Considering the Geographic Diversity of Natural Enemy Traits in Biological Control: A Quantitative Approach Using Orius Predators as an Example
Abstract
:1. Introduction
1.1. Variation across Geographic Range
1.2. Phenotypic Plasticity or Local Adaptation?
1.3. Integrating Zoogeography and Biological Control
2. A Quantitative Approach for Evaluating Collection Sites of Natural Enemies
3. Applying the Approach to Orius Bugs
4. Orius albidipennis as a Case Study
Geographically Variable Trait | Standardized Influence of Geographic Location on Trait Values * | Sum of Geographic Location Influence | Trait Relative Weights | Weighted Influence Values | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Lat. | Alt. | D. | |||||||||
Al | Gi | Al | Gi | Al | Gi | Al | Gi | Al | Gi | ||
Tendency for winter diapause | - | - | - | - | - | - | - | - | - | - | - |
Range of thermal tolerance | 38 | 30 | 0 | 0 | 0 | 0 | 38 | 30 | 7 | 266 | 210 |
Body size | 38 | 30 | 5.3 | 0.2 | 0 | 0 | 43.3 | 30.2 | 3 | 130 | 90.6 |
Genetic variability | 0 | 0 | 0 | 0 | −27 | −7.8 | −27 | −7.8 | 8 | −216.2 | −62.7 |
Flight capacity | 38 | 30 | 5.3 | 0.2 | 0 | 0 | 43.3 | 30.2 | −4 | −173.3 | −120.9 |
Total rank | 6.5 | 117.1 |
5. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Appendix A
- ₋
- Trait values correlate positively with latitude and altitude, but not with distance from the center of species distribution.
- ₋
- In the case of application of augmentative programs in annual summer crops, a tendency for winter diapause is of no consequence and should therefore be disregarded.
- ₋
- Relative weights were determined as follows:Within the category of classical biological control, temperate climate received a positive intermediate value, because the natural enemy must be able to overwinter successfully in order to establish itself. In a tropical climate, winter conditions are a less limiting factor and diapause may therefore hinder pest suppression, hence the negative value.In augmentative biological control, the natural enemy does not become established; diapause is thus not necessary and may only hinder pest suppression. Negative values are therefore assigned for both inundative and inoculative releases. However, diapause is less of a problem in the inundative method, as it can be overcome by repeated releases; therefore, this method receives a less negative weight than the inoculative method. In both approaches, like in the classical method, a temperate climate receives a larger weight than a tropical one.
- ₋
- Trait values correlate positively only with latitude.
- ₋
- Relative weights were determined as follows:In temperate climates, a large range of thermal tolerance is more important than in tropical climates.The ability of the natural enemy to adapt to local conditions and withstand temperature fluctuations is more important in the classical approach, since the population must establish itself. In the inoculative method, the weight of this trait is higher than in the inundative one, because in the latter, the population does not need to sustain itself for long periods.
- ₋
- Applies only if the species follows Bergmann’s rule. If converse Bergmann’s rule applies, weight values should be multiplied by (−1). If no correlation has been found between body mass and latitude/altitude in this species, this trait should be disregarded.
- ₋
- Trait values correlate positively with latitude and altitude, but not with distance from species center of distribution.
- ₋
- Relative weights were determined as follows:Body size affects both fecundity and enemy efficacy and therefore is equally important in all methods and climates, yet it is not critical for the success of biological control and receives a value lower than 5.
- ₋
- Trait values correlate negatively only with distance from center of species distribution.
- ₋
- Relative weights were determined as follows:This trait is critical for the success of biological control and therefore receives high weights in all cases. In temperate climates, there are larger fluctuations in environmental conditions and therefore genetic variability is slightly more important than in tropical climates. The difference between the importance of the trait in the two climates is greater in the classical method because establishment is assumed to be more difficult in fluctuating conditions.
- ₋
- Trait values correlate positively with latitude and altitude, but not with distance from center of species distribution.
- ₋
- Relative weights were determined as follows: Ability to disperse is determined by flight capacity. In the classical approach, dispersal of the natural enemies is essential (positive values), while in the other methods it is undesirable (negative values). In temperate climates, resources are highly scattered and their availability is more variable. Therefore, in classical biological control, the ability to disperse is of a greater importance in temperate than tropical regions. The greater importance of fight ability in temperate augmentative programs is attributed to lower efficiency of flight muscles at lower temperatures.
References
- Bale, J.S.; van Lenteren, J.C.; Bigler, F. Biological control and sustainable food production. Philos. Trans. R. Soc. B. 2008, 363, 761–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etzel, L.K.; Legner, E.F. Culture and colonization. In Handbook of Biological Control; Bellows, T.S., Fisher, T.W., Eds.; Academic Press: London, UK, 1999; pp. 125–197. [Google Scholar]
- Hoelmer, K.A.; Kirk, A.A. Selecting arthropod biological control agents against arthropod pests: Can the science be improved to decrease the risk of releasing ineffective agents? Biol. Control 2005, 34, 255–264. [Google Scholar] [CrossRef]
- Kishinevsky, M.; Ives, A.R. The success of a habitat specialist biological control agent in the face of disturbance. Ecosphere 2022, 13, e4050. [Google Scholar] [CrossRef]
- McEvoy, P.B. Theoretical contributions to biological control success. BioControl 2018, 63, 87–103. [Google Scholar] [CrossRef]
- Van den Bosch, R.; Messenger, P.S.; Gutierrez, A.P. An Introduction to Biological Control; Plenum Press: New York, NY, USA, 1982; ISBN 978-1-4757-9164-8. [Google Scholar]
- Cocuzza, G.E.; De Clercq, P.; Lizzio, S.; Van de Veire, M.; Tirry, L.; Degheele, D.; Vacante, V. Life tables and predation activity of Orius laevigatus and O. albidipennis at three constant temperatures. Entomol. Exp. Appl. 1997, 85, 189–198. [Google Scholar] [CrossRef]
- Goolsby, J.A.; DeBarro, P.J.; Kirk, A.A.; Sutherst, R.W.; Canas, L.; Ciomperlik, M.A.; Ellsworth, P.C.; Gould, J.R.; Hartley, D.M.; Hoelmer, K.A.; et al. Post-release evaluation of biological control of Bemisia tabaci biotype ‘‘B’’ in the USA and the development of predictive tools to guide introductions for other countries. Biol. Control 2005, 32, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Messenger, P.S.; van den Bosch, R. The adaptability of introduced biological control agents. In Biological Control; Huffaker, C., Ed.; Plenum Press: New York, NY, USA, 1971; pp. 68–92. ISBN 978-030-630-532-0. [Google Scholar]
- Gillespie, D.R.; Quiring, D.M.J. Extending seasonal limits on biological control. IOBC/WPRS Bull. 1993, 16, 43–45. [Google Scholar]
- Gillespie, D.R.; Quiring, D.M.J. Diapause induction under greenhouse conditions in two populations of Dicyphus hesperus (Hemiptera: Miridae). Biocontrol Sci. Technol. 2005, 15, 571–583. [Google Scholar] [CrossRef]
- Tauber, M.J.; Tauber, C.A.; Masaki, S. Seasonal Adaptations of Insects; Oxford University Press: New York, NY, USA, 1986; ISBN 0-19-503635-2. [Google Scholar]
- Mackauer, M. Genetic problems in production of biological-control agents. Annu. Rev. Entomol. 1976, 21, 369–385. [Google Scholar] [CrossRef]
- Bartlett, A.C. Genetic changes during insect domestication. In Advances and Challenges in Insect Rearing; King, E.G., Leppla, N.C., Eds.; U.S. Government Printing Office: Washington, DC, USA, 1984; pp. 2–8. [Google Scholar]
- Joslyn, D.J. Maintenance of genetic variability in reared insects. In Advances and Challenges in Insect Rearing; King, E.G., Leppla, N.C., Eds.; U.S. Government Printing Office: Washington, DC, USA, 1984; pp. 20–29. [Google Scholar]
- Chown, S.L.; Gaston, K.J. Body size variation in insects: A macroecological perspective. Biol. Rev. 2010, 85, 139–169. [Google Scholar] [CrossRef]
- Conover, D.O.; Duffy, T.A.; Hice, L.A. The covariance between genetic and environmental influences across ecological gradients; reassessing the evolutionary significance of countergradient and cogradient variation. Ann. N. Y. Acad. Sci. 2009, 1168, 100–129. [Google Scholar] [CrossRef] [PubMed]
- Gaston, K.J.; Chown, S.L.; Evans, K.L. Ecogeographical rules: Elements of a synthesis. J. Biogeogr. 2008, 35, 483–500. [Google Scholar] [CrossRef]
- Hodkinson, I.D. Terrestrial insects along elevation gradients: Species and community responses to altitude. Biol. Rev. 2005, 80, 489–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergmann, C. Über die verhältnisse der wärmeökonomie der thiere zu ihrer grösse. Göttinger Stud. 1847, 3, 595–708. [Google Scholar]
- Atkinson, D. Temperature and organism size—A biological law for ectotherms? Adv. Ecol. Res. 1994, 25, 1–58. [Google Scholar]
- Schuldiner-Harpaz, T.; Coll, M. Effects of global warming on predatory bugs supported by data across geographic and seasonal climatic gradients. PLoS ONE 2013, 8, e66622. [Google Scholar] [CrossRef]
- Blanckenhorn, W.U.; Demont, M. Bergmann and converse Bergmann latitudinal clines in arthropods: Two ends of a continuum? Integr. Comp. Biol. 2004, 44, 413–424. [Google Scholar] [CrossRef] [Green Version]
- Mousseau, T.A. Ectotherms follow the converse to Bergmann’s rule. Evolution 1997, 51, 630–632. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, R.B.R.; James, A.C.; McCabe, J.; Partridge, L. Latitudinal variation of wing: Thorax size ratio and wing-aspect ratio in Drosophila melanogaster. Evolution 1998, 52, 1353–1362. [Google Scholar] [CrossRef]
- Stevens, G.C. The latitudinal gradient in geographical range-How so many species coexist in the tropics. Am. Nat. 1989, 133, 240–256. [Google Scholar] [CrossRef]
- Blanckenhorn, W.U.; Fairbairn, D.J. Life-history adaptation along a latitudinal cline in the water strider Aquarius remigis (Heteroptera, Gerridae). J. Evol. Biol. 1995, 8, 21–41. [Google Scholar] [CrossRef]
- Kingsolver, J.G. Thermoregulation and flight in Colias butterflies-elevational patterns and mechanistic limitations. Ecology 1983, 64, 534–545. [Google Scholar] [CrossRef]
- Gaston, K.J. The Structure and Dynamics of Geographic Ranges; Oxford University Press: New York, NY, USA, 2003; ISBN 019-852-641-5. [Google Scholar]
- Van Voorhies, W.A. Bergmann size clines: A simple explanation for their occurrence in ectotherms. Evolution 1996, 50, 1259–1264. [Google Scholar] [CrossRef] [PubMed]
- Partridge, L.; Coyne, J.A. Bergmann’s rule in ectotherms: Is it adaptive? Evolution 1997, 51, 632–635. [Google Scholar] [CrossRef] [Green Version]
- Ito, K.; Nakata, T. Geographical variation of photoperiodic response in the females of a predatory bug, Orius sauteri (Poppius) (Heteroptera: Anthocoridae) from Northern Japan. Appl. Entomol. Zool. 2000, 35, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, T.; Kawasaki, K. Geographic variability in diapause response of Japanese Orius species. Entomol. Exp. Appl. 2001, 98, 303–316. [Google Scholar] [CrossRef]
- Dingle, H.; Mousseau, T.A. Altitudinal variation in life cycle syndromes of California populations of the grasshopper, Melanoplus sanguinipes (F.). Oecologia 1990, 84, 199–206. [Google Scholar] [CrossRef]
- Havelka, J.; Zemek, R. Intraspecific variability of aphidophagous gall midge Aphidoletes aphidimyza (Rondani) (Dipt., Cecidomyiidae) and its importance for biological control of aphids. J. Appl. Ent. 1988, 105, 280–288. [Google Scholar] [CrossRef]
- Nechols, J.R.; Tauber, M.J.; Tauber, C.A. Geographical variability in ecophysiological traits controlling dormancy in Chrysopa oculata (Neuroptera: Chrysopidae). J. Insect Physiol. 1987, 33, 627–633. [Google Scholar] [CrossRef]
- Ruberson, J.R.; Yeargan, K.V.; Newton, B.L. Variation in diapause responses between geographic populations of the predator Geocoris punctipes (Heteroptera: Geocoridae). Ann. Entomol. Soc. Am. 2001, 94, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Addo-Bediako, A.; Chown, S.L.; Gaston, K.J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. Lond. B. 2000, 267, 739–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- French, B.W.; Hammack, L. Reproductive traits of Northern Corn Rootworm (Coleoptera: Chrysomelidae) in relation to female and male body size. Ann. Entomol. Soc. Am. 2010, 103, 688–694. [Google Scholar] [CrossRef] [Green Version]
- Thornhill, R.; Alcock, J. The Evolution of Insect Mating Systems; Harvard University Press: Cambridge, MA, USA, 1983; ISBN 978-0-19-967803-7. [Google Scholar]
- Dingle, H. Migration and diapause in tropical temperate and island milkweed bugs. In Evolution of Insect Migration and Diapause; Dingle, H., Ed.; Springer: New York, NY, USA, 1978; pp. 254–276. ISBN 978-1-4615-6943-5. [Google Scholar]
- David, J.R.; Moreteau, B.; Gauthier, J.P.; Pétavy, G.; Stockel, A.; Imasheva, A.G. Reaction norms of size characters in relation to growth temperature in Drosophila melanogaster: An isofemale lines analysis. Genet. Sel. Evol. 1994, 26, 229–251. [Google Scholar] [CrossRef]
- Dillon, M.E.; Frazier, M.R.; Dudley, R. Into thin air: Physiology and evolution of alpine insects. Integr. Comp. Biol. 2006, 46, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Gilchrist, G.W.; Huey, R.B. Plastic and genetic variation in wing loading as a function of temperature within and among parallel clines in Drosophila subobscura. Integr. Comp. Biol. 2004, 44, 461–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liefting, M.; Hoffmann, A.A.; Ellers, J. Plasticity versus environmental canalization: Population differences in thermal responses along a latitudinal gradient in Drosophila serrata. Evolution 2009, 63, 1954–1963. [Google Scholar] [CrossRef]
- Johnson, C.G. Migration and Dispersal of Insects by Flight; Methuen: London, UK, 1969. [Google Scholar]
- Zera, A.J.; Denno, R.F. Physiology and ecology of dispersal polymorphism in insects. Annu. Rev. Entomol. 1997, 42, 207–230. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, G.A.; Baptista, D.L.; Guimarães-Motta, H.; Almeida, I.C.; Masuda, H.; Atella, G.C. Flight-oogenesis syndrome in a blood-sucking bug: Biochemical aspects of lipid metabolism. Arch. Insect Biochem. Physiol. 2006, 62, 164–175. [Google Scholar] [CrossRef]
- Remington, C.L. The population genetics of insect introduction. Ann. Rev. Entomol. 1968, 13, 415–426. [Google Scholar] [CrossRef]
- Blyth, S.; Groombridge, B.; Lysenko, I.; Miles, L.; Newton, A. Mountain Watch: Environmental Change and Sustainable Development in Mountains; UNEP World Conservation Monitoring Centre: Cambridge, UK, 2002. [Google Scholar]
- Horton, D.R. Minute pirate bugs (Hemiptera: Anthocoridae). In Encyclopedia of Entomology; Capinera, J.L., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 2402–2412. ISBN 978-1-4020-6242-1. [Google Scholar]
- Lattin, J.D. Minute pirate bugs (Anthocoridae). In Heteroptera of Economic Importance; Schaefer, C.W., Panizzi, A.R., Eds.; CRC Press: London, UK, 2000; pp. 607–637. ISBN 0-8493-0695-7. [Google Scholar]
- Péricart, J. Hemipteres Anthocoridae, Cimicidae et Microphysidae de l’ouest-paléarctique. Fauna L’europe Bassin Mediterr. 1972, 7, 1–402. [Google Scholar]
- Rahman, M.A.; Sarker, S.; Ham, E.; Lee, J.S.; Lim, U.T. Prey preference of Orius minutus and its functional response in comparison that of O. laevigatus, on Tetranychus urticae. J. Asia-Pacific Entomol. 2022, 25, 101912. [Google Scholar] [CrossRef]
- Sharifi, M.; Malkeshi, S.H.; Madahi, K.; Mobasheri, M.T.; Malek Shahkoei, S.; Ghaderi, K.; Rajaei, A.; Khamar, E. Evaluation of predator and prey preference of Orius niger (Wolff) (Hemiptera: Anthocoridae) in the control of important sucking pests of oilseeds. BioCont. Plant Protect. 2021, 8, 107–118. [Google Scholar]
- Xu, X.; Enkegaard, A. Prey preference of Orius sauteri between Western Flower Thrips and spider mites. Entomol. Exp. Appl. 2009, 132, 93–98. [Google Scholar] [CrossRef]
- Arnó, J.; Roig, J.; Riudavets, J. Evaluation of Orius majuscules and O. laevigatus as predators of Bemisia tabaci and estimation of their prey preference. Biol. Control 2008, 44, 1–6. [Google Scholar] [CrossRef]
- Coll, M. Feeding and ovipositing on plants by an omnivorous insect predator. Oecologia 1996, 105, 214–220. [Google Scholar] [CrossRef]
- Tavella, L.; Alma, A.; Conti, A.; Arzone, A. Evaluation of the effectiveness of Orius spp. in controlling Frankliniella occidentalis. Acta Hortic. 1996, 431, 499–506. [Google Scholar] [CrossRef]
- Coll, M.; Guershon, M. Omnivory in terrestrial arthropods: Mixing plant and prey diets. Annu. Rev. Entomol. 2002, 47, 267–297. [Google Scholar] [CrossRef] [Green Version]
- Bosco, L.; Tavella, L. Collection of Orius species in horticultural areas of Northwestern Italy. Bull. Insectology 2008, 61, 209–210. [Google Scholar]
- Zhang, Q.; Zhang, R.; Zhang, Q.; Ji, D.; Zhou, X.; Jin, L. Functional response and control potential of Orius sauteri (Hemiptera: Anthocoridae) on Tea Thrips (Dendrothrips minowai Priesner). Insects 2021, 12, 1132. [Google Scholar] [CrossRef]
- Elov, E.S. Bugs of the family Anthocoridae (Heteroptera) from Soviet Central Asia and Kazakhstan. Entomol. Rev. 1976, 55, 74–81. [Google Scholar]
- Zheng, L.Y. Two new species of Orius Wolff from China (Hemiptera, Anthocoridae). Acta Entomol. Sinica 1982, 25, 191–194. [Google Scholar]
- Péricart, J. Cimicomorpha 1. Family Anthocoridae Fieber, 1836-Flower bugs, minute pirate bugs. In Catalogue of the Heteroptera of the Palaearctic Region. Volume 2; Aukema, B., Rieger, C., Eds.; Netherlands Entomological Society: Amsterdam, The Netherlands, 1996; pp. 108–140. [Google Scholar]
- Ghauri, M.S.K. Notes on the Hemiptera from Pakistan and adjoining areas. J. Nat. Hist. 1972, 6, 279–288. [Google Scholar] [CrossRef]
- Hernandez, L.M.; Stonedahl, G.M. A review of the economically important species of the genus Orius (Heteroptera: Anthocoridae) in East Africa. J. Nat. Hist. 1999, 33, 543–568. [Google Scholar] [CrossRef]
- Herring, J.L. Genus Orius of western hemisphere (Hemiptera: Anthocoridae). Ann. Entomol. Soc. Am. 1966, 59, 1093–1109. [Google Scholar] [CrossRef]
- Ghauri, M.S.K. Notes on Anthocoridae (Heteroptera) with descriptions of 2 new species of economic importance from Africa. Bull. Entomol. Res. 1980, 70, 287–291. [Google Scholar] [CrossRef]
- Woodward, T.E.; Postle, A.C. The Australian species of Orius Wolff (Heteroptera, Anthocoridae). J. Aust. Entomol. Soc. 1986, 25, 245–254. [Google Scholar] [CrossRef]
- Yasunaga, T. The flower bug genus Orius Wolff (Heteroptera: Anthocoridae) from Japan and Taiwan, Part I. Appl. Entomol. Zool. 1997, 32, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Ghauri, M.S.K. Identity of Orius tantillus (Motschulsky) and notes on other Oriental Anthocoridae (Hemiptera, Heteroptera). J. Nat. Hist. 1972, 6, 409–421. [Google Scholar] [CrossRef]
- Carayon, J. Hemiptera (Heteroptera) Anthocoridae. In South African Animal Life: Results of the Lund University Expedition in 1950–1951; Hanstrom, B., Brinck, P., Rudebeck, G., Eds.; Almqvist and Wiksells: Uppsala, Sweden, 1961; pp. 533–557. [Google Scholar]
- Postle, A.C.; Steiner, M.Y.; Goodwin, S. Oriini (Hemiptera: Anthocoridae) new to Australia. Aust. J. Entomol. 2001, 40, 231–244. [Google Scholar] [CrossRef]
- Muraleedharan, N. Some genera of Anthocorinae (Heteroptera: Anthocoridae) from South India. Entomon 1978, 2, 231–236. [Google Scholar]
- Prado, E. Artrópodos y sus Enemigos Naturales Asociados a Plantas Cultivadas en Chile; Instituto de Investigaciones Agropecuarias: Inia, Chile, 1991; p. 207. [Google Scholar]
- Yasunaga, T.A. New species of the genus Orius wolff (Heteroptera: Anthocoridae) found on Okinawa Island, Japan. Appl. Entomol. Zool. 2000, 35, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Ananthakrishnan, T.N.; Sureshkumar, N. Anthocorids (Anthocoridae, Heteroptera) as efficient biocontrol agents of thrips (Thysanoptera, Insecta). Curr. Sci. 1985, 54, 987–990. [Google Scholar]
- Silveira, L.C.P.; Bueno, V.H.P.; Mendes, S.M. Record of two species of Orius Wolff (Hemiptera, Anthocoridae) in Brazil. Rev. Bras. Entomol. 2003, 47, 303–306. [Google Scholar] [CrossRef]
- Yasunaga, T. The flower bug genus Orius Wolff (Heteroptera: Anthocoridae) from Japan and Taiwan, Part III. Appl. Entomol. Zool. 1997, 32, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Henry, T.J. First North American records for the Palearctic Orius majusculus (Reuter) (Hemiptera: Heteroptera: Anthocoridae). Proc. Entomol. Soc. Wash. 2008, 110, 953–959. [Google Scholar] [CrossRef]
- Yasunaga, T. The flower bug genus Orius Wolff (Heteroptera: Anthocoridae) from Japan and Taiwan, Part II. Appl. Entomol. Zool. 1997, 32, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Carayon, J. La fauna terrestre de î’ile de Saint-Hélène. Troisème partie. 2. Insectes (suite et fin). 20. Heteroptera. 9. Fam. Anthocoridae. Ann. Musée R. L’afrique Cent. Ser. Sci. Zool. 1976, 215, 460–472. [Google Scholar]
- Beardsley, J.W. Insects and other terrestrial arthropods from the Leeward Hawaiian Islands. Proc. Hawaii. Entomol. Soc. 1966, 19, 157–185. [Google Scholar]
- Muraleedharan, N.; Ananthakrishnan, T.N. New and little-known species of Orius Wolff from India (Hemiptera: Anthocoridae). Orient. Insects 1974, 8, 37–41. [Google Scholar] [CrossRef]
- Honda, J.Y.; Nakashima, Y.; Yanase, T.; Kawarabata, T.; Hirose, Y. Use of the internal transcribed spacer (ITS-1) region to infer Orius (Hemiptera: Anthocoridae) species phylogeny. Appl. Entomol. Zool. 1998, 33, 567–571. [Google Scholar] [CrossRef] [Green Version]
- Lariviere, M.C.; Wearing, C.H. Orius vicinus (Ribaut) (Heteroptera: Anthocoridae), a predator of orchard pests new to New Zealand. N. Z. Entomol. 1994, 17, 17–21. [Google Scholar] [CrossRef]
- Lewis, T.M.; Lattin, J.D. Orius (Heterorius) vicinus (Ribaut) (Hemiptera: Heteroptera: Anthocoridae) in Western North America, a correction of the past. Proc. Entomol. Soc. Wash. 2010, 112, 69–80. [Google Scholar] [CrossRef]
- Ford, L.J. The Phylogeny and Biogeography of the Cimicoidea (Insecta: Hemiptera). Master’s Thesis, University of Connecticut, Storrs, CT, USA, 1979. [Google Scholar]
- Bosco, L.; Giacometto, E.; Tavella, L. Colonization and predation of thrips (Thysanoptera: Thripidae) by Orius spp. (Heteroptera: Anthocoridae) in sweet pepper greenhouses in Northwest Italy. Biol. Control 2008, 44, 331–340. [Google Scholar] [CrossRef]
- Tommasini, M.G.; Van Lenteren, J.C. Occurrence of diapause in Orius laevigatus. Bull. Insectol. 2003, 56, 225–251. [Google Scholar]
- Brown, J.H. On the relationship between abundance and distribution of species. Am. Nat. 1984, 124, 255–279. [Google Scholar] [CrossRef]
- Riudavets, J. Predators of Frankliniella occidentalis (Perg.) and Thrips tabaci Lind.: A review. In Biological Control of Thrips Pests; Loomans, A.J.M., van Lenteren, J.C., Tommasini, M.G., Maini, S., Riudavets, J., Eds.; Wageningen Agricultural University Papers: Wageningen, The Netherlands, 1995; pp. 43–87. ISBN 90-6754-395-0. [Google Scholar]
- Sobhy, I.S.; Sarhan, A.A.; Shoukry, A.A.; El-Kady, G.A.; Mandour, N.S.; Reitz, S.R. Development, consumption rates and reproductive biology of Orius albidipennis reared on various prey. BioControl 2010, 55, 753–765. [Google Scholar] [CrossRef]
- Chyzik, R.; Klein, M.; Ben-Dov, Y. Reproduction and survival of the predatory bug Orius albidipennis on various arthropod prey. Entomol. Exp. Appl. 1995, 75, 27–31. [Google Scholar] [CrossRef]
- Sanchez, J.A.; Lacasa, A. Modelling population dynamics of Orius laevigatus and Orius albidipennis (Hemiptera: Anthocoridae) to optimize their use as biological control agents of Frankliniella occidentalis (Thysanoptera: Thripidae). Bull. Entomol. Res. 2002, 92, 77–88. [Google Scholar] [PubMed]
- Tawfik, M.F.S.; Ata, A.M. The life-history of Orius albidipennis (Reut.) (Hemiptera–Heteroptera; Anthocoridae). Bull. Soc. Ent. Egypte 1973, 57, 145–151. [Google Scholar]
- Chyzik, R.; Klein, M.; Ben-Dov, Y. Overwintering biology of the predatory bug Orius albidipennis (Hemiptera: Anthocoridae) in Israel. Biocontrol Sci. Techn. 1995, 5, 287–296. [Google Scholar] [CrossRef]
- Chyzik, R.; Ucko, O. Seasonal abundance of the western flower thrips Frankliniella occidentalis in the Arava valley of Israel. Phytoparasitica 2002, 30, 335–346. [Google Scholar] [CrossRef]
- Tabic, A.; Yonah, R.; Coll, M. Association between omnivorous Orius bugs and their thrips prey at different spatial scales of Verbesina encelioides flowers. Isr. J. Plant Sci. 2010, 58, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Van de Veire, M.; Degheele, D. Comparative laboratory experiments with Orius insidiosus and Orius albidipennis (Het.: Anthocoridae), two candidates for biological control in glasshouses. Entomophaga 1995, 40, 341–344. [Google Scholar] [CrossRef]
Geographically Variable Trait | Standardized Influence of Geographic Location on Trait Value | Trait Weight (Based on Biological Control Approach) | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Latitude | Altitude | Distance from Center of Species Distribution | Classical | Augmentative | ||||||
Inoculative Releases | Inundative Releases | |||||||||
Climate at Release Site: Tropic (Tr) or Temperate (Te) | ||||||||||
Tr | Te | Tr | Te | Tr | Te | |||||
Tendency for winter diapause | X * | Y * | 0 | −1 | 5 | −4 | −7 | −3 | −6 | [10,12,27,32,33,34,35,36,37] |
Range of thermal tolerance | X | 0 | 0 | 5 | 8 | 3 | 7 | 2 | 6 | [26,38] |
Body size | X | Y | 0 | 3 | 3 | 3 | 3 | 3 | 3 | [16,17,20,23,26,27] |
Genetic variability | 0 | 0 | −Z * | 7 | 9 | 7 | 8 | 7 | 8 | [29,49] |
Flight capacity | X | Y | 0 | 2 | 3 | −3 | −4 | −2 | −3 | [41] |
Afrotropic | Palaearctic | Indo-Malaya | Austral-Asia | Nearctic | Neotropical | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Species | Western Africa | Southern Africa | Eastern Africa | Arabian desert | Northern Africa | Mediterranean Basin | Western Europe | Central Europe | Western and Central Asia | Eastern Asia | Canada | Eastern North America | Central North America | Western North America | Central America | Northern South America | Central South America | Southern South America | Ref. | ||
O. agilis (Flor) | + | + | + | [53,63,64,65] | |||||||||||||||||
O. albidipennis (Reuter) | + | + | + | + | + | + | + | + | [53,63,65,66,67] | ||||||||||||
O. alcides Herring | + | [68] | |||||||||||||||||||
O. allaudi (Poppius) | + | [67] | |||||||||||||||||||
O. alpina (Poppius) | + | [67] | |||||||||||||||||||
O. amnesius Ghauri | + | [69] | |||||||||||||||||||
O. armatus Gross | + | [70] | |||||||||||||||||||
O. atratus Yasunaga | + | + | [71] | ||||||||||||||||||
O. bifilarus Ghauri | + | + | + | [64,65,72] | |||||||||||||||||
O. brunnescens (Poppius) | + | [73] | |||||||||||||||||||
O. bulgaconus Ghauri | + | [72] | |||||||||||||||||||
O. camerunensis (Poppius) | + | ^ # | |||||||||||||||||||
O. canariensis Wagner | + | + | [53,65] | ||||||||||||||||||
O. candiope Herring | + | [68] | |||||||||||||||||||
O. cardiostethoides (Poppius) | + | [67] | |||||||||||||||||||
O. chadwicki Woodward & Postle | + | [70] | |||||||||||||||||||
O. championi Herring | + | + | [68] | ||||||||||||||||||
O. cocciphagus (Hesse) | + | [73] | |||||||||||||||||||
O. conchaconus Ghauri | + | [72] | |||||||||||||||||||
O. dendrophilus Postle, Steiner & Goodwin | + | [74] | |||||||||||||||||||
O. diespeter Herring | + | [68] | |||||||||||||||||||
O. dravidiensis Muraleedharan | + | [75] ^ | |||||||||||||||||||
O. elegans (Blanchard) | + | [76] | |||||||||||||||||||
O. euryale Herring | + | [68] | |||||||||||||||||||
O. flagellum Linnavuori | + | [65,77] | |||||||||||||||||||
O. flaviceps (Poppius) | + | [68] | |||||||||||||||||||
O. florentiae Herring | + | + | [68] | ||||||||||||||||||
O. fogoensis Wagner | + | ^ | |||||||||||||||||||
O. fuscus (Reuter) | ^ | + | [68] | ||||||||||||||||||
O. gardinieri (Distant) | + | ^ | |||||||||||||||||||
O. gladiatus Zheng | + | + | [64,65] | ||||||||||||||||||
O. gracilis Postle, Steiner & Goodwin | + | [74] | |||||||||||||||||||
O. harpocrates Herring | + | [68] | |||||||||||||||||||
O. heterorioides Woodward & Postle | + | [70] | |||||||||||||||||||
O. heynei (Reuter) | + | [67] | |||||||||||||||||||
O. horvathi (Reuter) | + | + | + | + | + | + | [53,63,64,65] | ||||||||||||||
O. ianthe Distant | + | ^ # | |||||||||||||||||||
O. indicus (Reuter) | + | [78] | |||||||||||||||||||
O. insidiosus (say) | + | + | + | + | + | + | + | + | [68,76,79] | ||||||||||||
O. ixionides Herring | + | [68] | |||||||||||||||||||
O. jasiones Herring | + | [68] | |||||||||||||||||||
O. jeanneli (Poppius) | + | [67] | |||||||||||||||||||
O. laevigatus (Fieber) | + | + | + | + | + | I | + | [53,63,65,80] | |||||||||||||
O. lanatus Carayon | + | [73] | |||||||||||||||||||
O. latibasis Ghauri | + | [72] | |||||||||||||||||||
O. laticollis (Reuter) | + | + | + | + | + | + | [53,63,65] | ||||||||||||||
O. lesliae Herring | + | [68] | |||||||||||||||||||
O. limbatus Wagner | + | [53,65] | |||||||||||||||||||
O. lindbergi Wagner | + | + | + | + | [53,65] | ||||||||||||||||
O. lobeliae (Poppius) | + | [67] | |||||||||||||||||||
O. luridoides Ghauri | + | [72] | |||||||||||||||||||
O. luridus Wagner syn. O. laevigatus laevigatus (Fieber) | [65] | ||||||||||||||||||||
O. maderensis (Reuter) syn. O. laevigatus maderensis (Reuter) | [65] | ||||||||||||||||||||
O. majusculus (Reuter) | + | + | + | + | + | + | + | [53,63,65,81] | |||||||||||||
O. maura (Poppius) | + | [67] | |||||||||||||||||||
O. maxidentex (Ghauri) | + | + | [72,78] | ||||||||||||||||||
O. minutus (Linnaeus) | + | R | + | + | + | + | + | I * | I * | [53,63,64,65,68,82] | |||||||||||
O. miyamotoi Yasunaga | + | [71] | |||||||||||||||||||
O. nagaii Yasunaga | + | [65,82] | |||||||||||||||||||
O. naivashae (Poppius) | + | [67] | |||||||||||||||||||
O. niger Wolff | + | + | + | + | + | + | + | [53,63,64,65,72] | |||||||||||||
O. niobe Herring syn. O. tantillus | [65] | ||||||||||||||||||||
O. oblonga (Reuter) | ^ | ||||||||||||||||||||
O. pallidicornis (Reuter) | + | + | + | + | + | [53,63,65] | |||||||||||||||
O. pallidus (Poppius) | + | + | [68] | ||||||||||||||||||
O. parvulus (Blanchard) | + | ^ | |||||||||||||||||||
O. pele Herring | + | [68] | |||||||||||||||||||
O. pellucidus Garbiglietti | + | ^ | |||||||||||||||||||
O. peri Carayon | + | [83] | |||||||||||||||||||
O. perpunctatus (Reuter) | + | + | [68] | ||||||||||||||||||
O. persequens (White) | ^ | + | [84] | ||||||||||||||||||
O. piceicollis (Lindberg) | + | [53,65] | |||||||||||||||||||
O. pluto (Distant) | + | ^ # | |||||||||||||||||||
O. proximbus (Poppius) | + | ^ | |||||||||||||||||||
O. pumilio (Champion) | + | + | + | [68] | |||||||||||||||||
O. punctaticollis (Reuter) | + | ^ | |||||||||||||||||||
O. puncticollis (Poppius) | + | ^ # | |||||||||||||||||||
O. reedi (White) | + | [76] | |||||||||||||||||||
O. retamae (Noualhier) | + | [53,65] | |||||||||||||||||||
O. sauteri (Poppius) | + | [64,65,82] | |||||||||||||||||||
O. shakebi Ghauri | + | [67] | |||||||||||||||||||
O. shyamavarna Muraleedharan & Ananthakrishnan | + | [85] ^ # | |||||||||||||||||||
O. sibiricus Wagner | + | + | [53,63,65] | ||||||||||||||||||
O. similis Zheng syn. O. strigicollis | [82] | ||||||||||||||||||||
O. sjöstedti (Poppius) | + | [67] | |||||||||||||||||||
O. strigicollis (Poppius) | + | + | [65,82] | ||||||||||||||||||
O. sublaevis (Poppius) | + | + | [65] | ||||||||||||||||||
O. takaii Yasunaga | + | [77] | |||||||||||||||||||
O. tantillus (Motschulsky) | + | + | + | + | [64,65,67,70,80,86] | ||||||||||||||||
O. thripoborus (Hesse) | + | + | [67,73] | ||||||||||||||||||
O. thyestes Herring | + | + | [68,79] | ||||||||||||||||||
O. tristicolor (White) | + | + | + | + | + | + | + | + | [68,76] | ||||||||||||
O. trivandrensis Muraleedharan & Ananthakrishnan | + | [85] ^ # | |||||||||||||||||||
O. ugandensis Hernandez & Stonedahl | + | [67] | |||||||||||||||||||
O. vicinus (Ribaut) | + | + | + | + | + | + | I | [53,63,64,87,88] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schuldiner-Harpaz, T.; Coll, M. Considering the Geographic Diversity of Natural Enemy Traits in Biological Control: A Quantitative Approach Using Orius Predators as an Example. Diversity 2022, 14, 963. https://doi.org/10.3390/d14110963
Schuldiner-Harpaz T, Coll M. Considering the Geographic Diversity of Natural Enemy Traits in Biological Control: A Quantitative Approach Using Orius Predators as an Example. Diversity. 2022; 14(11):963. https://doi.org/10.3390/d14110963
Chicago/Turabian StyleSchuldiner-Harpaz, Tarryn, and Moshe Coll. 2022. "Considering the Geographic Diversity of Natural Enemy Traits in Biological Control: A Quantitative Approach Using Orius Predators as an Example" Diversity 14, no. 11: 963. https://doi.org/10.3390/d14110963
APA StyleSchuldiner-Harpaz, T., & Coll, M. (2022). Considering the Geographic Diversity of Natural Enemy Traits in Biological Control: A Quantitative Approach Using Orius Predators as an Example. Diversity, 14(11), 963. https://doi.org/10.3390/d14110963