Assessment of Genetic Diversity among Wild Ruta chalepensis L. from the North of Jordan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Collection Site Descriptions
2.2. Morphological Data
2.3. Molecular Analysis
3. Results and Discussion
3.1. Morphological Trait Analysis
3.2. Molecular Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonzalez-Trujano, M.; Carrera, D.; Ventura-Martinez, R.; Cedillo-Portugal, E.; Navarrete, A. Neuropharmacological profile of an ethanol extract of Ruta chalepensis L. in mice. J. Ethnopharmacol. 2006, 106, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Al-Qudah, M.A.; Al-Sarayreh, S.A.; Al-Tarawneh, I.N.; Al-Shuneigat, J.M.; Al-Saraireh, Y.M.; Alsharafa, K.Y. The chemical composition and the antibacterial properties of Ruta graveolens essential oil grown in northern Jordan. Jordan J. Biol. Sci. 2015, 8, 139–143. [Google Scholar]
- Gali, L.; Bedjou, F.; Velikov, K.P.; Ferrari, G.; Fransico, D. High-pressure homogenization-assisted extraction of bioactive compounds from Ruta chalepensis. J. Food Meas. 2020, 14, 2800–2809. [Google Scholar] [CrossRef]
- Günaydin, K.; Sezer, S. Phytochemical studies on Ruta chalepensis (LAM.) lamarck. Nat. Prod. Res. 2005, 19, 203–210. [Google Scholar] [PubMed]
- Iauk, L.; Mangano, K.; Rapisarda, A.; Ragusa, S.; Maiolino, L.; Musumeci, R.; Costanzo, R.; Serra, A.; Speciale, A. Protection against murine endotexemia by treatment with Ruta chalepensis L., a plant with anti-inflammatory properties. J. Ethnopharm. 2004, 90, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Ciganda, C.; Laborde, A. Herbal infusions used for induced abortion. J. Toxicol. Clin. Toxicol. 2003, 41, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Aburjai, T.; Hudaib, M.; Tayyem, R.; Yousef, M.; Qishawi, M. Ethnopharmacogical survey of medicinal herbs in Jordan, the Ajloun Heights Region. J. Ethnopharmacol. 2007, 110, 294–304. [Google Scholar] [CrossRef]
- Abu-Hamdah, S.M. Pharmacognostical and Phytochemical Identification of Selected Medicinal Plants Commonly Used in Jordan. Master’s Thesis, University of Jordan, Amman, Jordan, 2001. [Google Scholar]
- Acquaviv, R.; Iauk, L.; Sorrenti, V.; Lanteri, R.; Santangelo, R.; Licata, A.; Licata, F.; Vanella, A.; Malaguarnera, M.; Ragusa, S.; et al. Oxidative profile in patients with colon cancer: Effects of Ruta chalepensis L. Eur. Revi. Med. Pharm. Sci. 2011, 15, 181–191. [Google Scholar]
- Loizzo, M.R.; Falco, T.; Bonesi, M.; Sicari, V.; Tundis, R.; Bruno, M. Ruta chalepensis L. (Rutaceae) leaf extract: Chemical composition, antioxidant and hypoglicaemic activities. Nat. Prod. Res. 2018, 32, 521–528. [Google Scholar] [CrossRef]
- Abdel-Salam, E.M.; Faisal, M.; Alatar, A.A.; Qahtan, A.A.; Alam, P. Genome-wide transcriptome variation landscape in Ruta chalepensis organs revealed potential genes responsible for rutin biosynthesis. J. Biotechnol. 2020, 325, 43–56. [Google Scholar] [CrossRef]
- Shehadeh, M.B.; Afifi, F.U.; Abu-Hamdah, S.M. Platelet aggregation inhibitors from aerial parts of Ruta chalepensis grown in Jordan. Integr. Med. Insights. 2007, 2, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Khlifi, D.; Sghaier, R.; Amouri, S.; Laouini, D.; Hamdi, M.; Bouajila, J. Composition and anti-oxidant, anti-cancer and anti-inflammatory activities of Artemisia herba-alba, Ruta chalpensis L. and Peganum harmala L. Food Chem. Toxicol. 2013, 55, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Ashour, M.N.; Habib, D.F.; Hana, R.A.; El-Daba, M. Beneficial effects of curcumin and Ruta chalepensis on the antioxidant system and inflammation in hypercholesteromic rats. Aust. J. Basic Appl. Sci. 2011, 5, 2562–2567. [Google Scholar]
- Ntalli, N.G.; Manconi, F.; Leonti, M.; Maxia, A.; Caponi, P. Aliphatic ketones from Ruta chalepensis (Rutaceae) induce paralysis on root knot nematodes. J. Agric. Food Chem. 2011, 59, 7098–7103. [Google Scholar] [CrossRef]
- Conti, B.; Leonardi, M.; Pistelli, L.; Profeti, R.; Ouerghemmi, I.; Benelli, G. Larvicidal and repellent activity of essential oils from wild and cultivated Ruta chalepensis L. (Rutaceae) against Aedes albopictus Skuse (Diptera: Culicidae), an arbovirus vector. Parasitol. Res. 2013, 112, 991–999. [Google Scholar] [CrossRef]
- Bouabidi, W.; Hanana, M.; Gargouri, S.; Amri, I.; Fezzani, T.; Ksontini, M.; Jamoussi, B.; Hamtoni, L. Chemical composition, phytotoxic and antifungal properties of Ruta chalepensis L. essential oils. Nat. Prod. Res. 2014, 28, 864–868. [Google Scholar]
- Christie, M.; Rayment, M. An economic assessment of the ecosystem service benefits derived from the SSSI biodiversity conservation policy in England and Wales. Ecosyst. Serv. 2012, 1, 70–84. [Google Scholar] [CrossRef]
- Oran, S.A.; Al-Eisawi, D.M. The status of medicinal plants in the high mountains Northern of Jordan. Int. J. Biodivers. Conserv. 2014, 6, 436–443. [Google Scholar]
- Kala, C.P.; Farooquee, N.A. Prioritization of medicinal plants on the basis of available knowledge, existing practices and use value status in Uttaranchal, India. Biodivers. Conserv. 2004, 13, 453–469. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, Y.; Gong, X.; Fan, M. Genetic variation in the endangered Rutaceae species Citrus hongheensis based on ISSR fingerprinting. Genet. Resour. Crop Evol. 2010, 57, 1239–1248. [Google Scholar] [CrossRef]
- Hufford, M.B.; Jorge, C.; Berny, M.; Teran, Y.; Paul, G. Crop Biodiversity: An Unfinished Magnum Opus of Nature. Annu. Rev. Plant Biol. 2019, 70, 727–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Idrees, M.; Irshad, M. Molecular markers in plants for analysis of genetic diversity: A review. Eur. Acad. Res. 2014, 2, 1513–1540. [Google Scholar]
- Khan, S.; Al-Qurainy, F.; Nadeem, M.; Tarroum, M. Development of genetic markers for Ochradenus arabicus (Resedaceae), an endemic medicinal plant of Saudi Arabia. Genet. Mol. Res. 2012, 11, 1300–1308. [Google Scholar] [CrossRef]
- StatSoft, Inc. STATISTICA (Data Analysis Software System). Version 10. 2011. Available online: http://www.statsoft.com (accessed on 1 January 2015).
- Zar, J.H. Biostatistical Analysis, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 1996. [Google Scholar]
- Qasem, J.R.; Abdallat, A.M.; Hasan, S.M. Genetic diversity of Solanum elaeagnifolium, an invasive problematic weed in Jordan. Weed Res. 2019, 59, 222–234. [Google Scholar] [CrossRef]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. iMEC: Online Marker Efficiency Calculator. Appl. Plant Sci. 2018, 6, e01159. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. J. Bioinform. 2006, 22, 2688–2690. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, 293–296. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- Muntoreanu, T.G.; da Silva, C.R.; Melo-de-Pinna, G.F. Comparative leaf anatomy and morphology of some neotropical Rutaceae: Pilocarpus Vahl and related genera. Plant Syst. Evol. 2011, 296, 87–99. [Google Scholar] [CrossRef]
- Lamani, S.; Murthy, H.N. Diversity of wood-apple (Limonia acidissima L., Rutaceae) genetic resources in South India. Genet Resour. Crop. Evol. 2022, 69, 2929–2946. [Google Scholar] [CrossRef]
- Ouédraogo, L.; Fuchs, D.; Schaefer, H.; Kiendrebeogo, M. Morphological and molecular characterization of zanthoxylum zanthoxyloides (Rutaceae) from Burkina Faso. Plant 2019, 8, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azizi, A.; Wagner, C.; Honermeier, B.; Friedt, W. Intraspecific diversity and relationships among subspecies of Origanum vulgare revealed by comparative AFLP and SAMPL marker analysis. Plant Syst. Evol. 2009, 281, 151–160. [Google Scholar] [CrossRef]
- Tounsi, M.S.; Wannes, W.A.; Ouerghemmi, I.; Msaada, K.; Smaoui, A.; Marzouk, B. Variation in essential oil and fatty acid composition in different organs of cultivated and growing wild Ruta chalepensis L. Ind. Crop. Prod. 2011, 33, 617–623. [Google Scholar] [CrossRef]
- Mussalam, I. Morphological Diversity, Rutin Content and In Vitro Propagation of Capparis spinosa L. in Jordan. Ph.D. Dissertation, Faculty of Graduate Studies, The University of Jordan, Amman, Jordan, 2009. [Google Scholar]
- Mądry, W.; Pluta, S.; Sieczko, L.; Studnicki, M. Phenotypic diversity in a sample of blackcurrant (Ribes nigrum) cultivars maintained in the fruit breeding department at research institute of pomology and floriculture in Skierniewice, Poland. J. Fruit Ornam. Plant Res. 2010, 18, 23–37. [Google Scholar]
- Raduśin, J. Phenotypic variation in Helichrysum arenarium (L.) Moench from natural habitats. J. Fruit Ornam. Plant Res. 2002, 18, 23–37. [Google Scholar]
- Zahedi, B.; Kashi, A.; Zaman, Z.; Mosahebi, G.; Hassani, M. Evaluation of Iranian garlic (Alliuim sativum L.) genotypes using multivariate analysis methods based on morphological characters. Biotechnology 2007, 6, 353–356. [Google Scholar] [CrossRef] [Green Version]
- Ouinsavi, C.; Sokpon, N. Morphological variation and ecological structure of Iroko (Milicia excelsa Welw. C.C. Berg) Populations across different biogeographical zones in Benin. Int. J. For. Res. 2010, 2010, 1687–9368. [Google Scholar]
- Dhief, A.; Guasmi, F.; Triki, T.; Neffati, M.; Aschi-Smiti, S. Natural genetic variation in Calligonum Tunisian genus analyzed by RAPD markers. Afr. J. Biotechnol. 2011, 10, 9766–9778. [Google Scholar]
- Abdel-Haleem, H.; Luo, Z.; Szczepanek, A. Genetic diversity and population structure of the USDA collection of Brassica juncea L. Ind. Crops Prod. 2022, 18, 115379. [Google Scholar] [CrossRef]
- Ayele, T.B.; Gailing, O.; Finkeldey, R. Assessment and integration of genetic, morphological and demographic variation in Hagenia abyssinica (Bruce) JF Gmel to guide its conservation. J. Nat. Conserv. 2011, 19, 8–17. [Google Scholar] [CrossRef]
- Martinez, L.; Cavangnaro, P.; Masuelli, J.; Rodríguez, J. Evaluation of diversity among Argentine grapevine (Vitis vinifera L.) varieties using morphological data and AFLP markers. Electron. J. Biotechnol. 2003, 6, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Azizi, A.; Hadian, J.; Honermeier, B.; Friedt, W. Correlation between molecular markers, agro-morphological traits and chemical characteristics in a germplasm collection of the medicinal plant Origanum vulgare L. Chem. Biodivers. 2012, 9, 2784–2801. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.D.; Jia, R.Z.; Meng, C.; Ti, C.W.; Wang, Y.L. Diversity and population structure of a dominant deciduous tree based on morphological and genetic data. AoB Plants 2015, 7, plv103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meloni, M.; Dettori, C.A.; Reid, A.; Bacchetta, G.; Hugot, L.; Conti, E. High genetic diversity and presence of genetic structure characterise the endemics Ruta corsica and Ruta lamarmorae (Rutaceae). Caryologia 2020, 73, 11–26. [Google Scholar]
- Hamrick, J.L.; Godt, M.J.W. Effects of life history traits on genetic diversity in plant species. Philos. Trans. R. Soc. Biol. 1996, 351, 1291–1298. [Google Scholar]
- Teixeira, H.; Rodríguez-Echeverría, S.; Nabais, C. Correction: Genetic Diversity and Differentiation of Juniperus thurifera in Spain and Morocco as Determined by SSR. PLoS ONE 2015, 10, e0088996. [Google Scholar] [CrossRef] [Green Version]
- Jansen, P.C.M. Spices, Condiments and Medicinal Plants in Ethiopia, Their Taxonomy and Agricultural Significance; Agricultural Research Reports 906; Centre for Agricultural Publishing and Documentation: Wageningen, The Netherlands, 1981; pp. 104–110. [Google Scholar]
- Vargas, P.; Heleno, R.; Traveset, A.; Nogales, M. Contrasting patterns of plant evolution in the Canarian and Galápagos islands: The origin of dispersal and colonization. In Proceedings of the Amurga International Conferences on Island Biodiversity 2011; Caujapé-Castells, J., Nieto Feliner, G., Fernández Palacios, J.M., Eds.; Fundación Canaria Amurga-Maspalomas: Las Palmas de Gran Canaria, Spain, 2013; pp. 182–191. [Google Scholar]
- Hartl, D.L.; Clark, A.G. Principles of Population Genetics, 4th ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2007; pp. 257–285. [Google Scholar]
- Nybom, H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 2004, 13, 1143–1155. [Google Scholar] [CrossRef]
Site | Province | Habitat Description | Rainfall | Altitude | Latitude | Longitude |
---|---|---|---|---|---|---|
Beit Idis | Irbid | Mountainous evergreen oak. | 450 | 650 | 32°26′14″. | 35°42′29″ |
Massom | Irbid | Rocky cliff in cultivated land, near Jordan Valley. | 380 | 82 | 32°40′12″ | 35°39′22″ |
Aqraba | Irbid | Low mountainous, rocky, evergreen oak. | 450 | 215 | 32°44′56″ | 35°47′55″ |
Kofer Assad | Irbid | Valley bottom. | 470 | 172 | 32°38′07″ | 35°43′38″ |
Taibeh | Irbid | Cliff near Jordan Valley, perennial bulbs. | 470 | 353 | 32°34′32″ | 35°44′06″ |
Ajloun-A | Ajloun | Mountainous, evergreen oak. | 530 | 500 | 32°23′42″ | 35°40′15″ |
Ajloun-B | Ajloun | Mountainous, evergreen oak. | 600 | 940 | 32°22′04″ | 35°44′19″ |
Jarash-A | Jarash | Near stone fruit orchards. | 400 | 600 | 32°16′23″ | 35°52′25″ |
Jarash-B | Jarash | High mountainous, mixed pine and oak. | 550 | 750 | 32°09′59″ | 35°49′06″ |
Morphological Trait | Measurement Method |
---|---|
Plant height (cm) | Measured from ground level to the tip of the plant. |
Plant width (cm) | The mean of two measurements taken perpendicularly. |
Internode length (mm) | Measured as the distance between the third and the fourth nodes of a young shoot. |
Rachis length (mm) | Measured as the length of the main axis of the compound leaf. |
Number of leaves | Determined by counting the leaves. |
Compound leaf area (cm2) | Determined by using a leaf area meter. |
Number of leaflets per leaf | Determined by counting the leaflets in the compound leaf. |
Ultimate segment length (mm) | Measured from the base to tip of the terminal leaflet of the compound leaf. |
Ultimate segment area (cm2) | Measured from the leaflet tip to the base of the terminal leaflet of the compound leaf. |
Ultimate segment width (mm) | Measured as the widest part of the terminal leaflet of the compound leaf. |
Young shoot diameter (mm) | Measured in the middle part. |
Leaflet thickness (mm) | Measured as the thickened part of the leaflet. |
Petal length (mm) | Measured from the tip to the base of the petal. |
Petal width (mm) | Measured as the widest part of the petal. |
Number of flowers per inflorescence | Counting the flowers in the inflorescence. |
Number of fruits per inflorescence | Counting the fruit in the cluster (corymb). |
Pentamerous fruit length (mm) | Measured from base to tip. |
Pentamerous fruit diameter (mm) | Measured at the middle distance between the end and the tip. |
Tetramerous fruit length (mm) | Measured from base to tip. |
Tetramerous fruit diameter (mm) | Measured at the middle distance between the end and the tip. |
Number of seeds in pentamerous fruit | Counting the seeds. |
Number of seeds in tetramerous fruit | Counting the seeds. |
Trait | Beit Idis | Aqraba | Massom | Kofer Assad | Taibeh | Ajloun-A | Ajloun-B | Jarash-A | Jarash-B | H′ * |
---|---|---|---|---|---|---|---|---|---|---|
Plant height | 80.46 a** | 76.33 ab | 73.14 abc | 78.13 ab | 75.12 ab | 71.42 bc | 42.23 d | 65.13 c | 46.28 d | 0.97 |
Plant width | 48.72 a | 41.52 bc | 40.58 bc | 49.07 a | 40.28 bc | 39.67 c | 20.85 b | 46.27 ab | 23.21 d | 1.00 |
Internode length | 46.38 a | 43.60 ab | 44.76 ab | 45.74 a | 48.69 a | 46.24 a | 37.21 bc | 40.60 c | 36.50 c | 1.01 |
Rachis length | 79.74 a | 78.26 a | 78.59 a | 79.50 a | 82.99 a | 78.19 a | 40.40 c | 54.65 b | 43.35 c | 0.83 |
Number of leaves | 40.03 a | 39.33 a | 36.40 ab | 38.73 a | 35.37 abc | 30.25 cd | 27.47 d | 30.81 bcd | 29.42 d | 0.90 |
Compound leaf area | 28.29 a | 26.38 ab | 25.79 ab | 26.91 a | 24.29 bc | 22.55 c | 17.20 d | 18.56 d | 17.30 d | 1.03 |
Number of leaflets/leaf | 51.96 a | 48.97 ab | 44.34 bc | 46.02 bc | 53.33 a | 51.88 a | 38.44 e | 43.69 cd | 39.12 de | 0.91 |
Ultimate segment length | 22.44 a | 21.10 ab | 20.03 abc | 21.47 ab | 18.82 bc | 17.94 c | 19.63 abc | 17.17 c | 17.04 c | 1.01 |
Area of ultimate segment | 4.07 bcd | 3.81 cde | 4.22 bc | 5.00 a | 4.57 b | 3.54 def | 3.36 ef | 3.23 ef | 2.99 f | 0.94 |
Ultimate segment width | 4.77 a | 4.62 a | 4.70 a | 4.54 a | 4.19 ab | 3.76 b | 3.65 b | 3.76 b | 3.60 b | 1.03 |
Young shoot diameter | 2.36 c | 2.38 c | 2.49 bc | 3.21 a | 2.43 bc | 1.72 d | 1.54 d | 2.76 b | 1.72 d | 0.84 |
Leaflet thickness | 1.16 b | 1.15 b | 1.10 b | 1.16 b | 1.10 b | 1.10 b | 2.03 a | 2.27 a | 2.03 a | 0.41 |
Petal length | 6.75 a | 6.55 a | 5.74 b | 6.41 ab | 6.29 ab | 6.69 a | 6.94 a | 6.52 a | 6.92 a | 0.97 |
Petal width | 3.64 a | 3.63 a | 3.04 b | 3.66 a | 3.47 ab | 3.53 ab | 3.03 b | 3.55 a | 3.68 a | 0.94 |
Number of flowers per inflorescence | 27.64 a | 25.95 abc | 24.95 a–d | 26.92 ab | 27.71 a | 24.00 a–d | 21.77 cd | 22.87 bcd | 20.39 d | 0.88 |
Number of fruits per inflorescence | 26.68 a | 24.73 ab | 23.08 abc | 25.98 a | 27.06 a | 23.20 abc | 19.48 c | 21.22 bc | 19.67 c | 0.93 |
Pentamerous fruit length | 8.23 a | 8.11 ab | 7.61 c | 7.78 bc | 7.70 c | 7.96 abc | 7.82 bc | 7.58 c | 7.82 bc | 0.88 |
Pentamerous fruit diameter | 7.80 ab | 7.71 b | 7.30 bc | 7.73 b | 7.62 bc | 8.11 a | 7.56 bc | 7.46 bc | 7.71 b | 0.87 |
Tetramerous fruit length | 6.75 a | 6.72 a | 6.44 c | 6.61 abc | 6.64 ab | 6.61 abc | 6.50 bc | 6.57 abc | 6.61 abc | 0.97 |
Tetramerous fruit diameter | 6.32 ab | 6.33 ab | 6.25 b | 6.28 b | 6.28 b | 6.44 a | 6.29 ab | 6.37 ab | 6.37 ab | 0.94 |
Number of seeds in pentamerous fruit | 35.59 a | 33.77 ab | 33.09 abc | 30.37 abc | 34.61 ab | 32.43 abc | 27.01 d | 28.6 cd | 28.09 cd | 0.97 |
Number of seeds in tetramerous fruit | 23.72 a | 23.03 a | 19.73 bc | 22.07 ab | 22.59 a | 22.06 ab | 17.98 c | 17.61 c | 17.42 d | 0.99 |
Primers Combinations | TN * | SR (bp) | NM | HI | PIC | EMR | AMH | MI | DP | RP |
---|---|---|---|---|---|---|---|---|---|---|
M-CTT/E-AAC | 114 | 71–540 | 14 | 0.451 | 0.349 | 8.53 | 0.00037 | 0.00321 | 0.56938 | 4.7608 |
M-CTT/E-AGC | 140 | 78–253 | 8 | 0.492 | 0.371 | 3.06 | 0.00076 | 0.00234 | 0.80863 | 2.4347 |
M-CTA/E-AAC | 136 | 127–364 | 6 | 0.419 | 0.339 | 1.00 | 0.41898 | 0.41898 | 0.18246 | 0.00 |
M-CTA/E-AGC | 93 | 169–374 | 3 | 0.352 | 0.290 | 0.45 | 0.00191 | 0.00087 | 0.94885 | 0.9130 |
M-CTG/E-AAC | 117 | 119–527 | 12 | 0.325 | 0.272 | 8.75 | 0.00032 | 0.00281 | 0.36741 | 1.6739 |
M-CTG/E-AGC | 89 | 120–410 | 8 | 0.499 | 0.374 | 3.41 | 0.00077 | 0.00264 | 0.76265 | 2.2608 |
M-CAG/E-AAC | 124 | 155–272 | 3 | 0.496 | 0.383 | 1.00 | 0.49556 | 0.49556 | 0.50047 | 0.00 |
M-CAG/E-AGC | 90 | 110–360 | 5 | 0.168 | 0.153 | 3.63 | 0.00045 | 0.00165 | 0.17647 | 0.7391 |
Source | Df | Sum of Squares | Mean Square | Est. Var. | Percentage |
---|---|---|---|---|---|
Among populations | 8 | 364.022 | 45.503 | 2.038 | 30% |
Within populations | 171 | 811.800 | 4.747 | 4.747 | 70% |
Total | 179 | 1175.822 | 6.785 | 100% | |
Value | p-Value | ||||
Fst | 0.300 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ajlouni, Z.; Migdadi, O.; Makhadmeh, I.; Aldahadha, A.; Hasan, S.; Al-Abdallat, A.M. Assessment of Genetic Diversity among Wild Ruta chalepensis L. from the North of Jordan. Diversity 2022, 14, 969. https://doi.org/10.3390/d14110969
Al-Ajlouni Z, Migdadi O, Makhadmeh I, Aldahadha A, Hasan S, Al-Abdallat AM. Assessment of Genetic Diversity among Wild Ruta chalepensis L. from the North of Jordan. Diversity. 2022; 14(11):969. https://doi.org/10.3390/d14110969
Chicago/Turabian StyleAl-Ajlouni, Zakaria, Osama Migdadi, Ibrahim Makhadmeh, Abdallah Aldahadha, Shireen Hasan, and Ayed M. Al-Abdallat. 2022. "Assessment of Genetic Diversity among Wild Ruta chalepensis L. from the North of Jordan" Diversity 14, no. 11: 969. https://doi.org/10.3390/d14110969
APA StyleAl-Ajlouni, Z., Migdadi, O., Makhadmeh, I., Aldahadha, A., Hasan, S., & Al-Abdallat, A. M. (2022). Assessment of Genetic Diversity among Wild Ruta chalepensis L. from the North of Jordan. Diversity, 14(11), 969. https://doi.org/10.3390/d14110969