The Effect of Adding Bambara Groundnut (Vigna subterranea) on the Physical Quality, Nutritional Composition and Consumer Acceptability of a Provitamin A-Biofortified Maize Complementary Instant Porridge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bambara Groundnut and Maize Grain Varieties
2.2. Production of the Yellow PVABM and White Maize Varieties
2.3. Sample Preparation
2.4. Physical Quality
2.4.1. Color
2.4.2. Texture
2.4.3. Water Absorption Capacity (WAC)
2.4.4. Swelling Volume (SV) and Solubility Index (SI)
2.5. Nutritional Analysis
2.5.1. Sample Preparation
2.5.2. Moisture
2.5.3. Fat
2.5.4. Protein
2.5.5. Total Mineral Content (Ash)
(mass of sample + crucible) − (mass of pre-dried crucible)
2.5.6. Fiber
2.5.7. Individual Mineral Elements
2.6. Sensory Evaluation of the Composite Complementary Instant Porridges Made with BGN and PVABM
2.6.1. Pilot Study
2.6.2. Main Study
Recruitment of Panelists
Sample Coding, Serving Order and Sensory Evaluation Set-Up
Reduction of Bias
2.6.3. Statistical Analysis
3. Results and Discussion
3.1. Physical Quality
3.1.1. Grain Physical Properties
Color
Grain Texture
3.1.2. Water Absorption Capacity, Solubility Index (SI) and Swelling Volume (SV)
3.2. The Nutritional Composition of the BGN–PVABM Instant Porridges
3.3. Consumer Acceptability of the BGN–PVABM Composite Complementary Instant Porridges
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oyeyinka, A.T.; Obilana, A.O.; Siwela, M. The Potential of Bambara Groundnut for Use in Complementary Feeding. In Food and Potential Industrial Applications of Bambara Groundnut; Springer: Berlin/Heidelberg, Germany, 2021; pp. 169–187. [Google Scholar]
- Serna-Saldivar, S.O. Cereal Grains: Properties, Processing, and Nutritional Attributes; CRC press: Boca Raton, FL, USA, 2016; p. 33. [Google Scholar]
- Barska, A. Millennial consumers in the convenience food market. Management 2018, 22, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Mbithi-Mwikya, S.; Van Camp, J.; Mamiro, P.R.; Ooghe, W.; Kolsteren, P.; Huyghebaert, A. Evaluation of the nutritional characteristics of a finger millet based complementary food. J. Agric. Food Chem. 2002, 50, 3030–3036. [Google Scholar] [CrossRef] [PubMed]
- Egounlety, M. Production of legume-fortified weaning foods. Food Res. Int. 2002, 35, 233–237. [Google Scholar] [CrossRef]
- Pietsch, W. Readily engineer agglomerates with special properties from micro-and nanosized particles. Chem. Eng. Prog. 1999, 95, 67–81. [Google Scholar]
- Dewey, K.G.; Brown, K.H. Update on technical issues concerning complementary feeding of young children in developing countries and implications for intervention programs. Food Nutr. Bull. 2003, 24, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Stevens, R.; Winter-Nelson, A. Consumer acceptance of provitamin A-biofortified maize in Maputo, Mozambique. Food Policy 2008, 33, 341–351. [Google Scholar] [CrossRef]
- Pillay, K.; Derera, J.; Siwela, M.; Veldman, F. Consumer acceptance of yellow, provitamin A-biofortified maize in KwaZulu-Natal. South Afr. J. Clin. Nutr. 2011, 24, 186–191. [Google Scholar] [CrossRef]
- Talsma, E.F.; Melse-Boonstra, A.; Brouwer, I.D. Acceptance and adoption of biofortified crops in low-and middle-income countries: A systematic review. Nutr. Rev. 2017, 75, 798–829. [Google Scholar] [CrossRef]
- Nuss, E.T.; Arscott, S.A.; Bresnahan, K.; Pixley, K.V.; Rocheford, T.; Hotz, C.; Siamusantu, W.; Chileshe, J.; Tanumihardjo, S.A. Comparative intake of white-versus orange-colored maize by Zambian children in the context of promotion of biofortified maize. Food Nutr. Bull. 2012, 33, 63–71. [Google Scholar] [CrossRef]
- Tothova, M.; Meyers, W.H. Predicting the Acceptance for High Beta-Carotene Maize: An Ex-Ante Estimation Method; No 44835, FAPRI-MU Report Series; Food and Agricultural Policy Research Institute (FAPRI): Accra, Ghana, 2006. [Google Scholar]
- Simkin, A.J. Carotenoids and apocarotenoids in planta: Their role in plant development, contribution to the flavour and aroma of fruits and flowers, and their nutraceutical benefits. Plants 2021, 10, 2321. [Google Scholar] [CrossRef]
- Lewicki, T.; Johnson, M.; Abrahamowicz, M. West African Food in the Middle Ages: According to Arabic sources; Cambridge University Press Cambridge: Cambridge, UK, 1974. [Google Scholar]
- Plahar, W.; Annan, N.; Larweh, P.; Golob, P.; Swetman, T.; Greenhaulgh, P.; Coote, C.; Hodges, R. Marketing and Processing of Bambara Groundnuts (W. Africa). Crop Post Harvest Programme; Food Research Institute (FRI): Accra, Ghana, 2002; pp. 1–25. [Google Scholar]
- Olapade, A.; Adetuyi, D. Comparison of different methods of producing bambara (Vaondzeia subterranean L. Thou) flours for preparation of moin-moin. UISpace 2007, 25, 150–157. [Google Scholar]
- McDonald, M.F.; Copeland, L.O. Seed production: Principles and Practices; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Coşkuner, Y.; Karababa, E. Some physical properties of flaxseed (Linum usitatissimum L.). J. Food Eng. 2007, 78, 1067–1073. [Google Scholar] [CrossRef]
- Afoakwa, E.O.; Yenyi, S.E. Application of response surface methodology for studying the influence of soaking, blanching and sodium hexametaphosphate salt concentration on some biochemical and physical characteristics of cowpeas (Vigna unguiculata) during canning. J. Food Eng. 2006, 77, 713–724. [Google Scholar] [CrossRef]
- Yamazaki, W. An alkaline water retention capacity test for the evaluation of cookie baking potentialities of soft winter wheat flours. Cereal Chem. 1953, 30, 242–246. [Google Scholar]
- Medcalf, D. Wheat starches I. Comparison of physicochemical properties. Cereal Chem. 1965, 42, 558–568. [Google Scholar]
- Leach, H.W. Structure of starch granules. I. Swelling and solubility patterns of various starches. Cereal Chem. 1959, 36, 534–544. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Analytical Chemists International, 17th ed.; AOAC International: Gaithersburg, ML, USA, 2003. [Google Scholar]
- Leon, A.C.; Davis, L.L.; Kraemer, H.C. The role and interpretation of pilot studies in clinical research. J. Psychiatr. Res. 2011, 45, 626–629. [Google Scholar] [CrossRef] [Green Version]
- Stone, H.; Sidel, J.L. Introduction to sensory evaluation. In Sensory Evaluation Practices, 3rd ed.; Academic Press: San Diego, CA, USA, 2004; pp. 1–19. [Google Scholar]
- Heymann, H. Three-Day Advanced Sensory Analysis Workshop; Agricultural Research Council (ARC): Pretoria, South Africa, 1995. [Google Scholar]
- Bergara-Almeida, S.; Aparecida, M.; Da Silva, A. Hedonic scale with reference: Performance in obtaining predictive models. Food Qual. Prefer. 2002, 13, 57–64. [Google Scholar] [CrossRef]
- Gacula, M.C., Jr. Statistical Methods in Food and Consumer Research; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Beswa, D. Nutritional, sensory and health-promoting properties of provitamin A-biofortified maize stiff porridges and extruded snacks. Doctoral Dissertation, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 2015. [Google Scholar]
- Galvez, F.; Resurreccion, A. The effects of decortication and method of extraction on the physical and chemical properties of starch from mungbean (Vigna radiata (L.) Wilczec). J. Food Process. Preserv. 1993, 17, 93–107. [Google Scholar] [CrossRef]
- Zhang, B.; Tamura, M.; Berger-Doyle, J.; Chen, P. Comparison of instrumental methods for measuring seed hardness of food-grade soybean. J. Texture Stud. 2008, 39, 28–39. [Google Scholar] [CrossRef]
- Chen, P.; Buss, G.; Diehl, K. Physical and chemical characteristics associated with hardness of small-seeded soybean for natto. In Proceedings of the ASACSSA-SSSA International Annual Meetings, Cincinnati, OH, USA, 7–12 November 1993. [Google Scholar]
- Mbata, T.; Ikenebomeh, M.J.; Alaneme, J. Studies on the microbiological, nutrient composition and antinutritional contents of fermented maize flour fortified with bambara groundnut (Vigna subterranean L). Afr. J. Food Sci. 2009, 3, 165–171. [Google Scholar]
- Mbofung, C.; Njintang, Y.; Waldron, K. Functional properties of cowpea–soy–dry red beans composite flour paste and sensorial characteristics of akara (deep fat fried food): Effect of whipping conditions, pH, temperature and salt concentration. J. Food Eng. 2002, 54, 207–214. [Google Scholar] [CrossRef]
- Enwere, N. Foods of Plants Origin: Processing and Utilization with Recipes and Technology Profiles; Afro-Orbis Publications Ltd.: Nsukka, Nigeria, 1998. [Google Scholar]
- Prapluettrakul, B.; Tungtrakul, P.; Panyachan, S.; Limsuwan, T. Development of instant rice for young children. Sci. Eng. Health Stud. 2012, 6, 49–58. [Google Scholar]
- Mbata, T.I.; Ikenebomeh, M.; Ahonkhai, I. Nutritional status of maize fermented meal by fortification with bambara-nut. Afr. J. Food Agric. Nutr. Dev. 2007, 7, 1–14. [Google Scholar] [CrossRef]
- Uvere, P.O.; Onyekwere, E.U.; Ngoddy, P.O. Production of maize–bambara groundnut complementary foods fortified pre-fermentation with processed foods rich in calcium, iron, zinc and provitamin A. J. Sci. Food Agric. 2010, 90, 566–573. [Google Scholar] [CrossRef]
- Gift Oluwatofunmi, E.; Samson Ishola, I.; Joseph Bamidele, F. Formulation and Nutritional Evaluation of Maize, Bambara Groundnut and Cowpea Seeds Blends Complementary Food. Am. J. Food Nutr. 2015, 3, 101–105. [Google Scholar]
- FAO/WHO/UNU. Expert Consultation. ENERGY and Protein Requirements; WHO Technical Report Series No. 724; WHO: Geneva, Switzerland, 1985. [Google Scholar]
- WHO. Vitamin A Supplementation in Infants and Children 6–59 Months of Age. Available online: http://aps.who.int/iris/bitstream/10665/44664/1/9789241501767_eng.pdf (accessed on 3 February 2022).
- WHO. The World Health Report 2002: Reducing Risks, Promoting Healthy Life; WHO: Geneva, Switzerland, 2002. [Google Scholar]
- Larmond, E. Laboratory Methods for Sensory Evaluation of Food; Research Branch, Canada Dept. of Agriculture: Ottawa, ON, Canada, 1977. [Google Scholar]
Composite Flour | Ratio |
---|---|
Reference | 0 BGN:100 white maize |
PVABM (control) | 0:100 |
Brown BGN: PVABM | 10:90 |
brown BGN: PVABM | 20:80 |
Brown BGN: PVABM | 30:70 |
Red BGN: PVABM | 10:90 |
Red BGN: PVABM | 20:80 |
Red BGN: PVABM | 30:70 |
Sample | Mean ± SD | ||
---|---|---|---|
L* | a* | b* | |
Whole grains | |||
White maize (reference) | 70.58 ± 0.19 a | 3.19 ± 0.02 a | 25.98 ± 0.17 a |
Yellow PABM (control) | 65.68 ± 0.21 b | 13.86 ± 0.17 b | 38.42 ± 0.47 b |
Brown BGN | 44.34 ± 0.18 c | 13.33 ± 0.08 c | 23.65 ± 0.10 c |
Red BGN | 28.62 ± 0.11 d | 20.33 ± 0.05 d | 15.02 ± 0.26 d |
Oven-dried grains | |||
White maize (reference) | 68.91 ± 0.12 a | 1.67 ± 0.05 a | 33.70 ± 0.02 a |
Yellow PVABM (control) | 62.78 ± 0.05 b | 10.11 ± 0.09 b | 46.61 ± 0.30 b |
Brown BGN | 30.85 ± 0.12 c | 10.60 ± 0.06 c | 14.14 ± 0.14 c |
Red BGN | 23.95 ± 0.14 d | 11.04 ± 0.08 d | 7.11 ± 0.24 d |
Flours | |||
White maize (reference) | 75.11 ± 0.01 a | 4.11 ± 0.01 a | 12.80 ± 0.01 a |
Yellow PVABM (control) | 67.25 ± 0.02 b | 6.17 ± 0.01 b | 15.33 ± 0.01 b |
Brown BGN | 65.26 ± 0.01 c | 6.22 ± 0.02 c | 12.65 ± 0.00 c |
Red BGN | 75.10 ± 0.01 d | 4.11 ± 0.01 d | 12.80 ± 0.01 d |
Grain Variety | Moisture Content | Firmness | Toughness | ||
---|---|---|---|---|---|
Mean ± SD | p Value | Mean ± SD | p Value | ||
White maize (reference) | 20% | 19,805.9 ± 3474.9 a | 0.401 | 19,406.9 ± 5686.8 a | 0.107 |
30% | 17,688.7 ± 7035.3 a | 25,095.3 ± 3030.1 a | |||
40% | 15,327.3 ± 3830.4 a | 19,759.1 ± 3838.3 a | |||
Yellow PVABM (Control) | 20% | 29,101.2 ± 6708.9 a | 0.027 | 25,529.1 ± 7055.8 a | 0.564 |
30% | 19,883.4 ± 7296.6 a | 26,945.7 ± 3072.8 a | |||
40% | 17,227.7 ± 4461.4 b | 23,037.0 ± 6203.2 a | |||
Brown BGN | 20% | 21,908.2 ± 2567.8 a | 0.139 | 70,148.9 ± 14,884.0 a | 0.097 |
30% | 15,278.1 ± 1654.0 a | 52,430.9 ± 9447.5 a | |||
40% | 16,589.0 ± 8362.8 a | 66,382.7 ± 12,105.2 a | |||
Red BGN | 20% | 19,931.4 ± 4123.2 a | 0.078 | 64,408.8 ± 18,205.9 a | 0.042 |
30% | 15,605.8 ± 2266.0 a | 60,208.0 ± 6197.9 a | |||
40% | 14,306.3 ± 4320.1 a | 42,003.2 ± 11,788.0 a |
Hunter L* | a* | b* | Firmness | Toughness | ||
---|---|---|---|---|---|---|
L* | Pearson Correlation | 1.00 | −0.836 ** | 0.786 ** | 0.357 | −0.873 ** |
a* | Pearson Correlation | 1.00 | −0.344 | −0.015 | 0.619 * | |
b* | Pearson Correlation | 1.00 | 0.526 | −0.632 * | ||
Firmness | Pearson Correlation | 1.00 | −0.134 | |||
Toughness | Pearson Correlation | 1.00 |
Variable | Treatment | p Value | ||||||
---|---|---|---|---|---|---|---|---|
Variety | 0% (Control) Yellow PVABM | 10% | 20% | 30% | V | T | V × T | |
WAC (mlg) | BBGNF | 57.86 ± 0.18 | 52.12 ± 0.02 | 50.03 ± 0.58 | 47.10 ± 0.12 | 0.000 | 0.000 | 0.000 |
RBGNF | 57.86 ± 0.18 | 49.13 ± 1.00 | 49.91 ± 0.36 | 41.50 ± 0.05 | ||||
Reference | 54.05 ± 0.32 | |||||||
SI (%) | BBGNF | 50.03 ± 0.07 | 40.06 ± 0.23 | 30.58 ± 0.75 | 23.02 ± 0.37 | 0.000 | 0.000 | 0.000 |
RBGNF | 50.03 ± 0.07 | 37.19 ± 0.20 | 27.96 ± 0.58 | 20.98 ± 0.06 | ||||
Reference | 49.54 ± 0.22 | |||||||
SV | BBGNF | 7.67 ± 0.58 | 7.00 ± 0.00 | 5.67 ± 0.58 | 5.00 ± 0.00 | 0.048 | 0.000 | 0.000 |
RBGNF | 7.67 ± 0.58 | 6.00 ± 1.00 | 5.33 ± 0.36 | 4.33 ± 0.58 | ||||
Reference | 9.67 ± 0.58 |
BGN Variety | Mean ± SD | p Value | ||||||
---|---|---|---|---|---|---|---|---|
Variable | Yellow PVABM 0% (Control) | 10% BGN | 20% BGN | 30% BGN | V | T | V × T | |
Moisture (g/100 g) | BBGNF | 1.56 * ± 0.06 | 1.61 ± 0.01 | 1.71 ± 0.04 | 1.79 ± 0.02 | 0.000 | 0.029 | 0.017 |
RBGNF | 1.56 ± 0.06 | 1.56 ± 0.05 | 1.55 ± 0.04 | 1.55 ± 0.02 | ||||
Ash (g/100 g) | BBGNF | 1.28 ± 0.16 | 1.44 ± 0.14 | 1.61 ± 0.13 | 1.77 ± 0.11 | 0.970 | 0.004 | 1.000 |
RBGNF | 1.28 ± 0.16 | 1.45 ± 0.13 | 1.60 ± 0.11 | 1.77 ± 0.09 | ||||
Fat (g/100 g) | BBGNF | 3.58 ± 0.00 | 4.07 ± 0.01 | 4.55 ± 0.01 | 5.03 ± 0.02 | 0.060 | 0.000 | 0.472 |
RBGF | 3.58 ± 0.00 | 3.94 ± 0.13 | 4.29 ± 0.25 | 4.65 ± 0.38 | ||||
ADF (g/100 g) | BBGF | 9.60 ± 0.08 | 11.34 ± 0.04 | 13.10 ± 0.16 | 14.84 ± 0.28 | 0.000 | 0.000 | 0.057 |
RBGNF | 9.60 ± 0.08 | 11.54 ± 0.06 | 13.48 ± 0.06 | 15.42 ± 0.04 | ||||
NDF (g/100 g) | BBGNF | 21.68 ± 0.82 | 23.77 ± 0.70 | 25.86 ± 0.59 | 27.94 ± 0.47 | 0.630 | 0.000 | 0.986 |
RBGNF | 21.68 ± 0.82 | 23.66 ± 0.76 | 25.62 ± 0.69 | 27.60 ± 0.63 | ||||
Crude Protein (g/100 g) | BBGNF | 8.32 ± 1.27 | 9.57 ± 1.15 | 10.82 ± 1.02 | 12.07 ± 0.91 | 0.710 | 0.005 | 0.993 |
RBGNF | 8.32 ± 1.27 | 9.71 ± 1.13 | 11.10 ± 1.00 | 12.50 ± 0.87 |
Variable | Yellow PVABM 0% (Control) | 10% BGN | 20% BGN | 30% BGN | p Value V | T | V × T | |
---|---|---|---|---|---|---|---|---|
Calcium (mg/100 g) | BBGNF | 0.01 * ± 0.00 | 0.01 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.000 | 0.000 | 0.124 |
RBGNF | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | ||||
Magnesium (mg/100 g) | BBGNF | 0.11 ± 0.01 | 0.11 ± 0.01 | 0.12 ± 0.01 | 0.12 ± 0.00 | 0.720 | 0.053 | 0.931 |
RBGNF | 0.11 ± 0.01 | 0.11 ± 0.01 | 0.12 ± 0.01 | 0.12 ± 0.01 | ||||
Potassium (mg/100 g) | BBGNF | 0.21 ± 0.00 | 0.28 ± 0.00 | 0.36 ± 0.00 | 0.43 ± 0.00 | 0.213 | 0.142 | 0.452 |
RBGNF | 0.21 ± 0.00 | 0.29 ± 0.00 | 0.37 ± 0.00 | 0.45 ± 0.00 | ||||
Sodium (mg/100 g) | BBGNF | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.01 ± 0.01 | 0.01 ± 0.00 | 0.010 | 0.023 | 0.025 |
RBGNF | 0.00 ± 0.00 | 0.03 ± 0.01 | 0.06 ± 0.03 | 0.01 ± 0.00 | ||||
Phosphorus (mg/100 g) | BBGNF | 0.22 ± 0.01 | 0.22 ± 0.00 | 0.23 ± 0.01 | 0.23 ± 0.00 | 0.440 | 0.023 | 0.878 |
RBGNF | 0.22 ± 0.01 | 0.23 ± 0.01 | 0.23 ± 0.01 | 0.24 ± 0.01 | ||||
Zinc (mg/100 g) | BBGNF | 2.90 ± 1.41 | 2.90 ± 1.41 | 2.80 ± 1.41 | 2.80 ± 1.41 | 0.030 | 0.855 | 0.290 |
RBGNF | 2.90 ± 1.41 | 3.00 ± 1.41 | 3.05 ± 0.71 | 3.15 ± 0.71 | ||||
Copper (mg/kg) | BBGNF | 3.50 ± 0.71 | 3.50 ± 0.71 | 4.00 ± 0.00 | 4.50 ± 0.71 | 0.720 | 0.140 | 0.931 |
RBGNF | 3.50 ± 0.71 | 3.50 ± 0.71 | 4.50 ± 0.71 | 4.50 ± 0.71 | ||||
Manganese (mg/kg) | BBGNF | 4.00 ± 0.00 | 5.00 ± 0.00 | 6.00 ± 0.00 | 7.00 ± 0.00 | 0.301 | 0.093 | 0.619 |
RBGNF | 4.00 ± 0.00 | 5.00 ± 0.00 | 6.00 ± 0.00 | 6.00 ± 0.00 | ||||
Iron (mg/100 g) | BBGNF | 3.00 ± 2.83 | 2.85 ± 2.12 | 2.75 ± 2.12 | 2.55 ± 2.12 | 0.240 | 0.502 | 0.819 |
RBGNF | 3.00 ± 2.83 | 3.00 ± 2.83 | 2.90 ± 2.83 | 2.90 ± 2.83 |
Treatment | |||||||||
---|---|---|---|---|---|---|---|---|---|
White Maize (Reference) | Yellow PVABM 0% (Control) | 10% | 20% | 30% | p Value | ||||
Attribute | Variety | Mean | V | T | V × T | ||||
Taste | BBGN | 3.95 ± 2.31 | 4.96 ± 2.50 | 4.93 ± 2.46 | 4.59 ± 2.53 | 0.420 | 0.090 | 0.790 | |
RBGN | 3.95 ± 2.31 | 4.30 ± 2.54 | 4.63 ± 2.65 | 4.65 ± 2.77 | |||||
Reference | 3.44 ± 2.21 | ||||||||
Color | BBGN | 4.95 ± 2.16 | 4.91 ± 2.09 | 4.78 ± 2.13 | 5.00 ± 2.32 | 0.245 | 0.741 | 0.840 | |
RBGN | 4.92 ± 2.16 | 4.30 ± 2.38 | 4.56 ± 2.65 | 4.65 ± 2.46 | |||||
Reference | 4.75 ± 2.20 | ||||||||
Aroma | BBGN | 4.36 ± 2.05 | 4.85 ± 2.16 | 5.07 ± 2.26 | 5.07 ± 2.32 | 0.461 | 0.271 | 0.902 | |
RBGN | 4.36 ± 2.05 | 4.81 ± 2.42 | 4.59 ± 2.55 | 4.85 ± 2.49 | |||||
Reference | 4.49 ± 2.18 | ||||||||
Texture | BBGN | 4.36 ± 2.52 | 4.67 ± 2.40 | 4.64 ± 2.67 | 4.78 ± 2.59 | 0.212 | 0.987 | 0.876 | |
RBGN | 4.36 ± 2.52 | 4.15 ± 2.74 | 4.26 ± 2.74 | 4.23 ± 2.49 | |||||
Reference | 4.16 ± 2.52 | ||||||||
Appearance | BBGN | 4.13 ± 2.41 | 4.71 ± 2.51 | 4.64 ± 2.30 | 4.61 ± 2.29 | 0.475 | 0.582 | 0.924 | |
RBGN | 4.13 ± 2.41 | 4.22 ± 2.36 | 4.41 ± 2.98 | 4.54 ± 2.50 | |||||
Reference | 4.27 ± 2.35 | ||||||||
Overall acceptability | BBGN | 4.24 ± 2.18 | 4.95 ± 2.27 | 5.02 ± 2.30 | 4.83 ± 2.27 | 0.551 | 0.167 | 0.909 | |
RBGN | 4.24 ± 2.18 | 4.52 ± 2.14 | 4.78 ± 2.64 | 4.88 ± 2.53 | |||||
Reference | 4.05 ± 2.33 |
Brown BGN | Red BGN | |||||||
---|---|---|---|---|---|---|---|---|
Score | 0% (Control) Yellow PVABM | 10% | 20% | 30% | 0% (Control) Yellow PVABM | 10% | 20% | 30% |
Dislike extremely | 18.2% | 9.1% | 13.6% | 11.4% | 18.2% | 20.5% | 9.1% | 0% |
Dislike very much | 13.8% | 20.7% | 13.8% | 20.7% | 13.8% | 13.8% | 3.4% | 0% |
Dislike moderately | 26.1% | 13.0% | 8.7% | 8.7% | 26.1% | 10.9% | 6.5% | 0% |
Dislike slightly | 13.5% | 18.9% | 16.2% | 27.0% | 13.5% | 5.4% | 5.4% | 0% |
Neither like nor dislike | 14.8% | 11.5% | 16.4% | 9.8% | 14.8% | 23.0% | 9.8% | 0% |
Like slightly | 14.5% | 20.0% | 18.2% | 12.7% | 14.5% | 12.7% | 7.3% | 0% |
Like moderately | 11.6% | 16.3% | 16.3% | 23.3% | 11.6% | 18.6% | 2.3% | 0% |
Like very much | 13.6% | 13.6% | 22.7% | 18.2% | 13.6% | 13.6% | 4.5% | 0% |
Like extremely | 5.9% | 23.5% | 17.6% | 11.8% | 5.9% | 17.6% | 17.6% | 0% |
Total acceptable | 45.6% | 73.4% | 74.8% | 66.0% | 45.6% | 62.5% | 31.7% | 0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Govender, L.; Siwela, M.; Denhere, S. The Effect of Adding Bambara Groundnut (Vigna subterranea) on the Physical Quality, Nutritional Composition and Consumer Acceptability of a Provitamin A-Biofortified Maize Complementary Instant Porridge. Diversity 2022, 14, 1088. https://doi.org/10.3390/d14121088
Govender L, Siwela M, Denhere S. The Effect of Adding Bambara Groundnut (Vigna subterranea) on the Physical Quality, Nutritional Composition and Consumer Acceptability of a Provitamin A-Biofortified Maize Complementary Instant Porridge. Diversity. 2022; 14(12):1088. https://doi.org/10.3390/d14121088
Chicago/Turabian StyleGovender, Laurencia, Muthulisi Siwela, and Sandra Denhere. 2022. "The Effect of Adding Bambara Groundnut (Vigna subterranea) on the Physical Quality, Nutritional Composition and Consumer Acceptability of a Provitamin A-Biofortified Maize Complementary Instant Porridge" Diversity 14, no. 12: 1088. https://doi.org/10.3390/d14121088
APA StyleGovender, L., Siwela, M., & Denhere, S. (2022). The Effect of Adding Bambara Groundnut (Vigna subterranea) on the Physical Quality, Nutritional Composition and Consumer Acceptability of a Provitamin A-Biofortified Maize Complementary Instant Porridge. Diversity, 14(12), 1088. https://doi.org/10.3390/d14121088