The Contribution of Desert-Dwelling Bats to Pest Control in Hyper-Arid Date Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas and Study Crop
2.2. Acoustic Monitoring
2.3. Statistical Analyses
2.4. DNA Metabarcoding Protocols
3. Results
3.1. Acoustic Monitoring
3.2. Consumption of Insect Pests by Bats in Date Plantations
4. Discussion
4.1. Bat Species Richness and Activity in Organic and Conventional Plantations
4.2. Bats as Contributors to Natural-Integrated Pest Management
5. Conclusions
Management of Date Plantations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meyer, W.B.; Turner, B.L. Human Population Growth and Global Land-Use/Cover Change. Annu. Rev. Ecol. Syst. 1992, 23, 39–61. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical Forests Were the Primary Sources of New Agricultural Land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations Environment Programme; Middleton, N.; Thomas, D.S.G. World Atlas of Desertification, 2nd ed.; Edward Arnold: London, UK, 1997; ISBN 0340691662. [Google Scholar]
- Blake, G.; Evenari, M.; Shanan, L.; Tadmor, N. The Negev: The Challenge of a Desert; Harvard University Press: Cambridge, CA, USA, 1982. [Google Scholar]
- Fedoroff, N.V.; Battisti, D.S.; Beachy, R.N.; Cooper, P.J.M.; Fischhoff, D.A.; Hodges, C.N.; Knauf, V.C.; Lobell, D.; Mazur, B.J.; Molden, D.; et al. Radically Rethinking Agriculture for the 21st Century. Science 2010, 327, 833–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulata, G.; Simon, Y. Aquaculture in Desert and Arid Lands: Development Constraints and Opportunities; FAO: Rome, Italy, 2010; Volume 6, ISBN 9781479970988. [Google Scholar]
- Tal, A. To Make a Desert Bloom: The Israeli Agricultural Adventure and the Quest for Sustainability. Agric. Hist. 2007, 81, 228–257. [Google Scholar] [CrossRef]
- Mihi, A.; Tarai, N.; Chenchouni, H. Can Palm Date Plantations and Oasification Be Used as a Proxy to Fight Sustainably against Desertification and Sand Encroachment in Hot Drylands? Ecol. Indic. 2019, 105, 365–375. [Google Scholar] [CrossRef]
- Pluess, T.; Opatovsky, I.; Gavish-Regev, E.; Lubin, Y.; Schmidt, M.H. Spiders in Wheat Fields and Semi-Desert in the Negev (Israel). J. Arachnol. 2008, 36, 368–373. [Google Scholar] [CrossRef] [Green Version]
- Segoli, M.; Kishinevsky, M.; Rozenberg, T.; Hoffmann, I. Parasitoid Abundance and Community Composition in Desert Vineyards and Their Adjacent Natural Habitats. Insects 2020, 11, 580. [Google Scholar] [CrossRef]
- Hackett, T.D.; Korine, C.; Holderied, M.W. The Importance of Acacia Trees for Insectivorous Bats and Arthropods in the Arava Desert. PLoS ONE 2013, 8, e52999. [Google Scholar] [CrossRef] [Green Version]
- Kahnonitch, I.; Lubin, Y.; Korine, C. Insectivorous Bats in Semi-Arid Agroecosystems—Effects on Foraging Activity and Implications for Insect Pest Control. Agric. Ecosyst. Environ. 2018, 261, 80–92. [Google Scholar] [CrossRef]
- Boyles, J.G.; Cryan, P.M.; McCracken, G.F.; Kunz, T.H. Economic Importance of Bats in Agriculture. Science 2011, 332, 41–42. [Google Scholar] [CrossRef]
- Williams-Guillén, K.; Olimpi, E.; Maas, B.; Taylor, P.J.; Arlettaz, R. Bats in the Anthropogenic Matrix: Challenges and Opportunities for the Conservation of Chiroptera and Their Ecosystem Services in Agricultural Landscapes. In Bats in the Anthropocene: Conservation of Bats in a Changing World; Springer International Publishing: New York, NY, USA, 2015; pp. 151–186. ISBN 9783319252209. [Google Scholar]
- Maine, J.J.; Boyles, J.G. Bats Initiate Vital Agroecological Interactions in Corn. Proc. Natl. Acad. Sci. USA 2015, 112, 12438–12443. [Google Scholar] [CrossRef] [Green Version]
- Federico, P.; Hallam, T.G.; McCracken, G.F.; Purucker, S.T.; Grant, W.E.; Correa-Sandoval, A.N.; Westbrook, J.K.; Medellín, R.A.; Cleveland, C.J.; Sansone, C.G.; et al. Brazilian Free-Tailed Bats as Insect Pest Regulators in Transgenic and Conventional Cotton Crops. Ecol. Appl. 2008, 18, 826–837. [Google Scholar] [CrossRef]
- Cohen, Y.; Bar-David, S.; Nielsen, M.; Bohmann, K.; Korine, C. An Appetite for Pests: Synanthropic Insectivorous Bats Exploit Cotton Pest Irruptions and Consume Various Deleterious Arthropods. Mol. Ecol. 2020, 29, 1185–1198. [Google Scholar] [CrossRef]
- Maas, B.; Clough, Y.; Tscharntke, T. Bats and Birds Increase Crop Yield in Tropical Agroforestry Landscapes. Ecol. Lett. 2013, 16, 1480–1487. [Google Scholar] [CrossRef]
- Taylor, P.J.; Bohmann, K.; Steyn, J.N.; Schoeman, M.C.; Matamba, E.; Zepeda-Mendoza, M.L.; Nangammbi, T.; Gilbert, M.T.P. Bats Eat Pest Green Vegetable Stink Bugs (Nezara viridula): Diet Analyses of Seven Insectivorous Species of Bats Roosting and Foraging in Macadamia Orchards. In South African Macadamia Growers’ Association Yearbook; Academia: San Francisco, CA, USA, 2013; Volume 21. [Google Scholar]
- Puig-Montserrat, X.; Torre, I.; López-Baucells, A.; Guerrieri, E.; Monti, M.M.; Ràfols-García, R.; Ferrer, X.; Gisbert, D.; Flaquer, C. Pest Control Service Provided by Bats in Mediterranean Rice Paddies: Linking Agroecosystems Structure to Ecological Functions. Mamm. Biol. 2015, 80, 237–245. [Google Scholar] [CrossRef]
- Bruins, H.J.; Sherzer, Z.; Ginat, H.; Batarseh, S. Degradation of Springs in the Arava Valley: Anthropogenic and Climatic Factors. Land Degrad. Dev. 2012, 23, 365–383. [Google Scholar] [CrossRef]
- Abu-Qaoud, H. Date Palm Status and Perspective in Palestine. In Date Palm Genetic Resources and Utilization: Volume 2: Asia and Europe; Springer: Dordrecht, The Netherlands, 2015; pp. 423–439. ISBN 9789401797078. [Google Scholar]
- El-Shafie, H. Review: List of Arthropod Pests and Their Natural Enemies Identified Worldwide on Date Palm, Phoenix dactylifera L. Agric. Biol. J. N. Am. 2012, 3, 516–524. [Google Scholar] [CrossRef]
- Blumberg, D. Date Palm Arthropod Pests and Their Management in Israel. Phytoparasitica 2008, 36, 411–448. [Google Scholar] [CrossRef]
- Al Samarraie, A.I.; Al Hafdh, E.; Abdul Majed, K.; Basumy, M.A. The Chemical Control of the Lesser Date Moth, Batrachedra amydraula Meyr., and Residue Levels of Organophosphate Insecticides in Dates. Pestic. Sci. 1989, 25, 227–230. [Google Scholar] [CrossRef]
- Levi-Zada, A.; Sadowsky, A.; Dobrinin, S.; Ticuchinski, T.; David, M.; Fefer, D.; Dunkelblum, E.; Byers, J.A. Monitoring and Mass-Trapping Methodologies Using Pheromones: The Lesser Date Moth Batrachedra amydraula. Bull. Entomol. Res. 2017, 108, 58–68. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Sahragard, A.; Pezhman, H.; Ghadamyari, M. Efficacy of Biorational Insecticides against Dubas Bug, Ommatissus lybicus (Hem.: Tropiduchidae) in a Date Palm Orchard and Evaluation of Kaolin and Mineral Oil in the Laboratory. J. Entomol. Soc. Iran 2014, 33, 1–10. [Google Scholar]
- GLOBALG.A.P. Available online: https://www.globalgap.org/uk_en/ (accessed on 13 October 2022).
- Yom-Tov, Y.; Kadmon, R. Analysis of the Distribution of Insectivorous Bats in Israel. Divers. Distrib. 1998, 4, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Noy-Meir, I. Desert Ecosystems: Environment and Producers. Annu. Rev. Ecol. Syst. 1973, 4, 25–51. [Google Scholar] [CrossRef]
- Chao, C.C.T.; Krueger, R.R. The Date Palm (Phoenix dactylifera L.): Overview of Biology, Uses, and Cultivation. HortScience 2007, 42, 1077–1082. [Google Scholar] [CrossRef] [Green Version]
- Wakil, W.; Faleiro, J.R.; Miller, T.A. Sustainable Pest Management in Date Palm: Current Status and Emerging Challenges; Springer International Publishing: New York, NY, USA, 2015. [Google Scholar]
- Perring, T.M.; El-Shafie, H.A.F.; Wakil, W. Carob Moth, Lesser Date Moth, and Raisin Moth. In Sustainable Pest Management in Date Palm: Current Status and Emerging Challenges; Springer: Cham, Switzerland, 2015; pp. 109–167. [Google Scholar]
- Blumberg, D. Preliminary Notes on the Phenology and Biology of Batrachedra amydraula Meyrick (Lepidoptera: Cosmopterygidae), a New Pest of Date Palms in Israel. Phytoparasitica 1975, 3, 55–57. [Google Scholar] [CrossRef]
- Fenton, M.B. A Technique for Monitoring Bat Activity with Results Obtained from Different Environments in Southern Ontario. Can. J. Zool. 1970, 48, 847–851. [Google Scholar] [CrossRef]
- Benda, P.; Dietz, C.; Andreas, M.; Hotový, J.; Lučan, R.K.; Malthy, A.; Meakin, K.; Truscott, J.; Vallo, P. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 6. Bats of Sinai (Egypt) with Some Taxonomic, Ecological and Echolocation Data on That Fauna. Acta Soc. Zool. Bohemicae 2008, 72, 103. [Google Scholar]
- Hackett, T.D.; Holderied, M.W.; Korine, C. Echolocation Call Description of 15 Species of Middle-Eastern Desert Dwelling Insectivorous Bats. Bioacoustics 2017, 26, 217–235. [Google Scholar] [CrossRef] [Green Version]
- Alberdi, A.; Aizpurua, O.; Gilbert, M.T.P.; Bohmann, K. Scrutinizing Key Steps for Reliable Metabarcoding of Environmental Samples. Methods Ecol. Evol. 2018, 9, 134–147. [Google Scholar] [CrossRef] [Green Version]
- Corse, E.; Tougard, C.; Archambaud-Suard, G.; Agnèse, J.F.; Messu Mandeng, F.D.; Bilong Bilong, C.F.; Duneau, D.; Zinger, L.; Chappaz, R.; Xu, C.C.Y.; et al. One-Locus-Several-Primers: A Strategy to Improve the Taxonomic and Haplotypic Coverage in Diet Metabarcoding Studies. Ecol. Evol. 2019, 9, 4603–4620. [Google Scholar] [CrossRef]
- Zeale, M.R.K.; Butlin, R.K.; Barker, G.L.A.; Lees, D.C.; Jones, G. Taxon-Specific PCR for DNA Barcoding Arthropod Prey in Bat Faeces. Mol. Ecol. Resour. 2011, 11, 236–244. [Google Scholar] [CrossRef]
- Jusino, M.A.; Banik, M.T.; Palmer, J.M.; Wray, A.K.; Xiao, L.; Pelton, E.; Barber, J.R.; Kawahara, A.Y.; Gratton, C.; Peery, M.Z.; et al. An Improved Method for Utilizing High-Throughput Amplicon Sequencing to Determine the Diets of Insectivorous Animals. Mol. Ecol. Resour. 2019, 19, 176–190. [Google Scholar] [CrossRef]
- Murray, D.C.; Coghlan, M.L.; Bunce, M. From Benchtop to Desktop: Important Considerations When Designing Amplicon Sequencing Workflows. PLoS ONE 2015, 10, e0124671. [Google Scholar] [CrossRef] [Green Version]
- Schnell, I.B.; Bohmann, K.; Gilbert, M.T.P. Tag Jumps Illuminated—Reducing Sequence-to-Sample Misidentifications in Metabarcoding Studies. Mol. Ecol. Resour. 2015, 15, 1289–1303. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet.journal 2011, 17, 10. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and Clustering Orders of Magnitude Faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A Versatile Open Source Tool for Metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [Green Version]
- Ratnasingham, S. MBRAVE: The Multiplex Barcode Research And Visualization Environment. Biodivers. Inf. Sci. Stand. 2019, 3, e37986. [Google Scholar] [CrossRef]
- Feldman, R.; John, O.W.; Yom-Tov, Y. Dietary Composition and Habitat Use in a Desert Insectivorous Bat Community in Israel. Acta Chiropterol. 2000, 2, 15–22. [Google Scholar]
- Holderied, M.; Korine, C.; Moritz, T. Hemprich’s Long-Eared Bat (Otonycteris hemprichii) as a Predator of Scorpions: Whispering Echolocation, Passive Gleaning and Prey Selection. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2011, 197, 425–433. [Google Scholar] [CrossRef]
- Yomtov, Y. Character displacement among the insectivorous bats of the Dead-Sea area. J. Zool. 1993, 230, 347–356. [Google Scholar]
- Korine, C.; Pinshow, B. Guild structure, foraging space use, and distribution in a community of insectivorous bats in the Negev Desert. J. Zool. 2004, 262, 187–196. [Google Scholar] [CrossRef]
- Dolev, A.; Perevolotsky, A. Vertebrates in Israel: The red book; Israel Nature and Parks Authority: Jerusalem, Israel, 2004. [Google Scholar]
- Puig-Montserrat, X.; Mas, M.; Flaquer, C.; Tuneu-Corral, C.; López-Baucells, A. Benefits of Organic Olive Farming for the Conservation of Gleaning Bats. Agric. Ecosyst. Environ. 2021, 313, 107361. [Google Scholar] [CrossRef]
- Wickramasinghe, L.P.; Harris, S.; Jones, G.; Vaughan, N. Bat Activity and Species Richness on Organic and Conventional Farms: Impact of Agricultural Intensification. J. Appl. Ecol. 2003, 40, 984–993. [Google Scholar] [CrossRef]
- Estrada, C.G.; Damon, A.; Hernández, C.S.; Pinto, L.S.; Núñez, G.I. Bat Diversity in Montane Rainforest and Shaded Coffee under Different Management Regimes in Southeastern Chiapas, Mexico. Biol. Conserv. 2006, 132, 351–361. [Google Scholar] [CrossRef]
- Kelly, R.M.; Kitzes, J.; Wilson, H.; Merenlender, A. Habitat Diversity Promotes Bat Activity in a Vineyard Landscape. Agric. Ecosyst. Environ. 2016, 223, 175–181. [Google Scholar] [CrossRef]
- Mendelssohn, H.; Yom-Tov, Y. Jerusalem: Israel Academy of Sciences and Humanities. In Fauna Palaestina Mammalia of Israel; Keter Press: Jerusalem, Israel, 1999. [Google Scholar]
- Korine, C.; Adams, R.; Russo, D.; Fisher-Phelps, M.; Jacobs, D. Bats and Water: Anthropogenic Alterations Threaten Global Bat Populations. In Bats in the Anthropocene: Conservation of Bats in a Changing World; Springer International Publishing: New York, NY, USA, 2015; pp. 215–241. ISBN 9783319252209. [Google Scholar]
- Yom-Tov, Y.; Makin, D.; Shalmon, B. The biology of Pipistrellus bodenheimeri (Microchiroptera) in the Dead Sea area of Israel. Z. Säugetierkunde 1992, 57, 65–69. [Google Scholar]
- Kakar, M.K.; Nizamani, S.M.; Rustamani, M.A.; Khuhro, R.D. Periodical Lesser Date Moth Infestation on Intact and Dropped Fruits. Sarhad J. Agric. 2010, 26, 393–396. [Google Scholar]
- Bagheri, A.; Fathipour, Y.; Askari-Seyahooei, M.; Zeinalabedini, M. Ommatissus lybicus (Hemiptera: Tropiduchidae), an Economically Important Pest of Date Palm (Arecaceae) with Highly Divergent Populations. Can. Entomol. 2018, 150, 378–392. [Google Scholar] [CrossRef]
- Soltani, R. The Rhinoceros Beetle Oryctes agamemnon arabicus in Tunisia: Current Challenge and Future Management Perspectives. Tunis. J. Plant Prot. 2010, 5, 179–193. [Google Scholar]
- Clare, E.L.; Economou, C.K.; Bennett, F.J.; Dyer, C.E.; Adams, K.; McRobie, B.; Drinkwater, R.; Littlefair, J.E. Measuring Biodiversity from DNA in the Air. Curr. Biol. 2022, 32, 693–700.e5. [Google Scholar] [CrossRef]
- Lynggaard, C.; Bertelsen, M.F.; Jensen, C.V.; Johnson, M.S.; Frøslev, T.G.; Olsen, M.T.; Bohmann, K. Airborne Environmental DNA for Terrestrial Vertebrate Community Monitoring. Curr. Biol. 2022, 32, 701–707.e5. [Google Scholar] [CrossRef]
- Alberdi, A.; Aizpurua, O.; Bohmann, K.; Gopalakrishnan, S.; Lynggaard, C.; Nielsen, M.; Gilbert, M.T.P. Promises and Pitfalls of Using High-Throughput Sequencing for Diet Analysis. Mol. Ecol. Resour. 2019, 19, 327–348. [Google Scholar] [CrossRef]
- Armoza-Zvuloni, R.; Shlomi, Y.; Shem-Tov, R.; Stavi, I.; Abadi, I. Drought and Anthropogenic Effects on Acacia Populations: A Case Study from the Hyper-Arid Southern Israel. Soil Syst. 2021, 5, 23. [Google Scholar] [CrossRef]
- Armoza-Zvuloni, R.; Shlomi, Y.; Abadi, I.; Shem-Tov, R.; Laronne, J.B. Fluvial Sediment Yields in Hyper-Arid Areas, Exemplified by Nahal Nehushtan, Israel. Land 2022, 11, 1050. [Google Scholar] [CrossRef]
Location | Elifaz | Neot Smadar | Samar | Foraging Mode | |||
---|---|---|---|---|---|---|---|
Bat Species | Before Harvest | During Harvest | Before Harvest | During Harvest | Before Harvest | During Harvest | |
Eptesicus bottae | 5334 | 3094 | 6347 | 5023 | 3931 | 5414 | Cultured space— Ariel hawking |
Hypsugo ariel | 2121 | 11,649 | 3799 | 7120 | 3503 | 6600 | Cultured space— Ariel hawking |
Taphozous nudiventris | 438 | 1966 | 493 | 1608 | 1431 | 909 | Open space— Ariel hawking |
Rhinopoma cystops | 190 | 612 | 613 | 145 | 198 | 541 | Open space— Ariel hawking |
Rhinopoma microphyllum | 0 | 176 | 0 | 10 | 0 | 206 | Open space— Ariel hawking |
Pipistrellus kuhlii | 133 | 1387 | 78 | 395 | 699 | 3972 | Cultured space— Ariel hawking |
Otonycteris hemprichii | 135 | 91 | 4 | 48 | 116 | 433 | Gleaners |
Pipistrellus rueppellii | 86 | 614 | 182 | 55 | 286 | 2763 | Cultured space— Ariel hawking |
Barbastella leucomelas | 61 | 353 | 77 | 174 | 137 | 300 | Cultured space— Ariel hawking |
Plecotus christii | 55 | 19 | 13 | 0 | 55 | 159 | Gleaners |
Rhinolophus clivosus | 0 | 0 | 64 | 12 | 14 | 154 | Highly cluttered space |
Tadarida teniotis | 0 | 64 | 3 | 247 | 20 | 517 | Open space— Ariel hawking |
Unknown | 27 | 41 | 21 | 57 | 39 | 51 | |
Sub Total | 8580 | 20,066 | 11,694 | 14,894 | 10,429 | 22,019 | |
Total | 87,862 |
Date Plantations | Before Harvest | During Harvest | t-Test | p-Value |
---|---|---|---|---|
Elifaz | ||||
Species richness | 7.2 ± 0.2 | 9.1 ± 0.7 | 5.8 | 0.001 |
Total bat activity (passes/night) | 427.2 ± 322.7 | 960.9 ± 436.1 | 2.1 | 0.07 |
Neot Smadar | ||||
Species richness | 6.6 ± 0.4 | 8.21 ± 1.3 | 2.7 | 0.04 |
Total bat activity (passes/night) | 538.4 ± 286.6 | 946.6 ± 760.1 | 1.1 | 0.3 |
Samar | ||||
Species richness | 8.32 ± 1.2 | 10.1 ± 0.6 | 2.8 | 0.03 |
Total bat activity (passes/night) | 480.8 ± 176.2 | 962.6 ± 722.5 | 1.2 | 0.3 |
Pest Species | Pest Order | Eptesicus bottae (N = 25) | Hypsugo ariel (N = 11) | Otonycteris hemprichii (N = 16) | Pipistrellus kuhlii (N = 8) | Pipistrellus rueppellii (N = 11) | Plecotus christii (N = 8) |
---|---|---|---|---|---|---|---|
Apomyelois ceratoniae/Ectomyelois ceratoniae | Lepidoptera | 1 | 0 | 0 | 0 | 0 | 1 |
Arenipses sabella | Lepidoptera | 1 | 0 | 0 | 0 | 0 | 1 |
Batrachedra amydraula | Lepidoptera | 2 | 0 | 2 | 1 | 0 | 0 |
Cadra figulilella | Lepidoptera | 1 | 0 | 1 | 0 | 1 | 3 |
Carpophilus hemipterus | Coleoptera | 1 | 1 | 2 | 0 | 1 | 0 |
Carpophilus mutilatus | Coleoptera | 0 | 0 | 1 | 0 | 1 | 0 |
Epuraea luteolus | Coleoptera | 0 | 0 | 1 | 0 | 0 | 0 |
Ommatissus lybicus | Hemiptera | 3 | 1 | 1 | 1 | 3 | 0 |
Oryctes agamemnon | Coleoptera | 7 | 1 | 11 | 2 | 3 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schäckermann, J.; Morris, E.J.; Alberdi, A.; Razgour, O.; Korine, C. The Contribution of Desert-Dwelling Bats to Pest Control in Hyper-Arid Date Agriculture. Diversity 2022, 14, 1034. https://doi.org/10.3390/d14121034
Schäckermann J, Morris EJ, Alberdi A, Razgour O, Korine C. The Contribution of Desert-Dwelling Bats to Pest Control in Hyper-Arid Date Agriculture. Diversity. 2022; 14(12):1034. https://doi.org/10.3390/d14121034
Chicago/Turabian StyleSchäckermann, Jessica, Evie J. Morris, Antton Alberdi, Orly Razgour, and Carmi Korine. 2022. "The Contribution of Desert-Dwelling Bats to Pest Control in Hyper-Arid Date Agriculture" Diversity 14, no. 12: 1034. https://doi.org/10.3390/d14121034
APA StyleSchäckermann, J., Morris, E. J., Alberdi, A., Razgour, O., & Korine, C. (2022). The Contribution of Desert-Dwelling Bats to Pest Control in Hyper-Arid Date Agriculture. Diversity, 14(12), 1034. https://doi.org/10.3390/d14121034