. Interactions between mycophagous nematodes, mycorrhizal and other soil fungi. Agric. Ecosyst. Environ. 1990, 29, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Lussenhop, J.; Wicklow, D.T. Changes in spatial distribution of fungal propagules associated with invertebrate activity in soil. Soil Biol. Biochem. 1984, 16, 601–604. [Google Scholar] [CrossRef]
- Feeney, D.S.; Crawford, J.W.; Daniell, T.; Hallett, P.D.; Nunan, N.; Ritz, K.; Rivers, M.; Young, I.M. Three-dimensional Microorganization of the Soil–Root–Microbe System. Microb. Ecol. 2006, 52, 151–158. [Google Scholar] [CrossRef]
- Robinson, C.H.; Szaro, T.M.; Izzo, A.D.; Anderson, I.C.; Parkin, P.I.; Bruns, T.D. Spatial distribution of fungal communities in a coastal grassland soil. Soil Biol. Biochem. 2009, 41, 414–416. [Google Scholar] [CrossRef]
- Rousk, J.; Bååth, E. Growth of saprotrophic fungi and bacteria in soil. FEMS Microbiol. Ecol. 2011, 78, 17–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishida, T.A.; Nara, K.; Hogetsu, T. Host effects on ectomycorrhizal fungal communities: Insight from eight host species in mixed conifer?broadleaf forests. New Phytol. 2007, 174, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Wilgan, R.; Leski, T.; Kujawska, M.; Karliński, L.; Janowski, D.; Rudawska, M. Ectomycorrhizal fungi of exotic Carya ovata in the context of surrounding native forests on Central European sites. Fungal Ecol. 2020, 44, 100908. [Google Scholar] [CrossRef]
- Collins, C.G.; Spasojevic, M.J.; Alados, C.L.; Aronson, E.L.; Benavides, J.C.; Cannone, N.; Caviezel, C.; Grau, O.; Guo, H.; Kudo, G.; et al. Belowground impacts of alpine woody encroachment are determined by plant traits, local climate, and soil conditions. Glob. Change Biol. 2020, 26, 7112–7127. [Google Scholar] [CrossRef]
- Cairney, J.W.G.; Chambers, S.M. (Eds.) Ectomycorrhizal Fungi Key Genera in Profile; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Parihar, M.; Rakshit, A.; Meena, V.S.; Gupta, V.K.; Rana, K.; Choudhary, M.; Tiwari, G.; Mishra, P.K.; Pattanayak, A.; Bisht, J.K.; et al. The potential of arbuscular mycorrhizal fungi in C cycling: A review. Arch. Microbiol. 2020, 202, 1581–1596. [Google Scholar] [CrossRef]
- Li, T.; Wu, S.; Yang, W.; Selosse, M.-A.; Gao, J. How Mycorrhizal Associations Influence Orchid Distribution and Population Dynamics. Front. Plant Sci. 2021, 12, 647114. [Google Scholar] [CrossRef]
- Suryanarayanan, T.S.; Devarajan, P.T.; Girivasan, K.P.; Govindarajulu, M.B.; Kumaresan, V.; Murali, T.S.; Rajamani, T.; Thirunavukkarasu, N.; Venkatesan, G. The Host Range of Multi-Host Endophytic Fungi. Curr. Sci. 2018, 115, 1963. [Google Scholar] [CrossRef]
- U’Ren, J.M.; Lutzoni, F.; Miadlikowska, J.; Zimmerman, N.B.; Carbone, I.; May, G.; Arnold, A.E. Host availability drives distributions of fungal endophytes in the imperilled boreal realm. Nat. Ecol. Evol. 2019, 3, 1430–1437. [Google Scholar] [CrossRef] [Green Version]
- Marañón-Jiménez, S.; Radujković, D.; Verbruggen, E.; Grau, O.; Cuntz, M.; Peñuelas, J.; Richter, A.; Schrumpf, M.; Rebmann, C. Shifts in the Abundances of Saprotrophic and Ectomycorrhizal Fungi with Altered Leaf Litter Inputs. Front. Plant Sci. 2021, 12, 1452. [Google Scholar] [CrossRef]
- Dahlberg, A.; Stenlid, J. Population structure and dynamics in Suillus bovinus as indicated by spatial distribution of fungal clones. New Phytol. 1990, 115, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.K.M.; Hovmøller, M.S. Aerial Dispersal of Pathogens on the Global and Continental Scales and Its Impact on Plant Disease. Science 2002, 297, 537–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halbwachs, H.; Brandl, R.; Bässler, C. Spore wall traits of ectomycorrhizal and saprotrophic agarics may mirror their distinct lifestyles. Fungal Ecol. 2015, 17, 197–204. [Google Scholar] [CrossRef]
- Oneto, D.L.; Golan, J.; Mazzino, A.; Pringle, A.; Seminara, A. Timing of fungal spore release dictates survival during atmospheric transport. Proc. Natl. Acad. Sci. USA 2020, 117, 5134–5143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davison, J.; Moora, M.; Öpik, M.; Ainsaar, L.; Ducousso, M.; Hiiesalu, I.; Jairus, T.; Johnson, N.; Jourand, P.; Kalamees, R.; et al. Microbial island biogeography: Isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities. ISME J. 2018, 12, 2211–2224. [Google Scholar] [CrossRef]
- Ashkannejhad, S.; Horton, T.R. Ectomycorrhizal ecology under primary succession on coastal sand dunes: Interactions involving Pinus contorta, suilloid fungi and deer. New Phytol. 2005, 169, 345–354. [Google Scholar] [CrossRef]
- Calhim, S.; Halme, P.; Petersen, J.H.; Læssøe, T.; Bässler, C.; Heilmann-Clausen, J. Fungal spore diversity reflects substrate-specific deposition challenges. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Peay, K.G.; Schubert, M.G.; Nguyen, N.H.; Bruns, T.D. Measuring ectomycorrhizal fungal dispersal: Macroecological patterns driven by microscopic propagules. Mol. Ecol. 2012, 21, 4122–4136. [Google Scholar] [CrossRef]
- Dressaire, E.; Yamada, L.; Song, B.; Roper, M. Mushrooms use convectively created airflows to disperse their spores. Proc. Natl. Acad. Sci. USA 2016, 113, 2833–2838. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.H. Longevity of light- and dark-colored basidiospores from saprotrophic mushroom-forming fungi. Mycologia 2018, 110, 131–135. [Google Scholar] [CrossRef]
- Bowden, J.; Gregory, P.H.; Johnson, C.G. Possible Wind Transport of Coffee Leaf Rust across the Atlantic Ocean. Nature 1971, 229, 500–501. [Google Scholar] [CrossRef] [PubMed]
- Peay, K.G.; Garbelotto, M.; Bruns, T.D. Evidence of dispersal limitation in soil microorganisms: Isolation reduces species richness on mycorrhizal tree islands. Ecology 2010, 91, 3631–3640. [Google Scholar] [CrossRef] [PubMed]
- Hawker, L.E. Hypogeous fungi. Biol. Rev. 1955, 30, 127–158. [Google Scholar] [CrossRef]
- Bässler, C.; Heilmann-Clausen, J.; Karasch, P.; Brandl, R.; Halbwachs, H. Ectomycorrhizal fungi have larger fruit bodies than saprotrophic fungi. Fungal Ecol. 2015, 17, 205–212. [Google Scholar] [CrossRef]
- Nielsen, K.B.; Kjøller, R.; Bruun, H.H.; Schnoor, T.K.; Rosendahl, S. Colonization of new land by arbuscular mycorrhizal fungi. Fungal Ecol. 2016, 20, 22–29. [Google Scholar] [CrossRef]
- Correia, M.; Heleno, R.; Silva, L.P.; Costa, J.M.; Rodríguez-Echeverría, S. First evidence for the joint dispersal of mycorrhizal fungi and plant diaspores by birds. New Phytol. 2019, 222, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Caiafa, M.V.; Jusino, M.A.; Wilkie, A.C.; Díaz, I.A.; Sieving, K.E.; Smith, M.E. Discovering the role of Patagonian birds in the dispersal of truffles and other mycorrhizal fungi. Curr. Biol. 2021, 31, 5558–5570.e3. [Google Scholar] [CrossRef]
- da Silva, L.P.; Pereira Coutinho, A.; Heleno, R.H.; Tenreiro, P.Q.; Ramos, J.A. Dispersal of fungi spores by non-specialized flower-visiting birds. J. Avian Biol. 2015, 47, 438–442. [Google Scholar] [CrossRef] [Green Version]
- Varga, S.; Finozzi, C.; Vestberg, M.; Kytöviita, M.-M. Arctic arbuscular mycorrhizal spore community and viability after storage in cold conditions. Mycorrhiza 2014, 25, 335–343. [Google Scholar] [CrossRef]
- Hepple, S. The movement of fungal spores in soil. Trans. Br. Mycol. Soc. 1960, 43, 73–79. [Google Scholar] [CrossRef]
- Kinal, J.; Shearer, B.L.; Fairman, R.G. Dispersal of Phytophthora cinnamomi Through Lateritic Soil by Laterally Flowing Subsurface Water. Plant Dis. 1993, 77, 1085–1090. [Google Scholar] [CrossRef]
- Tanesaka, E. Colonizing success of saprotrophic and ectomycorrhizal basidiomycetes on islands. Mycologia 2012, 104, 345–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangan, S.A.; Eom, A.-H.; Adler, G.H.; Yavitt, J.B.; Herre, E.A. Diversity of arbuscular mycorrhizal fungi across a fragmented forest in Panama: Insular spore communities differ from mainland communities. Oecologia 2004, 141, 687–700. [Google Scholar] [CrossRef] [PubMed]
- Connor, E.F.; McCoy, E.D. The Statistics and Biology of the Species-Area Relationship. Am. Nat. 1979, 113, 791–833. [Google Scholar] [CrossRef]
- Andrews, J.H.; Kinkel, L.L.; Berbee, F.M.; Nordheim, E.V. Fungi, leaves, and the theory of island biogeography. Microb. Ecol. 1987, 14, 277–290. [Google Scholar] [CrossRef]
- Soudzilovskaia, N.A.; Douma, J.C.; Akhmetzhanova, A.A.; van Bodegom, P.M.; Cornwell, W.K.; Moens, E.J.; Treseder, K.K.; Tibbett, M.; Wang, Y.-P.; Cornelissen, J.H.C. Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Glob. Ecol. Biogeogr. 2015, 24, 371–382. [Google Scholar] [CrossRef]
- Chu, H.; Xiang, X.; Yang, J.; Adams, J.M.; Zhang, K.; Li, Y.; Shi, Y. Effects of Slope Aspects on Soil Bacterial and Arbuscular Fungal Communities in a Boreal Forest in China. Pedosphere 2016, 26, 226–234. [Google Scholar] [CrossRef]
- Hunter, P. The human impact on biological diversity. How species adapt to urban challenges sheds light on evolution and provides clues about conservation. EMBO Rep. 2007, 8, 316–318. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.B.; Zeto, S.K. Growth and root colonization of mycorrhizal maize grown on acid and alkaline soil. Soil Biol. Biochem. 1996, 28, 1505–1511. [Google Scholar] [CrossRef]
- Hagerman, S.M.; Jones, M.D.; Bradfield, G.E.; Gillespie, M.; Durall, D.M. Effects of clear-cut logging on the diversity and persistence of ectomycorrhizae at a subalpine forest. Can. J. For. Res. 1999, 29, 124–134. [Google Scholar] [CrossRef]
- Bzdyk, R.M.; Olchowik, J.; Studnicki, M.; Oszako, T.; Sikora, K.; Szmidla, H.; Hilszczańska, D. The Impact of Effective Microorganisms (EM) and Organic and Mineral Fertilizers on the Growth and Mycorrhizal Colonization of Fagus sylvatica and Quercus robur Seedlings in a Bare-Root Nursery Experiment. Forests 2018, 9, 597. [Google Scholar] [CrossRef] [Green Version]
- Fritze, H. The influence of urban air pollution on soil respiration and fungal hyphal length. Ann. Bot. Fenn. 1987, 24, 251–256. [Google Scholar]
- Hoeksema, J.D.; Averill, C.; Bhatnagar, J.M.; Brzostek, E.; Buscardo, E.; Chen, K.H.; Liao, H.L.; Nagy, L.; Policelli, N.; Ridgeway, J.; et al. Ectomycorrhizal Plant-Fungal Co-invasions as Natural Experiments for Connecting Plant and Fungal Traits to Their Ecosystem Consequences. Front. For. Glob. Change 2020, 3, 84. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janowski, D.; Leski, T. Factors in the Distribution of Mycorrhizal and Soil Fungi. Diversity 2022, 14, 1122. https://doi.org/10.3390/d14121122
Janowski D, Leski T. Factors in the Distribution of Mycorrhizal and Soil Fungi. Diversity. 2022; 14(12):1122. https://doi.org/10.3390/d14121122
Chicago/Turabian StyleJanowski, Daniel, and Tomasz Leski. 2022. "Factors in the Distribution of Mycorrhizal and Soil Fungi" Diversity 14, no. 12: 1122. https://doi.org/10.3390/d14121122
APA StyleJanowski, D., & Leski, T. (2022). Factors in the Distribution of Mycorrhizal and Soil Fungi. Diversity, 14(12), 1122. https://doi.org/10.3390/d14121122