The Effects of Landscape Heterogeneity on East China Anuran Communities: Identifying Spatial Scales in an Urbanizing Landscape
Abstract
:1. Introduction
2. Methods
2.1. Study Sites
2.2. Amphibian Surveys
2.3. Landscape Variables
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations, DEAS. World Urbanization Prospects: The 2014 Revision; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2015. [Google Scholar]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonnell, M.J.; MacGregor-Fors, I. The ecological future of cities. Science 2016, 352, 936–938. [Google Scholar] [CrossRef] [PubMed]
- Aronson, M.F.J.; La Sorte, F.A.; Nilon, C.H.; Katti, M.; Goddard, M.A.; Lepczyk, C.A.; Warren, P.S.; Williams, N.S.G.; Cilliers, S.; Clarkson, B.; et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. Biol. Sci. 2014, 281, 20133330. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Xu, S.; Lin, J.; Li, H.; Lin, Q.; Han, B. Urbanization increases biotic homogenization of zooplankton communities in tropical reservoirs. Ecol. Indic. 2020, 110, 105899. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinney, M.L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 2008, 11, 161–176. [Google Scholar] [CrossRef]
- Seto, K.C.; Sánchez-Rodríguez, R.; Fragkias, M. The New Geography of Contemporary Urbanization and the Environment. Annu. Rev. Environ. Resour. 2010, 35, 167–194. [Google Scholar] [CrossRef] [Green Version]
- Dobbs, C.; Nitschke, C.R.; Kendal, D. Assessing the drivers shaping global patterns of urban vegetation landscape structure. Sci. Total Environ. 2017, 592, 171–177. [Google Scholar] [CrossRef]
- Duelli, P. Biodiversity evaluation in agricultural landscapes: An approach at two different scales. Agric. Ecosyst. Environ. 1997, 62, 81–91. [Google Scholar] [CrossRef]
- Fahrig, L.; Baudry, J.; Brotons, L.; Burel, F.G.; Crist, T.O.; Fuller, R.J.; Sirami, C.; Siriwardena, G.M.; Martin, J.L. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 2011, 14, 101–112. [Google Scholar] [CrossRef]
- Lindsay, K.; Kirk, D.A.; Bergin, T.M.; Best, L.B.; Sifneos, J.C.; Smith, J. Farmland Heterogeneity Benefits Birds in American Mid-west Watersheds. Am. Midl. Nat. 2013, 170, 121–143. [Google Scholar] [CrossRef]
- Novotný, D.; Zapletal, M.; Kepka, P.; Benes, J.; Konvicka, M. Large moths captures by a pest monitoring system depend on farmland heterogeneity. J. Appl. Entomol. 2015, 139, 390–400. [Google Scholar] [CrossRef]
- Fahrig, L.; Girard, J.; Duro, D.C.; Pasher, J.; Smith, A.C.; Javorek, S.; King, D.J.; Lindsay, K.F.; Mitchell, S.; Tischendorf, L. Farmlands with smaller crop fields have higher within-field biodiversity. Agric. Ecosyst. Env. 2015, 200, 219–234. [Google Scholar] [CrossRef]
- Dunning, J.B.; Danielson, B.J.; Pulliam, H.R. Ecological processes that affect populations in complex landscapes. Oikos 1992, 65, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Ries, L.; Fletcher, R.J.; Battin, J.; Sisk, T.D. Ecological responses to habitat edges: Mechanisms, models, and variability explained. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 491–522. [Google Scholar] [CrossRef] [Green Version]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Zeleny, D.; Li, C.F.; Chytry, M. Pattern of local plant species richness along a gradient of landscape topographical heterogeneity: Result of spatial mass effect or environmental shift? Ecography 2010, 33, 578–589. [Google Scholar] [CrossRef]
- Ekroos, J.; Kuussaari, M.; Tiainen, J.; Heliola, J.; Seimola, T.; Helenius, J. Correlations in species richness between taxa depend on habitat, scale and landscape context. Ecol. Indic. 2013, 34, 528–535. [Google Scholar] [CrossRef]
- Perovic, D.; Gamez-Virues, S.; Borschig, C.; Klein, A.M.; Krauss, J.; Steckel, J.; Rothenwohrer, C.; Erasmi, S.; Tscharntke, T.; Westphal, C. Configurational landscape heterogeneity shapes functional community composition of grassland butterflies. J. Appl. Ecol. 2015, 52, 505–513. [Google Scholar] [CrossRef]
- Collins, S.J.; Fahrig, L. Responses of anurans to composition and configuration of agricultural landscapes. Agric. Ecosyst. Env. 2017, 239, 399–409. [Google Scholar] [CrossRef]
- Hamer, A.J.; McDonnell, M.J. Amphibian ecology and conservation in the urbanising world: A review. Biol. Conserv. 2008, 141, 2432–2449. [Google Scholar] [CrossRef]
- Smallbone, L.T.; Luck, G.W.; Wassens, S. Anuran species in urban landscapes: Relationships with biophysical, built environment and socio-economic factors. Landsc. Urban Plan. 2011, 101, 43–51. [Google Scholar] [CrossRef]
- Li, B.; Zhang, W.; Shu, X.X.; Pei, E.L.; Yuan, X.; Sun, Y.J.; Wang, T.H.; Wang, Z.H. The Impacts of Urbanization on the Distribution and Body Condition of the Rice-paddy Frog (Fejervarya multistriata) and Gold-striped Pond Frog (Pelophylax plancyi) in Shanghai, China. Asian Herpetol. Res. 2016, 7, 200–209. [Google Scholar]
- Zhang, W.; Li, B.; Shu, X.X.; Pei, E.L.; Yuan, X.; Sun, Y.J.; Wang, T.H.; Wang, Z.H. Responses of anuran communities to rapid urban growth in Shanghai, China. Urban For. Urban Green. 2016, 20, 365–374. [Google Scholar] [CrossRef]
- Li, B.; Zhang, W.; Shu, X.; Pei, E.; Yuan, X.; Wang, T.; Wang, Z. Influence of breeding habitat characteristics and landscape heterogeneity on anuran species richness and abundance in urban parks of Shanghai, China. Urban For. Urban Green. 2018, 32, 56–63. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, W.; Li, B.; Li, B.; Zhang, Y.; Wang, T. Construction technology of amphibian habitat and the evaluation of its effectiveness. Chin. J. Appl. Ecol. 2018, 29, 2771–2777. [Google Scholar]
- Sodhi, N.S.; Butler, R.; Laurance, W.F.; Gibson, L. Conservation successes at micro-, meso- and macroscales. Trends Ecol. Evol. 2011, 26, 585–594. [Google Scholar] [CrossRef]
- Gurr, G.M.; Wratten, S.D.; Luna, J.M. Multi-function agricultural biodiversity: Pest management and other benefits. Basic Appl. Ecol. 2003, 4, 107–116. [Google Scholar] [CrossRef]
- Gagne, S.A.; Fahrig, L. Effect of landscape context on anuran communities in breeding ponds in the National Capital Region, Canada. Landsc. Ecol. 2007, 22, 205–215. [Google Scholar] [CrossRef]
- Gagne, S.A.; Fahrig, L. Effects of time since urbanization on anuran community composition in remnant urban ponds. Environ. Conserv. 2010, 37, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Hamer, A.J.; Parris, K.M. Local and landscape determinants of amphibian communities in urban ponds. Ecol. Appl. 2011, 21, 378–390. [Google Scholar] [CrossRef]
- Kruger, D.J.D.; Hamer, A.J.; Du Preez, L.H. Urbanization affects frog communities at multiple scales in a rapidly developing African city. Urban Ecosyst. 2015, 18, 1333–1352. [Google Scholar] [CrossRef]
- Hamer, A.J. Accessible habitat delineated by a highway predicts landscape-scale effects of habitat loss in an amphibian community. Landsc. Ecol. 2016, 31, 2259–2274. [Google Scholar] [CrossRef]
- Pillsbury, F.C.; Miller, J.R. Habitat and landscape characteristics underlying anuran community structure along an urban–rural gradient. Ecol. Appl. 2008, 18, 1107–1118. [Google Scholar] [CrossRef]
- Guerry, A.D.; Hunter, M.L. Amphibian distributions in a landscape of forests and agriculture: An examination of landscape composition and conf iguration. Conserv. Biol. 2002, 16, 745–754. [Google Scholar] [CrossRef]
- Wagner, N.; Züghart, W.; Mingo, V.; Lötters, S. Are deformation rates of anuran developmental stages suitable indicators for environmental pollution? Possibilities and limitations. Ecol. Indic. 2014, 45, 394–401. [Google Scholar] [CrossRef]
- Knutson, M.G.; Sauer, J.R.; Olsen, D.A.; Mossman, M.J.; Hemesath, L.M.; Lannoo, M.J. Effects of Landscape Composition and Wetland Fragmentation on Frog and Toad Abundance and Species Richness in Iowa and Wisconsin, U.S.A. Conserv. Biol. 1999, 13, 1437–1446. [Google Scholar] [CrossRef]
- Van Buskirk, J. Local and landscape influence on amphibian occurrence and abundance. Ecology 2005, 86, 1936–1947. [Google Scholar] [CrossRef]
- Vos, C.C.; Stumpel, A.H.P. Comparison of habitat-isolation parameters in relation to fragmented distribution patterns in the tree frog (Hyla arborea). Landsc. Ecol. 1996, 11, 203–214. [Google Scholar] [CrossRef]
- Fei, L.; Hu, S.; Ye, C.; Huang, Y. Fauna Sinica. In Amphibia Vol. 2 Anura; Science Press: Beijing, China, 2009. [Google Scholar]
- Crump, M.L.; Scott, N.J. Visual encounter survey. In Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians; Heyer, W.R., Donnelly, M.A., McDiarmid, R.W., Hayek, L.C., Foster, M.S., Eds.; Smithsonian Institution Press: Washington, DC, USA, 1994; pp. 84–92. [Google Scholar]
- Mazerolle, M.J.; Desrochers, A.; Rochefort, L. Landscape characteristics influence pond occupancy by frogs after accounting for detectability. Ecol. Appl. 2005, 15, 824–834. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, D.I.; Nichols, J.D.; Lachman, G.B.; Droege, S.; Royle, J.A.; Langtimm, C.A. Estimating site occupancy rates when detection probabilities are less than one. Ecology 2002, 83, 2248–2255. [Google Scholar] [CrossRef]
- Moreno, M.; Lele, S.R. Improved estimation of site occupancy using penalized likelihood. Ecology 2010, 91, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Hines, J.E. PRESENCE2-Software to Estimate Patch Occupancy and Related Parameters. USGS-PWRC: Laurel, MS, USA, 2006. [Google Scholar]
- Pellet, J.; Schmidt, B.R. Monitoring distributions using call surveys: Estimating site occupancy, detection probabilities and inferring absence. Biol. Conserv. 2005, 123, 27–35. [Google Scholar] [CrossRef] [Green Version]
- McGarigal, K.; Cushman, S.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 15 June 2021).
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- O’Brien, C.M. Analysing Ecological Data; Zuur, A.F., Ieno, E.N., Smith, G.M., Eds.; Springer: New York, NY, USA, 2007; Volume 75, pp. 426–427. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer Science & Business Media: Berlin, Germany, 2003. [Google Scholar]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Barton, K. MuMIn: Multi-Model Inference. Available online: http://CRAN.R-project.org/package=MuMIn (accessed on 1 September 2022).
- Gibbs, J.P.; Whiteleather, K.K.; Schueler, F.W. Changes in frog and, toad populations over 30 years in New York State. Ecol. Appl. 2005, 15, 1148–1157. [Google Scholar] [CrossRef]
- Browne, C.L.; Paszkowski, C.A.; Foote, A.L.; Moenting, A.; Boss, S.M. The relationship of amphibian abundance to habitat features across spatial scales in the Boreal Plains. Ecoscience 2009, 16, 209–223. [Google Scholar] [CrossRef]
- Scheffers, B.R.; Paszkowski, C.A. Amphibian use of urban stormwater wetlands: The role of natural habitat features. Landsc. Urban Plan. 2013, 113, 139–149. [Google Scholar] [CrossRef]
- Fahrig, L.; Arroyo-Rodríguez, V.; Bennett, J.R.; Boucher-Lalonde, V.; Cazetta, E.; Currie, D.J.; Eigenbrod, F.; Ford, A.T.; Harrison, S.P.; Jaeger, J.A.G.; et al. Is habitat fragmentation bad for biodiversity? Biol. Conserv. 2019, 230, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Knutson, M.G.; Richardson, W.B.; Reineke, D.M.; Gray, B.R.; Parmelee, J.R.; Weick, S.E. Agricultural ponds support amphibian populations. Ecol. Appl. 2004, 14, 669–684. [Google Scholar] [CrossRef] [Green Version]
- Houlahan, J.E.; Findlay, C.S. The effects of adjacent land use on wetland amphibian species richness and community composition. Can. J. Fish. Aquat. Sci. 2003, 60, 1078–1094. [Google Scholar] [CrossRef]
- Evans, K.L.; Chamberlain, D.E.; Hatchwell, B.J.; Gregory, R.D.; Gaston, K.J. What makes an urban bird. Glob. Change Biol. 2011, 17, 32–44. [Google Scholar] [CrossRef]
- Turrini, T.; Knop, E. A landscape ecology approach identifies important drivers of urban biodiversity. Glob. Change Biol. 2015, 21, 1652–1667. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Wang, I.J.; Comes, H.P.; Peng, H.; Qiu, Y.-X. Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species, Emmenopterys henryi (Rubiaceae). Sci. Rep. 2016, 6, 24041. [Google Scholar] [CrossRef] [Green Version]
- Devictor, V.; Jiguet, F. Community richness and stability in agricultural landscapes: The importance of surrounding habitats. Agric. Ecosyst. Environ. 2007, 120, 179–184. [Google Scholar] [CrossRef]
- Tscharntke, T.; Tylianakis, J.M.; Rand, T.A.; Didham, R.K.; Fahrig, L.; Batary, P.; Bengtsson, J.; Clough, Y.; Crist, T.O.; Dormann, C.F.; et al. Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol. Rev. Camb. Philos. Soc. 2012, 87, 661–685. [Google Scholar] [CrossRef]
- Semlitsch, R.D.; Bodie, J.R. Biological Criteria for Buffer Zones around Wetlands and Riparian Habitats for Amphibians and Reptiles. Conserv. Biol. 2003, 17, 1219–1228. [Google Scholar] [CrossRef] [Green Version]
- Cushman, S.A. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Conserv. 2006, 128, 231–240. [Google Scholar] [CrossRef]
- Lima, J.R.; Galatti, U.; Lima, C.; Faveri, S.B.; Vasconcelos, H.L.; Neckeloliveira, S. Amphibians on Amazonian Land-Bridge Islands are Affected More by Area Than Isolation. Biotropica 2015, 47, 369–376. [Google Scholar] [CrossRef]
- Almeida-Gomes, M.; Vieira, M.V.; Rocha, C.F.D.; Metzger, J.P.; De Coster, G. Patch size matters for amphibians in tropical fragmented landscapes. Biol. Conserv. 2016, 195, 89–96. [Google Scholar] [CrossRef]
- Li, B.; Zhang, W.; Wang, T.; Zhou, L. Breeding habitat influences abundance and body condition of rice frog (Fejervarya multistriata) in agricultural landscape of Shanghai, China. Agric. Ecosyst. Env. 2019, 279, 74–79. [Google Scholar] [CrossRef]
- May, D.; Shidemantle, G.; Melnick-Kelley, Q.; Crane, K.; Hua, J. The effect of intensified illuminance and artificial light at night on fitness and susceptibility to abiotic and biotic stressors. Environ. Pollut. 2019, 251, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Kruger, D.J.D.; Du Preez, L.H. The effect of airplane noise on frogs: A case study on the Critically Endangered Pickersgill’s reed frog (Hyperolius pickersgilli). Ecol. Res. 2016, 31, 393–405. [Google Scholar] [CrossRef]
- Lambert, M.R.; Giller, G.S.J.; Barber, L.B.; Fitzgerald, K.C.; Skelly, D.K. Suburbanization, estrogen contamination, and sex ratio in wild amphibian populations. Proc. Natl. Acad. Sci. USA 2015, 112, 11881–11886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawatzky, M.E.; Martin, A.E.; Fahrig, L. Landscape context is more important than wetland buffers for farmland amphibians. Agric Ecosyst Env. 2019, 269, 97–106. [Google Scholar] [CrossRef]
- Fletcher, R.J.; Didham, R.K.; Banks-Leite, C.; Barlow, J.; Ewers, R.M.; Rosindell, J.; Holt, R.D.; Gonzalez, A.; Pardini, R.; Damschen, E.I.; et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 2018, 226, 9–15. [Google Scholar] [CrossRef]
Variable | Abbreviation | Definition |
---|---|---|
Area Metrics (configurational heterogeneity) | ||
Largest patch index b,c,d | LPI | The percentage of the landscape comprised by the largest patch |
Mean patch size b,c | Area_MN | A function of the number of patches in the class and total class area |
AggregationMetrics (configurational heterogeneity) | ||
Euclidean nearest neighbor distance distribution a | ENN_MN | Using simple Euclidean geometry as the shortest straight-line distance between the focal patch and its nearest neighbor of the same class |
Interspersion and Juxtaposition index a,b,c,d | IJI | The observed interspersion over the maximum possible interspersion for the given number of patch types. |
Connectance index a,d | CONNECT | The number of functional joinings between all patches of the corresponding patch type, divided by the total number of possible joinings between all patches of the corresponding patch type |
Patch density b,c,d | PD | The number of patches in the landscape, divided by total landscape area |
Diversity Metrics (compositional heterogeneity) | ||
Patch richness a,b,c,d | PR | Number of patch types (classes) present in the landscape |
Shannon evenness index a | SHEI | SHEI equals minus the sum, across all patch types, of the proportional abundance of each patch type multiplied by that proportion, divided by the logarithm of the number of patch types |
Family/Species | ˆψ | (ψ) | ˆp | No. | Nmin |
---|---|---|---|---|---|
Bufonidae | |||||
Bufo gargarizans (naïve ψ = 0.977) | 0.979 | 0.023 | 0.880 | 43 | 1.4 |
Ranidae | |||||
Pelophylax plancyi (naïve ψ = 0.909) | 0.912 | 0.043 | 0.906 | 40 | 1.2 |
Pelophylax nigromaculatus (naïve ψ = 0.909) | 0.911 | 0.043 | 0.923 | 40 | 1.2 |
Fejervarya multistriata (naïve ψ = 0.841) | 0.847 | 0.056 | 0.841 | 37 | 1.6 |
Microhylidae | |||||
Microhyla fissipes (naïve ψ = 0.409) | 0.453 | 0.086 | 0.555 | 18 | 3.7 |
Kaloula borealis | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Li, B.; Yang, G. The Effects of Landscape Heterogeneity on East China Anuran Communities: Identifying Spatial Scales in an Urbanizing Landscape. Diversity 2022, 14, 968. https://doi.org/10.3390/d14110968
Zhang W, Li B, Yang G. The Effects of Landscape Heterogeneity on East China Anuran Communities: Identifying Spatial Scales in an Urbanizing Landscape. Diversity. 2022; 14(11):968. https://doi.org/10.3390/d14110968
Chicago/Turabian StyleZhang, Wei, Ben Li, and Gang Yang. 2022. "The Effects of Landscape Heterogeneity on East China Anuran Communities: Identifying Spatial Scales in an Urbanizing Landscape" Diversity 14, no. 11: 968. https://doi.org/10.3390/d14110968
APA StyleZhang, W., Li, B., & Yang, G. (2022). The Effects of Landscape Heterogeneity on East China Anuran Communities: Identifying Spatial Scales in an Urbanizing Landscape. Diversity, 14(11), 968. https://doi.org/10.3390/d14110968