Research Status and Trends of Agrobiodiversity and Traditional Knowledge Based on Bibliometric Analysis (1992–Mid-2022)
Abstract
:1. Introduction
2. Data Sources and Research Methods
2.1. Data Sources
2.2. Research Methods
2.2.1. Tools
2.2.2. Research Methodology
3. Results and Analysis
3.1. Analysis of the Time of Publication
3.2. Results
3.2.1. Analysis of the Different Countries of Publication
3.2.2. Analysis of Subject Categories and Publishing Journals
3.2.3. Analysis of the Most Prominent Authors
3.2.4. Analysis of Major Issuing Institutions
3.3. Analysis of Research Hotspots
3.3.1. The Most Frequently Used Keywords
3.3.2. Research Priorities in Agrobiodiversity and Traditional Knowledge
- (1)
- Cluster 1: Conservation of landraces
- (2)
- Cluster 2 and Cluster 5: Agricultural landscape change
- (3)
- Cluster 3: Livelihood support
- (4)
- Agroforestry systems
3.3.3. Keyword Evolution Trend Analysis
4. Discussion
- (1)
- In the current research field of agrobiodiversity and traditional knowledge, scholars more often explore the management role of traditional knowledge and its impact and contribution to agrobiodiversity through qualitative research methods, such as small agricultural system management cases and structured interviews, which lack scientific objectivity. There is a need to explore more quantitative research methods, expand research perspectives, and develop innovative research methods so that traditional knowledge in the local context can be connected with modern technology.
- (2)
- The current research mainly focuses on natural science and ecology, and most of it is conducted in agroecosystems. However, the conservation of agrobiodiversity and traditional knowledge is also related to local policies, indigenous peoples’ willingness to preserve and pass on their knowledge, community development, and other social and human factors, so it is necessary to strengthen interdisciplinary research exchanges on the basis of the existing foundation and further expand the scope of disciplinary research in this field.
- (3)
- Capacity building for agrobiodiversity and traditional knowledge conservation cannot be limited to local communities and indigenous peoples—it also requires cooperation with research organizations, governments, and other stakeholders to achieve more stable development. In addition, as the attention and importance assigned to agrobiodiversity and traditional knowledge increases, future research will focus on the development of relevant policies and regulations, as well as the assessment of the impacts and conservation results of the existing policies, in order to adjust the implementation of policies and further improve regional sustainable development.
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Brookfield, H.; Stocking, M. Agrodiversity: Definition, description and design. Glob. Environ. Change 1999, 9, 77–80. [Google Scholar] [CrossRef]
- Guo, H.J.; Padoch, C.; Fu, Y.N.; Cheng, A.G.; Dao, Z.N. Agrobiodiversity Assessment and In–situ Conservation. Plant Divers. 2000, S1, 27–41. (In Chinese) [Google Scholar]
- Thrupp, L.A. Linking agricultural biodiversity and food security: The valuable role of agrobiodiversity for sustainable agriculture. Int. Aff. 2000, 76, 265–281. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.T. The Using of Agro-Biodiversity and Shaping of Playroom for Peasants’ Choices—A Case Study in Huabian Village ff Guizhou Province; China Agricultural University: Beijing, China, 2015; pp. 7–10. (In Chinese) [Google Scholar]
- Steglich, M.; Peters, K.J. Conservation and Sustainable Use of Agricultural Biodiversity: A Source Book; CIPUPWARD. GTZ; Bonn, Germany, 2004; pp. iii–v. Available online: https://vtechworks.lib.vt.edu/handle/10919/67219 (accessed on 9 August 2022).
- Jasmine, B.; Singh, Y.; Onial, M.; Mathur, V.B. Traditional knowledge systems in India for biodiversity conservation. Indian J. Tradit. Knowl. 2016, 15, 304–312. [Google Scholar]
- Veteto, J.R.; Skarbø, K. Sowing the Seeds: Anthropological Contributions to Agrobiodiversity Studies. Cult. Agric. 2009, 31, 73–87. [Google Scholar] [CrossRef]
- Singh, R.K.; Sureja, A. Indigenous knowledge and sustainable agricultural resources management under rainfed agro-ecosystem. Indian J. Tradit. Knowl. 2018, 7, 642–654. [Google Scholar]
- Yang, Y.B.; Xia, J.X.; Feng, J.C.; Guo, L.; Shi, S.; Xue, D.Y. Water resource management in the Hani Rice Terraces agro-ecosystem from an ethnoecological perspective. Acta Ecol. Sinica. 2018, 38, 3291–3299. (In Chinese) [Google Scholar]
- Lin, H.Y.; Wen, Y.; Yang, X.Y.; Zhang, Y.; Cheng, G. Ethnoecology Analysis of Miao Ethnic Group’s Climate-Smart Agriculture Practices in Wumeng Mountain. J. Minzu Univ. China 2019, 28, 13–20. (In Chinese) [Google Scholar]
- Negi, V.S.; Maikhuri, R.K. Socio-Ecological and Religious Perspective of Agrobiodiversity Conservation: Issues, Concern and Priority for Sustainable Agriculture, Central Himalaya. J. Agric. Environ. Ethics 2013, 26, 491–512. [Google Scholar] [CrossRef]
- Wood, D.; Lenne, J.M. The conservation of agrobiodiversity on-farm: Questioning the emerging paradigm. Biodivers. Conserv. 1997, 6, 109–129. [Google Scholar] [CrossRef] [Green Version]
- Senda, T.; Tominaga, T. Genetic Diversity of Darnel (Lolium temulentum L.) in Malo, Ethiopia Depends on Traditional Farming Systems. Econ. Bot. 2004, 58, 568–577. [Google Scholar] [CrossRef]
- Wang, Y.J.; Wang, Y.L.; Sun, X.D.; Caiji, Z.M.; Yang, J.B.; Cui, D.; Cao, G.L.; Ma, X.D.; Han, B.; Xue, D.Y.; et al. Influence of ethnic traditional cultures on genetic diversity of rice landraces under on-farm conservation in southwest China. J. Ethnobiol. Ethnomed. 2016, 12, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, D.K.; Adhiguru, P.; Momin, K.C.; Kumar, P. Agrobiodiversity and agroecological practices in ‘jhumscape’ of the Eastern Himalayas: Don’t throw the baby out with the bathwater. Biodivers. Conserv. 2022, 31, 2349–2372. [Google Scholar] [CrossRef] [PubMed]
- Tarbox, B.C.; Swisher, M.; Calle, Z.; Wilson, C.H.; Flory, S.L. Luke Flory. Decline in local ecological knowledge in the Colombian Andes may constrain silvopastoral tree diversity. Restor. Ecol. 2020, 28, 892–901. [Google Scholar] [CrossRef]
- Ma, N.; Yang, L.; Min, Q.W.; Bai, K.Y.; Li, W.H. The Significance of Traditional Culture for Agricultural Biodiversity—Experiences from GIAHS. J. Resour. Ecol. 2021, 12, 453–461. [Google Scholar]
- Malapane, O.L.; Musakwa, W.; Chanza, N.; Radinger-Peer, V. Bibliometric Analysis and Systematic Review of Indigenous Knowledge from a Comparative African Perspective: 1990–2020. Land 2022, 11, 1167. [Google Scholar] [CrossRef]
- Ritter, M.R.; Silva, T.C.; Araujo, E.D. Albuquerque, UP. Bibliometric analysis of ethnobotanical research in Brazil (1988–2013). Acta Botânica Brasílica 2015, 29, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.J.; Wang, J.S.; Li, C.; Chen, B.X.; Sun, Y.F. Using Bibliometric Analysis to Understand the Recent Progress in Agroecosystem Services Research. Ecol. Econ. 2019, 156, 293–305. [Google Scholar] [CrossRef]
- Cobo, M.J.; Lopez-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science Mapping Software Tools: Review, Analysis, and Cooperative Study Among Tools. Journal of the American Society for Information. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar]
- Mishra, M.; Sudarsan, D.; Santos, C.A.G.; Pattnaik, N.; Kar, D.; Baral, K.; Pattnaik, N. An overview of research on natural resources and indigenous communities: A bibliometric analysis based on Scopus database (1979–2020). Environ. Monit. Assess. 2021, 193, 1–17. [Google Scholar] [CrossRef]
- Liu, X.Q.; Zhang, Y.Y.; Zhao, X.Z.; Rui, Y. Research Progress and Enlightenment of Sustainable Agriculture and Rural Development: Bibliometric Analysis Based on 1990–2020 Web of Science Core Collection Literatures. Hum. Geogr. 2021, 36, 91–101. (In Chinese) [Google Scholar]
- Van Nunen, K.; Li, J.; Reniers, G.; Ponnet, K. Bibliometric analysis of safety culture research. Saf. Sci. 2018, 108, 248–258. [Google Scholar] [CrossRef]
- Moreno-Calles, A.I.; Casas, A.; Garcia-Frapolli, E.; Torres-Garcia, I. Traditional agroforestry systems of multi-crop “milpa” and “chichipera” cactus forest in the arid Tehuacán Valley, Mexico: Their management and role in people’s subsistence. Agrofor. Syst. 2012, 84, 207–226. [Google Scholar] [CrossRef]
- Moreno-Calles, A.; Casas, A.; Blancas, J.; Torres, I.; Masera, O.; Caballero, J.; Garcia-Barrios, L.; Perez-Negron, E.; Rangel-Landa, S. Agroforestry systems and biodiversity conservation in arid zones: The case of the Tehuacan Valley, Central Mexico. Agrofor. Syst. 2010, 80, 315–331. [Google Scholar] [CrossRef]
- Velasquez-Milla, D.; Casas, A.; Torres-Guevara, J.; Cruz-Soriano, A. Ecological and socio-cultural factors influencing in situ conservation of crop diversity by traditional Andean households in Peru. J. Ethnobiol. Ethnomed. 2011, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Lulekal, E.; Asfaw, Z.; Kelbessa, E.; Van Damme, P. Ethnomedicinal study of plants used for human ailments in Ankober District, North Shewa Zone, Amhara Region, Ethiopia. J. Ethnobiol. Ethnomed. 2013, 9, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chekole, G.; Asfaw, Z.; Kelbessa, E. Ethnobotanical study of medicinal plants in the environs of Tara-gedam and Amba remnant forests of Libo Kemkem District, northwest Ethiopia. J. Ethnobiol. Ethnomed. 2015, 11, 1–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geleta, M.; Asfaw, Z.; Bekele, E.; Teshome, A. Edible oil crops and their integration with the major cereals in North Shewa and South Welo, Central Highlands of Ethiopia: An ethnobotanical perspective. Hereditas 2002, 137, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Zimmerer, K.S.; Cordova-Aguilar, H.; Olmo, R.M.; Olivencia, Y.J.; Vanek, S.J. Mountain Ecology, Remoteness, and the Rise of Agrobiodiversity: Tracing the Geographic Spaces of Human–Environment Knowledge. Ann. Am. Assoc. Geogr. 2017, 107, 441–455. [Google Scholar] [CrossRef]
- Zimmerer, K.S.; Vaca, H.L.R.; Sahonero, M.T.H. Entanglements of agrobiodiversity-food amid cascading migration, coca conflicts, and water development (Bolivia, 1990–2013). Geoforum 2022, 128, 223–235. [Google Scholar] [CrossRef]
- Fang, R.X.; Wang, X.Q.; Bai, C.; Yan, W.H.; Yang, Q.S.; Li, W.Y.; Gao, L. Knowledge mapping of the research on the Convention on Biological Diversity: Based on bibliometrics analysis of CiteSpace. Biodivers. Sci. 2021, 29, 1718–1726. (In Chinese) [Google Scholar] [CrossRef]
- Meilleur, B.A.; Hodgkin, T. In situ conservation of crop wild relatives: Status and trends. Biodivers. Conserv. 2004, 13, 663–684. [Google Scholar] [CrossRef]
- Dulloo, M.E.; Hunter, D.; Borelli, T. Ex Situ and In Situ Conservation of Agricultural Biodiversity: Major Advances and Research Needs. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 38, 123–135. [Google Scholar]
- Heywood, V.; Casas, A.; Ford-Lloyd, B.; Kell, S.; Maxted, N. Conservation and sustainable use of crop wild relatives. Agric. Ecosyst. Environ. 2006, 121, 245–255. [Google Scholar] [CrossRef]
- Hammer, K.; Arrowsmith, N.; Gladis, T. Agrobiodiversity with emphasis on plant genetic resources. Sci. Nat. 2003, 90, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Vlkova, M.; Polesny, Z.; Verner, V.; Banout, J.; Dvorak, M.; Havlik, J.; Lojka, B.; Ehl, P.; Krausova, J. Ethnobotanical knowledge and agrobiodiversity in subsistence farming: Case study of home gardens in Phong My commune, central Vietnam. Genet. Resour. Crop Evol. 2011, 58, 629–644. [Google Scholar] [CrossRef]
- Aguilar-Stoen, M.; Moe, S.R.; Camargo-Ricalde, S.L. Home Gardens Sustain Crop Diversity and Improve Farm Resilience in Candelaria Loxicha, Oaxaca, Mexico. Hum. Ecol. 2009, 37, 55–77. [Google Scholar] [CrossRef]
- Abizaid, C.; Coomes, O.T.; Perrault-Archambault, M. Seed Sharing in Amazonian Indigenous Rain Forest Communities: A Social Network Analysis in three Achuar Villages, Peru. Hum. Ecol. 2016, 44, 577–594. [Google Scholar] [CrossRef]
- Assefa, W.; Kewessa, G.; Datiko, D. Agrobiodiversity and gender: The role of women in farm diversification among smallholder farmers in Sinana district, Southeastern Ethiopia. Biodivers. Conserv. 2022, 31, 2329–2348. [Google Scholar] [CrossRef]
- Caballero-Serrano, V.; McLaren, B.; Carrasco, J.C.; Alday, J.G.; Fiallos, L.; Amigo, J.; Onaindia, M. Traditional ecological knowledge and medicinal plant diversity in Ecuadorian Amazon home gardens. Glob. Ecol. Conserv. 2019, 17, e00524. [Google Scholar] [CrossRef]
- Maxted, N.; Guarino, L.; Myer, L.; Chiwona, E.A. Towards a methodology for on-farm conservation of plant genetic resources. Genet. Resour. Crop Evol. 2002, 49, 31–46. [Google Scholar] [CrossRef]
- Väli, Ü.; Mirski, P.; Sein, G.; Abel, U.; Tõnisalu, G.; Sellis, U. Movement patterns of an avian generalist predator indicate functional heterogeneity in agricultural landscape. Landsc. Ecol. 2020, 35, 1667–1681. [Google Scholar] [CrossRef]
- Birkhofer, K.; Andersson, G.; Bengtsson, J.; Bommarco, R.; Dänhardt, J.; Ekbom, B.; Ekroos, J.; Hahn, T.; Hedlund, K.; Jönsson, A.; et al. Relationships between multiple biodiversity components and ecosystem services along a landscape complexity gradient. Biol. Conserv. 2018, 218, 247–253. [Google Scholar] [CrossRef]
- Izakovicova, Z.; Spulerova, J.; Raniak, A. The Development of the Slovak Agricultural Landscape in a Changing World. Front. Sustain. Food Syst. 2022, 6. [Google Scholar] [CrossRef]
- Benton, T.G.; Vickery, J.A.; Wilson, J.D. Farmland biodiversity: Is habitat heterogeneity the key? Trends Ecol. Evol. 2003, 18, 182–188. [Google Scholar] [CrossRef]
- Landis, A.D. Ecology-Applied Ecology; Researchers from Michigan State University Report Recent Findings in Applied Ecology (Designing agricultural landscapes for biodiversity-based ecosystem services). Ecol. Environ. Conserv. 2017, 18, 1–12. [Google Scholar]
- Brunetti, I.; Tidball, M.; Couvet, D. Relationship between biodiversity and agricultural production. Nat. Resour. Model. 2019, 32, e12204. [Google Scholar] [CrossRef]
- Fischer, C.; Thies, C.; Tscharntke, T. Mixed effects of landscape complexity and farming practice on weed seed removal. Perspect. Plant Ecol. Evol. Syst. 2011, 13, 297–303. [Google Scholar] [CrossRef]
- Lu, B.R.; Zhu, Y.Y.; Wang, Y.Y. The current status and perspectives of on-farm conservation of crop genetic diversity. Biodivers. Sci. 2002, 4, 409–415. (In Chinese) [Google Scholar]
- De Pasquale, G.; Livia, S. Biocultural diversity in the traditional landscape of Vallecorsa. Biodivers. Conserv. 2022, 31, 2373–2396. [Google Scholar] [CrossRef]
- Guadilla-Sáez, S.; Pardo-de-Santayana, M.; Reyes-García, V. The role of traditional management practices in shaping a diverse habitat mosaic in a mountain region of Northern Spain. Land Use Policy 2019, 89, 104–235. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Santoro, A.; Venturi, M.; Ben Maachia, S.; Benyahia, F.; Corrieri, F.; Piras, F.; Agnoletti, M. Agroforestry Heritage Systems as Agrobiodiversity Hotspots. The Case of the Mountain Oases of Tunisia. Sustainability 2007, 12, 40–54. [Google Scholar] [CrossRef]
- Ding, L.B.; Ma, N.; Wang, G.P.; He, S.Y.; Min, Q.W. Visual analysis of hotspots and emerging trends in traditional knowledge associated with biodiversity. Biodivers. Sci. 2019, 27, 716–727. (In Chinese) [Google Scholar]
- Shen, S.C.; Xu, G.F.; Li, D.Y.; Clements, D.R.; Zhang, F.D.; Jin, G.M..; Wu, J.Y.; Wei, P.F.; Lin, S.; Xue, D.Y. Agrobiodiversity and in situ conservation in ethnic minority communities of Xishuangbanna in Yunnan Province, Southwest China. J. Ethnobiol. Ethnomed. 2017, 13, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altieri, M.A.; Funes-Monzote, F.R.; Petersen, P. Agroecologically efficient agricultural systems for smallholder farmers: Contributions to food sovereignty. Agron. Sustain. Dev. 2012, 32, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sabar, B.; Midya, D.K. Intersecting Knowledge With Landscape: Indigenous Agriculture, Sustainable Food Production and Response to Climate Change-A Case Study of Chuktia Bhunjia Tribe of Odisha, India. J. Asian Afr. Stud. 2022. [Google Scholar] [CrossRef]
- Lahmar, R.; Bationo, B.A.; Dan Lamso, N.; Guéro, Y.; Tittonell, P. Tailoring conservation agriculture technologies to West Africa semi-arid zones: Building on traditional local practices for soil restoration. Field Crops Res. 2012, 132, 158–167. [Google Scholar] [CrossRef]
- Segnon, A.; Achigan-Dako, E.; Gaoue, O.; Ahanchédé, A. Farmer’s Knowledge and Perception of Diversified Farming Systems in Sub-Humid and Semi-Arid Areas in Benin. Sustainability 2015, 7, 6573–6592. [Google Scholar] [CrossRef] [Green Version]
- Gliessman, S.R. Agroecology in the tropics: Achieving a balance between land use and preservation. Environ. Manag. 1992, 16, 681–689. [Google Scholar] [CrossRef]
- Vallejo-Ramos, M.; Moreno-Calles, A.I.; Casas, A. TEK and biodiversity management in agroforestry systems of different socio-ecological contexts of the Tehuacan Valley. J. Ethnobiol. Ethnomed. 2016, 12, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soriano, M.A.; Diwa, J.; Herath, S. Local perceptions of climate change and adaptation needs in the Ifugao Rice Terraces (Northern Philippines). J. Mt. Sci. 2017, 14, 1455–1472. [Google Scholar] [CrossRef]
- Yuan, N.N.; Xue, D.Y.; Peng, Y. The Roles of Traditional Knowledge in Biodiversity Conservation for Li Ethnic People in Hainan Island of China. J. Minzu Univ. China 2011, 20, 30–33. (In Chinese) [Google Scholar]
- van Andel, T.; Veltman, M.; Bertin, A.; Maat, H.; Polime, T..; Lambers, D.H.R..; Awie, J.T..; De Boer, H.J.; Manzanilla, V. Hidden Rice Diversity in the Guianas. Front. Plant Sci. 2019, 10, 1161. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Hernandez, M.; Denmead, L.H.; Clough, Y.; Raffiudin, R.; Tscharntke, T. Cultural homegarden management practices mediate arthropod communities in Indonesia. J. Insect Conserv. 2016, 20, 373–382. [Google Scholar] [CrossRef]
- Sthapit, B.; Rana, R.; Eyzaguirre, P.; Jarvis, D. The value of plant genetic diversity to resource-poor farmers in Nepal and Vietnam. Int. J. Agric. Sustain. 2008, 6, 148–166. [Google Scholar] [CrossRef]
- Pautasso, M.; Aistara, G.; Barnaud, A.; Caillon, S.; Clouvel, P.; Coomes, O.T.; Delêtre, M.; Demeulenaere, E.; de Santis, P.; Döring, T.; et al. Seed exchange networks for agrobiodiversity conservation. A Review. Agron. Sustain. Dev. 2013, 33, 1. [Google Scholar] [CrossRef] [Green Version]
- Prus, B.; Uruszczak, M.; Hernik, J. Arguments based on biocultural diversity to cease abandonment of traditional agricultural systems: Lessons from Poland. Biodivers. Conserv. 2021. (prepublish). [Google Scholar] [CrossRef]
- Villanueva, A.B.; Halewood, M.; Noriega, I.L. Agricultural Biodiversity in Climate Change Adaptation Planning. Eur. J. Sustain. Dev. 2017, 6, 1–8. [Google Scholar] [CrossRef]
- Falkowski, T.B.; Vazquez-Perez, J.R.; Chankin, A.; Campos-Beltran, A.Y.; Rangel-Salazar, J.L.; Cohen, J.B.; Diemont, S.A.W. Assessing avian diversity and community composition along a successional gradient in traditional Lacandon Maya agro-forests. Biotropica 2020, 52, 1242–1252. [Google Scholar] [CrossRef]
- Gebru, B.M.; Wang, S.W.; Kim, S.J.; Lee, W.K. Socio-Ecological Niche and Factors Affecting Agroforestry Practice Adoption in Different Agroecologies of Southern Tigray, Ethiopia. Sustainability 2019, 11, 3729. [Google Scholar] [CrossRef] [Green Version]
- Parrotta, J.A.; Agnoletti, M. Traditional Forest-Related Knowledge and Climate Change. In Traditional Forest-related Knowledge; Springer: Dordrecht, The Netherlands, 2012; pp. 491–533. [Google Scholar]
- Marentes, M.A.H.; Venturi, M.; Scaramuzzi, S.; Focacci, M.; Santoro, A. Traditional forest-related knowledge and agrobiodiversity preservation: The case of the chagras in the Indigenous Reserve of Monochoa (Colombia). Biodivers. Conserv. 2021, 31, 2243–2258. [Google Scholar] [CrossRef]
- Lyu, X.; Peng, W.L.; Yu, W.; Xin, Z.F.; Niu, S.D.; Qu, Y. Sustainable intensification to coordinate agricultural efficiency and environmental protection: A systematic review based on metrological visualization. J. Land Use Sci. 2021, 16, 313–338. [Google Scholar] [CrossRef]
- Peroni, N.; Hanazaki, N. Current and lost diversity of cultivated varieties, especially cassava, under swidden cultivation systems in the Brazilian Atlantic Forest. Agric. Ecosyst. Environ. 2002, 92, 171–183. [Google Scholar] [CrossRef]
- Park, Y.J.; Dixit, A.; Ma, K.H.; Kang, J.H.; Rao, V.R.; Cho, E.G. On-farm Conservation Strategy to Ensure Crop Genetic Diversity in Changing Agro-ecosystems in the Republic of Korea. J. Agron. Crop Sci. 2005, 191, 401–410. [Google Scholar] [CrossRef]
- Anchirinah, V.M.; Yiridoe, E.K.; Bennett-Lartey, S.O. Enhancing Sustainable Production and Genetic Resource Conservation of Bambara Groundnut: A Survey of Indigenous Agricultural Knowledge Systems. Outlook Agric. 2001, 30, 281–288. [Google Scholar] [CrossRef]
- Salako, V.K.; Fandohan, B.; Kassa, B.; Assogbadjo, A.E.; Idohou, A.F.R.; Gbedomon, R.C.; Chakeredza, S.; Dulloo, M.E.; Glele Kakaï, R. Home gardens: An assessment of their biodiversity and potential contribution to conservation of threatened species and crop wild relatives in Benin. Genet. Resour. Crop Evol. 2013, 61, 313–330. [Google Scholar] [CrossRef]
- Mahon, N.; McGuire, S.; Islam, M.M. Why bother with Bere? An investigation into the drivers behind the cultivation of a landrace barley. J. Rural. Stud. 2016, 45, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Calvo-Iglesias, M.S.; Crecente-Maseda, R.; Fra-Paleo, U. Exploring farmer’s knowledge as a source of information on past and present cultural landscapes. Landsc. Urban Plan. 2006, 78, 334–343. [Google Scholar] [CrossRef]
- Diemont, S.A.W.; Martin, J.F. Lacandon Maya ecosystem management: Sustainable design for subsistence and environmental restoration. Ecol. Appl. 2009, 19, 254–266. [Google Scholar] [CrossRef] [Green Version]
- Nainggolan, D.; Termansen, M.; Reed, M.S.; Cebollero, E.D.; Hubacek, K. Farmer typology, future scenarios and the implications for ecosystem service provision: A case study from south-eastern Spain. Reg. Environ. Change 2011, 13, 601–614. [Google Scholar] [CrossRef]
- Temudo, M.P. Planting Knowledge, Harvesting Agro-Biodiversity: A Case Study of Southern Guinea-Bissau Rice Farming. Hum. Ecol. 2011, 39, 309–321. [Google Scholar] [CrossRef]
- Vasconcelos, A.C.F.; Bonatti, M.; Schlindwein, S.L.; D’Agostini, L.R.; Homem, L.R.; Nelson, R. Landraces as an adaptation strategy to climate change for smallholders in Santa Catarina, Southern Brazil. Land Use Policy 2013, 34, 250–254. [Google Scholar] [CrossRef]
- Ruelle, M.L.; Kassam, K.-A.; Morreale, S.J.; Asfaw, Z.; Power, A.G.; Fahey, T.J. Biocultural diversity and food sovereignty: A case study of human-plant relations in northwestern Ethiopia. Food Secur. 2019, 11, 183–199. [Google Scholar] [CrossRef]
Country or Region | TP | Percentage | TC | Average Citation per Article | Proportion of Publications in Recent Three Years |
---|---|---|---|---|---|
USA | 80 | 19.09% | 3510 | 44.43 | 30.00% |
India | 45 | 10.74% | 1774 | 39.42 | 26.67% |
Mexico | 44 | 10.50% | 2178 | 49.50 | 27.27% |
Germany | 39 | 9.31% | 1882 | 48.26 | 30.77% |
Italy | 39 | 9.31% | 1846 | 47.33 | 51.28% |
France | 36 | 8.59% | 1833 | 50.92 | 33.33% |
China | 29 | 6.92% | 1519 | 52.38 | 41.38% |
Canada | 28 | 6.68% | 1639 | 58.54 | 7.14% |
Brazil | 26 | 6.21% | 1552 | 59.69 | 30.77% |
Spain | 23 | 5.49% | 1606 | 69.83 | 26.09% |
Journal | Percentage | Average Citation per Article | Five-Year Impact Factor |
---|---|---|---|
Journal of Ethnobiology and Ethnomedicine | 8.83% | 15.70 | 4.404 |
Sustainability | 4.77% | 6.50 | 4.089 |
Biodiversity and Conservation | 3.34% | 7.00 | 4.416 |
Genetic Resources and Crop Evolution | 2.86% | 14.92 | 1.864 |
Agroecology and Sustainable Food Systems | 2.39% | 4.00 | 3.213 |
Agroforestry Systems | 2.39% | 46.00 | 2.627 |
Agriculture Ecosystems Environment | 2.15% | 37.89 | 7.088 |
Human Ecology | 2.15% | 26.67 | 2.728 |
Journal of Ethnobiology | 2.15% | 2.89 | 2.005 |
Ecology and Society | 1.91% | 39.13 | 6.486 |
Author | Number of Papers | Average Citation per Article |
---|---|---|
Casas A | 10 | 14.30 |
Asfaw Z | 8 | 160.75 |
Zimmerer KS | 7 | 24.29 |
Reyes-garcia V | 6 | 14.17 |
Long CL | 5 | 27.00 |
Maikhuri RK | 5 | 17.40 |
Moreno-calles AI | 5 | 13.40 |
Rao KS | 5 | 13.20 |
Santoro A | 5 | 5.00 |
Singh RK | 5 | 11.00 |
Van Etten J | 5 | 7.00 |
Venturi M | 5 | 3.20 |
Institution | Number of Papers | Average Citation per Article |
---|---|---|
Chinese Academy of Sciences | 15 | 259 |
Bioversity International | 15 | 546 |
Autonomous University of Mexico | 13 | 627 |
Cornell University | 9 | 174 |
Minzu University of China | 9 | 164 |
Pennsylvania State University | 9 | 191 |
CIRAD | 8 | 95 |
University of Florence | 8 | 27 |
Abomey-Callaway University | 7 | 77 |
Autonomous University of Barcelona | 7 | 97 |
Keywords | Occurrences | Total Link Strength | Keywords | Occurrences | Total Link Strength |
---|---|---|---|---|---|
biodiversity | 113 | 462 | home gardens | 27 | 133 |
diversity | 112 | 409 | resilience | 25 | 120 |
conservation | 112 | 441 | agriculture | 25 | 108 |
agrobiodiversity | 105 | 383 | landraces | 23 | 87 |
management | 83 | 358 | agroforestry | 23 | 103 |
knowledge | 49 | 209 | indigenous knowledge | 23 | 84 |
land-use | 49 | 206 | dynamics | 22 | 98 |
ecosystem services | 47 | 194 | medicinal plants | 21 | 77 |
ethnobotany | 41 | 157 | local knowledge | 21 | 78 |
food security | 41 | 164 | sustainability | 21 | 84 |
traditional knowledge | 38 | 143 | community | 21 | 77 |
biodiversity conservation | 31 | 117 | forest | 21 | 85 |
systems | 31 | 140 | landscapes | 20 | 79 |
traditional ecological knowledge | 31 | 127 | species richness | 20 | 77 |
genetic diversity | 28 | 112 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Ren, X.; Lu, F. Research Status and Trends of Agrobiodiversity and Traditional Knowledge Based on Bibliometric Analysis (1992–Mid-2022). Diversity 2022, 14, 950. https://doi.org/10.3390/d14110950
Liu Y, Ren X, Lu F. Research Status and Trends of Agrobiodiversity and Traditional Knowledge Based on Bibliometric Analysis (1992–Mid-2022). Diversity. 2022; 14(11):950. https://doi.org/10.3390/d14110950
Chicago/Turabian StyleLiu, Yiling, Xiaodong Ren, and Fengqiong Lu. 2022. "Research Status and Trends of Agrobiodiversity and Traditional Knowledge Based on Bibliometric Analysis (1992–Mid-2022)" Diversity 14, no. 11: 950. https://doi.org/10.3390/d14110950
APA StyleLiu, Y., Ren, X., & Lu, F. (2022). Research Status and Trends of Agrobiodiversity and Traditional Knowledge Based on Bibliometric Analysis (1992–Mid-2022). Diversity, 14(11), 950. https://doi.org/10.3390/d14110950