Ecological and Hydrological Indicators of Climate Change Observed by Dryland Communities of Malipati in Chiredzi, Zimbabwe
Abstract
:1. Introduction
2. Existing Evidence of Climate Change in Zimbabwe
3. Research Methods
3.1. Study Area
3.2. Data Collection and Analysis
4. Results and Discussion
4.1. Observed Hydrological Changes
4.2. Observed Ecological Changes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sibanda, S.; Grab, S.W.; Ahmed, F. Spatio-temporal temperature trends and extreme hydro-climatic events in southern Zimbabwe. S. Afr. Geog. J. 2018, 100, 210–232. [Google Scholar] [CrossRef]
- Jiri, O.; Mafongoya, P.L.; Chivenge, P. Contextual vulnerability of rainfed crop-based farming communities in semi-arid Zimbabwe: A case of Chiredzi District. Int. J. Clim. Chang. Strateg. Manag. 2017, 9, 777–789. [Google Scholar] [CrossRef]
- Manatsa, D.; Mushore, T.D.; Gwitira, I.; Wuta, M.; Chemura, A.; Shekede, M.D.; Mugandani, R.; Sakala, L.C.; Ali, L.H.; Masukwedza, G.I.; et al. Revision of Zimbabwe’s Agro-Ecological Zones; A Technical Report submitted to the Zimbabwe National Geospatial and Space Agency (ZINGSA) for the Ministry of Higher and Tertiary Education, Innovation, Science and Technology Development; Government of Zimbabwe: Harare, Zimbabwe, 2020; in press. [Google Scholar]
- Savo, V.; Lepofsky, D.; Benner, J.P.; Kohfeld, K.E.; Bailey, J.; Lertzman, K. Observations of climate change among subsistence-oriented communities around the world. Nat. Clim. Chang. 2016, 6, 462–473. [Google Scholar] [CrossRef]
- Garcia-del-Amo, D.; Mortyn, P.G.; Reyes-García, V. Including indigenous and local knowledge in climate research: An assessment of the opinion of Spanish climate change researchers. Clim. Chang. 2020, 160, 67–88. [Google Scholar] [CrossRef]
- Ndlovu, E.; Prinsloo, B.; le Roux, T. Impact of climate change and variability on traditional farming systems: Farmers’ perceptions from South-West, semi-arid Zimbabwe. Jamba J. Dis. Risk Stud. 2020, 12, 742. [Google Scholar] [CrossRef]
- Risiro, J. Weather forecasting and indigenous knowledge systems in Chimanimani District of Manicaland, Zimbabwe. J. Emerg. Trends Educ. Res. Policy Stud. 2012, 3, 561–566. [Google Scholar]
- Nhamo, G.; Eloff, M.M. ICT readiness for disaster risk reduction: Lessons from Tropical Cyclone Idai. In Cyclones in Southern Africa; Sustainable Development Goals Series; Nhamo, G., Dube, K., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Marin, A. Riders under storms: Contributions of nomadic herders’ observations to analysing climate change in Mongolia. Glob. Environ. Chang. 2010, 20, 162–176. [Google Scholar] [CrossRef]
- Alexander, C.; Bynum, N.; Johnson, E.; King, U.; Mustonen, T.; Neofotis, P.; Oettle, N.; Rosenzweig, C.; Sakakibara, C.; Shadrin, V.; et al. Linking indigenous and scientific knowledge of climate change. BioScience 2011, 61, 477–484. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, A.C.; Fandohan, B.; Assogbadjo, A.E.; Sinsin, B. A countrywide multi-ethnic assessment of local communities’ perception of climate change in Benin (West Africa). Clim. Dev. 2012, 4, 114–128. [Google Scholar] [CrossRef]
- Crona, B.; Wutich, A.; Slade, A.; Gartin, M. Perceptions of climate change: Linking local and global perceptions through a cultural knowledge approach. Clim. Chang. 2013, 119, 519–531. [Google Scholar] [CrossRef]
- Da Silva, C.J.; Albernaz-Silveira, R.; Nogueira, P.S. Perceptions on climate change of the traditional community Cuiabá Mirim, Pantanal Wetland, Mato Grosso, Brazil. Clim. Chang. 2014, 127, 83–92. [Google Scholar] [CrossRef]
- Gurgiser, W.; Juen, I.; Singer, K.; Neuburger, M.; Schauwecker, S.; Hofer, M.; Kaser, G. Comparing peasants’ perceptions of precipitation change with precipitation records in the tropical Callejon de Huaylas, Peru. Earth Syst. Dyn. 2016, 7, 499–515. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Garcia, V.; Fernandez-Llamazares, A.; Garcia-del-Amo, D.; Cabeza, M. Operationalizing local ecological knowledge in climate change research: Challenges and opportunities of citizen science. In Changing Climate, Changing Worlds. Local Knowledge and the Challenges of Social and Ecological Change; Welch-Devine, M., Sourdril, A., Burke, B.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 183–197. [Google Scholar]
- Boillat, S.; Berkes, F. Perception and interpretation of climate change among Quechua farmers of Bolivia: Indigenous knowledge as a resource for adaptive capacity. Ecol. Soc. 2013, 18, 21. [Google Scholar] [CrossRef] [Green Version]
- Makondo, C.C.; Thomas, D.S.G. Climate change adaptation: Linking indigenous knowledge with western science for effective adaptation. Environ. Sci. Policy 2018, 88, 83–91. [Google Scholar] [CrossRef]
- Chanza, N.; Musakwa, W. “Trees are our relatives”: Local perceptions on forestry resources and implications for climate change mitigation. Sustainability 2021, 13, 5885. [Google Scholar] [CrossRef]
- Radeny, M.; Desalegn, A.; Mubiru, D.; Kyazze, F.; Mahoo, H.; Recha, J.; Kimeli, P.; Solomon, D. Indigenous knowledge for seasonal weather and climate forecasting across East Africa. Clim. Chang. 2019, 156, 509–526. [Google Scholar] [CrossRef] [Green Version]
- Ebhuoma, E.E. A framework for integrating scientific forecasts with indigenous systems of weather forecasting in southern Nigeria. Dev. Pract. 2020, 30, 472–484. [Google Scholar] [CrossRef]
- Gwenzi, J.; Mashonjowa, E.; Mafongoya, P.L. A participatory approach to developing community-based climate services in Zimbabwe: A case study of Uzumba Maramba Pfungwe (UMP) District. In Handbook of Climate Services; Climate Change Management; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Fernandez-Llamazares, A.; Garcia, R.; Diaz-Reviriego, A.I.; Cabeza, M.; Pyhala, A.; Reyes-Garcia, V. An empirically tested overlap between indigenous and scientific knowledge of a changing climate in Bolivian Amazonia. Reg. Environ. Chang. 2017, 17, 1673–1685. [Google Scholar] [CrossRef] [Green Version]
- Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, A.; Lennard, C.; Padgham, J.; Urquhart, P. Africa. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.G., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1199–1265. [Google Scholar]
- Mugandani, R.; Wuta, M.; Makarau, A.; Chipindu, B. Re-classification of agro-ecological regions of Zimbabwe in conformity with climate variability and change. Afr. Crop Sci. J. 2012, 20, 361–369. [Google Scholar]
- Musakwa, W.; Mpofu, E.; Nyathi, N.A. Local community perceptions on landscape change, ecosystem services, climate change, and livelihoods in Gonarezhou national park, Zimbabwe. Sustainability 2020, 12, 4610. [Google Scholar] [CrossRef]
- Matarira, D.; Mutanga, O.; Dube, T. Landscape scale land degradation mapping in the semi-arid areas of the Save catchment, Zimbabwe. S. Afri. Geog. J. 2021, 103, 183–203. [Google Scholar] [CrossRef]
- Kusangaya, S.; Warburton, M.L.; van Garderen, E.M.; Jewitt, G.P.W. Impacts of climate change on water resources in Southern Africa: A review. Phys. Chem. Earth Parts A/B/C 2014, 67–69, 47–54. [Google Scholar] [CrossRef]
- Gumindoga, W.; Murwira, A.; Rwasoka, D.T.; Jahure, F.B.; Chikwiramakomo, L. The spatio-temporal soil moisture variation along the major tributaries of Zambezi River in the Mbire District, Zimbabwe. J. Hydrol. Reg. Stud. 2020, 32, 100753. [Google Scholar] [CrossRef]
- Mpakairi, K.S.; Ndaimani, H.; Tagwireyi, P.; Zvidzai, M.; Madiri, T.H. Futuristic climate change scenario predicts a shrinking habitat for the African elephant (Loxodonta africana): Evidence from Hwange National Park, Zimbabwe. J. Wildl. Res. 2020, 66, 1. [Google Scholar] [CrossRef]
- Unganai, L.S. Historic and future climatic change in Zimbabwe. Clim. Res. 1996, 6, 137–145. [Google Scholar] [CrossRef]
- Rurinda, J.; Mapfumo, P.; van Wijk, M.T.; Mtambanengwe, F.; Rufino, M.C.; Chikowo, R.; Giller, K.E. Sources of vulnerability to a variable and changing climate among smallholder households in Zimbabwe: A participatory analysis. Clim. Risk Manag. 2014, 3, 65–78. [Google Scholar] [CrossRef]
- Chamaille-Jammes, S.; Fritz, H.; Murindagomo, F. Detecting climate changes of concern in highly variable environments: Quantile regressions reveal that droughts worsen in Hwange National Park, Zimbabwe. J. Arid Environ. 2007, 71, 321–326. [Google Scholar] [CrossRef]
- Aguilar, E.; Aziz Barry, A.; Brunet, M.; Ekang, L.; Fernandes, A.; Massoukina, M.; Mbah, J.; Mhanda, A.; do Nascimento, D.J.; Peterson, T.C.; et al. Changes in temperature and precipitation extremes in western central Africa, Guinea Conakry, and Zimbabwe, 1955–2006. J. Geophys. Res. 2009, 114, D02115. [Google Scholar] [CrossRef]
- Dube, K.; Nhamo, G. Tropical cyclones as an emerging global disaster risk and management issue. In Cyclones in Southern Africa; Sustainable Development Goals Series; Nhamo, G., Dube, K., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Malanco, J.A.; Makurira, H.; Kaseke, E.; Gumindoga, W. Water management challenges at Mushandike irrigation scheme in Runde catchment, Zimbabwe. Proc. Int. Assoc. Hydrol. Sci. 2018, 378, 73–78. [Google Scholar] [CrossRef]
- Dawen, Y.; Yuting, Y.; Jun, X. Hydrological cycle and water resources in a changing world: A review. GEO Sustain. 2021, 2, 115–122. [Google Scholar]
- Utete, B.; Nhiwatiwa, T.; Kavhu, B.; Kusangaya, S.; Viriri, N.; Mbauya, A.W.; Tsamba, J. Assessment of water levels and the effects of climatic factors and catchment dynamics in a shallow subtropical reservoir, Manjirenji Dam, Zimbabwe. J. Water Clim. Chang. 2019, 10, 580–590. [Google Scholar] [CrossRef]
- Chapungu, L.; Nhamo, L.; Gatti, R.C.; Chitakira, M. Quantifying changes in plant species diversity in a savanna ecosystem through observed and remotely sensed data. Sustainability 2020, 12, 2345. [Google Scholar] [CrossRef] [Green Version]
- Lawal, S.; Lennard, C.; Hewitson, B. Response of southern African vegetation to climate change at 1.5 and 2.0 °C global warming above the pre-industrial level. Clim. Serv. 2019, 16, 100134. [Google Scholar] [CrossRef]
- Hartmann, J.; Ebi, K.; McConnell, J.; Chan, N.; Weyant, J.P. Climate suitability for stable malaria transmission in Zimbabwe under different climate change scenarios. Glob. Clim. Chang. Hum. Health 2002, 3, 42–54. [Google Scholar] [CrossRef]
- Mano, R.; Nhemachena, C. Assessment of the economic impacts of climate change on agriculture in Zimbabwe: A Ricardian Approach. CEEPA Discussion Paper 11. Chem. Earth 2007, 32, 1068–1073. [Google Scholar]
- Gukurume, S. Climate change, variability and sustainable agriculture in Zimbabwe’s rural communities. Russ. J. Agric. Socio-Econ. Sci. 2013, 2, 89–100. [Google Scholar]
- Makuvaro, V.; Murewi, C.T.F.; Dimes, J.; Chagonda, I. Are smallholder farmers’ perceptions of climate variability and change supported by climate records? A case study of Lower Gweru in Semiarid Central Zimbabwe. Weather Clim. Soc. 2018, 10, 35–49. [Google Scholar] [CrossRef]
- Govere, S.; Nyamangara, J.; Nyakatawa, E.Z. Climate change signals in the historical water footprint of wheat production in Zimbabwe. Sci. Total Environ. 2020, 742, 140473. [Google Scholar] [CrossRef]
- Mugambiwa, S.S.; Rukema, J.R. Climate change and variability discourse among community members and smallholder farmers in Mutoko District, Zimbabwe. Mank. Q. 2020, 61, 225–250. [Google Scholar] [CrossRef]
- ZimStat. Census 2012: Masvingo Province; Zimbabwe National Statistical Agency (ZimStat): Harare, Zimbabwe, 2013.
- Descheemaeker, K.; Zijlstra, M.; Masikati, P.; Crespo, O.; Homann-Kee Tui, S. Effects of climate change and adaptation on the livestock component of mixed farming systems: A modelling study from semi-arid Zimbabwe. Agric. Syst. 2018, 159, 282–295. [Google Scholar] [CrossRef]
- Defe, R.; Matsa, M. Resilience building initiatives to counter shocks and stressors affecting rural communities in Chiredzi District, Zimbabwe. In Social-Ecological Systems (SES); Behnassi, M., Gupta, H., El Haiba, M., Ramachandran, G., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Chanza, N.; Gundu-Jakarasi, V. Deciphering the climate change conundrum in Zimbabwe: An exposition. In Global Warming and Climate Change; Tiefenbacher, J., Ed.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Jani, V.; de Wit, A.H.; Webb, N.L. An assessment of human–wildlife conflicts in local communities bordering Chewore and Dande Safari areas in Mbire District, northern Zimbabwe. Afr. J. Ecol. 2020, 58, 891–986. [Google Scholar] [CrossRef]
- Kolawole, O.D.; Motsholapheko, M.R.; Ngwenya, B.N.; Thakadu, O.; Mmopelwa, G.; Kgathi, D.L. Climate variability and rural livelihoods: How households perceive and adapt to climatic shocks in the Okavango Delta, Botswana. Weather Clim. Soc. 2016, 8, 131–145. [Google Scholar] [CrossRef]
- Panda, A. Exploring climate change perceptions, rainfall trends and perceived barriers to adaptation in a drought affected region in India. Nat. Hazards 2016, 84, 777–796. [Google Scholar] [CrossRef]
Natural Region | Characteristics | Total Area, Original Classification(%) | Total Area, after 2020 Revisions (%) |
---|---|---|---|
I | Annual rainfall more than 1000 mm, length of rainfall season more than 130 days and maximum temperature between 21 and 25 °C | 1.8 | 1.5 |
II | Annual rainfall between 750 and 1000 mm, length of rainfall season between 120 and 130 days and maximum temperature between 23 and 28 °C | 15.0 | 15.0 |
III | Annual rainfall between 650 and 800 mm, length of rainfall season between 110 and 120 days and maximum temperature between 25 and 28 °C | 18.7 | 16.2 |
IV | Annual rainfall between 450 and 650 mm, length of rainfall season between 105 and 120 days and maximum temperature between 27 and 29 °C | 37.8 | 29.1 |
V | Annual rainfall below 600 mm, length of rainfall season less than 110 days and maximum temperature between 28 and 32 °C | 26.7 | 38.2 |
Demographics | Description | Frequency/Proportion (%) |
---|---|---|
Sex | Male | 47 (41) |
Female | 69 (59) | |
Age (years) | 18–35 | 30 (26) |
36–49 | 34 (29) | |
50–64 | 33 (28) | |
65 plus | 19 (16) | |
Education | Never been to school | 26 (22) |
Primary | 47 (41) | |
Secondary | 37 (32) | |
Tertiary | 6 (5) | |
Period of residency (years) | Less 10 | 2 (2) |
10–20 | 15 (13) | |
21–30 | 23 (20) | |
30 plus | 76 (66) |
Indicator | Frequency/Proportion (%) |
---|---|
Observed changes in rivers/streams | |
drying earlier | 83 (71.6) |
less water | 31 (26.7) |
no more water | 0 (0) |
no change | 1 (0.9) |
not sure | 1 (0.9) |
Observed changes in swamps | |
drying earlier | 92 (79.3) |
less swampy | 9 (7.8) |
no more swamps | 8 (6.9) |
no change | 0 (0) |
not sure | 7 (6.0) |
Observed changes in ground water | |
very deep water table | 56 (48.3) |
deeper water table | 44 (37.9) |
water inaccessible | 7 (6.0) |
no change | 1 (0.9) |
not sure | 8 (6.9) |
Observed changes in siltation of water bodies | |
heavily silted | 75 (64.7) |
slightly slighted | 28 (24.1) |
no change | 1 (0.9) |
not sure | 12 (10.3) |
Indicator | Frequency/Proportion (%) |
---|---|
Observed changes in fruit trees | |
more fruits | 3 (2.6) |
less fruits | 100 (86.2) |
no change | 4 (3.4) |
not sure | 9 (7.8) |
Observed changes in wild animal herbivores | |
Increase | 53 (45.7) |
Decrease | 25 (21.6) |
no change | 7 (6.0) |
not sure | 31 (26.7) |
Observed changes in wild animal predators | |
Increase | 73 (62.9) |
Decrease | 20 (17.2) |
no change | 4 (3.4) |
not sure | 19 (16.4) |
Observed changes in birds | |
Increase | 67 (57.8) |
Decrease | 25 (21.6) |
no change | 11 (9.4) |
not sure | 13 (11.2) |
Observed changes in insects | |
Increase | 90 (77.6) |
Decrease | 12 (10.3) |
no change | 1 (0.9) |
not sure | 13 (11.2) |
Observed changes in grasslands | |
Increase | 4 (3.4) |
Decrease | 93 (80.2) |
no change | 0 (0) |
not sure | 19 (16.4) |
Observed changes in woodlands | |
Increase | 0 (0) |
Decrease | 102 (87.9) |
no change | 2 (1.7) |
not sure | 12 (10.3) |
Observed changes in aggressiveness of wildlife | |
more aggressive | 61 (52.6) |
less aggressive | 8 (6.9) |
no change | 24 (20.7) |
not sure | 23 (19.8) |
Observed changes in crop raids | |
more crop raids | 64 (55.2) |
less crop raids | 19 (16.4) |
no change | 12 (10.3) |
not sure | 21 (18.1) |
Observed changes in predating on domestic animals | |
more predation | 82 (70.7) |
less predation | 4 (3.4) |
no change | 1 (0.9) |
not sure | 29 (25.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chanza, N.; Musakwa, W. Ecological and Hydrological Indicators of Climate Change Observed by Dryland Communities of Malipati in Chiredzi, Zimbabwe. Diversity 2022, 14, 541. https://doi.org/10.3390/d14070541
Chanza N, Musakwa W. Ecological and Hydrological Indicators of Climate Change Observed by Dryland Communities of Malipati in Chiredzi, Zimbabwe. Diversity. 2022; 14(7):541. https://doi.org/10.3390/d14070541
Chicago/Turabian StyleChanza, Nelson, and Walter Musakwa. 2022. "Ecological and Hydrological Indicators of Climate Change Observed by Dryland Communities of Malipati in Chiredzi, Zimbabwe" Diversity 14, no. 7: 541. https://doi.org/10.3390/d14070541
APA StyleChanza, N., & Musakwa, W. (2022). Ecological and Hydrological Indicators of Climate Change Observed by Dryland Communities of Malipati in Chiredzi, Zimbabwe. Diversity, 14(7), 541. https://doi.org/10.3390/d14070541