Effect of Ethanol Solvents on Total Phenolic Content and Antioxidant Properties of Seed Extracts of Fenugreek (Trigonella foenum-graecum L.) Varieties and Determination of Phenolic Composition by HPLC-ESI-MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Extraction Procedure and Extraction Yield
2.4. Total Phenolic Content (TPC)
2.5. DPPH Radical Scavenging Activity
2.6. Transition Metal Reducing Power (TMRP)
2.7. Iron Chelating Ability
2.8. HPLC-ESI-MS Analysis
2.8.1. Sample Preparation
2.8.2. HPLC-ESI-MS Conditions
2.8.3. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yield and Total Phenolic Content
3.2. Antioxidant Activity
3.2.1. Radical Scavenging Activity
3.2.2. Transition Metal Reducing Power
3.2.3. Iron Chelating Ability
3.3. Correlation Analysis
3.4. HPLC-ESI-MS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shankar, K.; Mehendale, H.M. Oxidative stress. In Encyclopedia of Toxicology, 3rd ed.; Academic Press: Bethesda, MD, USA, 2014; pp. 735–737. [Google Scholar]
- Halliwell, B.; Cross, C.E. Oxygen-derived species: Their relation to human disease and environmental stress. Environ. Health Perspect. 1994, 102, 5–12. [Google Scholar]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017, 2017, 13. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Kumar, N.V.A.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Fokou, P.V.T.; Azzini, E.; Peluso, I.; et al. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef] [PubMed]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wu, J.; Daleo, C.J. RNA damage and surveillance under oxidative stress. IUBMB Life 2006, 58, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Wink, M. Current understanding of modes of action of multicom multicomponent bioactive phytochemicals: Potential for nutraceuticals and antimicrobials. Annu. Rev. Food Sci. Technol. 2022, 13, 1–23. [Google Scholar]
- Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef] [Green Version]
- Irato, P.; Santovito, G. Enzymatic and non-enzymatic molecules with antioxidant function. Antioxidants 2021, 10, 579. [Google Scholar] [CrossRef] [PubMed]
- Grune, T.; Schröder, P.; Biesalski, H.K. Low molecular weight antioxidants. Handb. Environ. Chem. 2004, 20, 77–90. [Google Scholar]
- Horman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 652. [Google Scholar]
- Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2016, 15, 71. [Google Scholar] [CrossRef] [Green Version]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beveragesand spices: Antioxidant activity and health effects. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Board, N. Hand Book on Spices; Asia Pacific Business Press Inc.: Delhi, India, 2010; pp. 137–138. [Google Scholar]
- Basch, F.I.; Ulbricht, C.; Kuo, G.; Szapary, P.; Smith, M. Therapeutic applications of fenugreek. Altern. Med. Rev. 2003, 8, 20–27. [Google Scholar]
- Khorshidian, N.; Yousefi, M.; Arab, M. Fenugreek: Potential applications as a functional food and nutraceutical. Nutr. Food Sci. Res. 2016, 3, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Yadav, U.S.C.; Baquer, N.Z. Pharmacological effects of Trigonella foenum-graecum L. in health and disease. Pharm. Biol. 2014, 52, 243–254. [Google Scholar] [CrossRef] [Green Version]
- Syed, Q.A.; Rashid, Z.; Ahmad, M.H.; Shukat, R.; Ishaq, A.; Muhammad, N.; Rahman, H.U.U. Nutritional and therapeutic properties of fenugreek (Trigonella foenum-graecum): A review. Int. J. Food Prop. 2020, 23, 1777–1791. [Google Scholar] [CrossRef]
- Premanath, R.; Sudisha, N.; Devi, N.L.; Aradhya, S.M. Antibacterial and anti-oxidant activities of fenugreek (Trigonella foenum graecum L.) leaves. Res. J. Med. Plant 2011, 5, 695–705. [Google Scholar] [CrossRef]
- Yacoubi, L.; Rabaoui, L.; Hamdaoui, M.H.; Fattouch, S.; Serairi, R.; Kourda, N.; Khamsa, S.B. Anti-oxidative and anti-inflammatory effects of Trigonella foenum-graecum Linnaeus, (Fenugreek) seed extract in experimental pulmonary fibrosis. J. Med. Plants Res. 2011, 5, 4315–4325. [Google Scholar]
- Anuradha, C.V.; Ravikumar, P. Antilipid peroxidative activity of seeds of fenugreek (Trigonella foenum-graecum). Med. Sci. Res. 1998, 26, 317–321. [Google Scholar]
- Anuradha, C.V.; Ravikumar, P. Restoration of tissue anti-oxidants by fenugreek (Trigonella foenum-graecum) seeds in alloxan-diabetic. Indian J. Physiol. Pharmacol. 2001, 45, 408–420. [Google Scholar] [PubMed]
- El-Malky, W.A.; Gouda, H.A. Effect of green leaves and germination and boiling treatments of fenugreek and lupin seeds on chemical composition, serum glucose, lipid profile and hepatic enzymes of rats. Egypt. J. Biomed. Sci. 2007, 23, 39–59. [Google Scholar] [CrossRef]
- Kaviarasan, S.; Naik, G.H.; Gangabhagirathi, R.; Anuradha, C.V.; Priyadarsini, K.I. In vitro studies on antiradical and antioxidant activities of fenugreek (Trigonella foenum graecum) seeds. Food Chemistry 2007, 103, 31–37. [Google Scholar] [CrossRef]
- Kaviarasan, S.; Viswanathan, P.; Viswanathan, C.V. Fenugreek seed (Trigonella foenum-graecum) polyphenols inhibit ethanol-induced collagen and lipid accumulation in rat liver. Cell. Biol. Toxicol. 2007, 23, 373–380. [Google Scholar] [CrossRef]
- Kaviarasan, S.; Ramamurty, N.; Gunasekaran, P.; Varalakshmi, E.; Anuradha, C.V. Fenugreek (Trigonella foenum-graecum) Seed Extract Prevents Ethanol-Induced Toxicity And Apoptosis In Chang Liver Cells. Alcohol Alcohol. 2006, 41, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Kaviarasan, S.; Vijayalakshmi, K.; Anuradha, C.V. Polyphenol-rich extract of fenugreek seeds protect erythrocytes from oxidative damage. Plant Foods Hum. Nutr. 2004, 59, 143–147. [Google Scholar] [CrossRef]
- Thirunavukkarasu, V.; Anuradha, C.V. Gastroprotective effect of fenugreek seeds (Trigonella foenum-graecum) on experimental gastric ulcer in rats. J. Herbs Spices Med. Plants 2006, 12, 13–25. [Google Scholar] [CrossRef]
- Subhashini, N.; Thangathirupathi, A.; Lavanya, N. Antioxidant activity of Trigonella foenum graecum using various in vitro and ex vivo models. Int. J. Pharm. Pharm. Sci. 2011, 3, 96–102. [Google Scholar]
- Bukhari, S.B.; Bhanger, M.I.; Memon, S. 83 Antioxidative activity of extracts from fenugreek seeds (Trigonella foenum-graecum). Pak. J. Anal. Environ. Chem. 2008, 9, 78–83. [Google Scholar]
- Parvizpur, A.; Ahmadiani, A.; Kamalinejad, M. Probable role of spinal purinoceptors in the analgesic effect of Trigonella foenum-graecum (TFG) leaves extract. J. Ethnopharmacol. 2006, 104, 108–112. [Google Scholar] [CrossRef]
- Parvizpur, A.; Ahmadiani, A.; Kamalinejad, M. Spinal serotonergic system is partially involved in antinociception induced by Trigonella foenum-graecum (TFG) leaf extract. J. Ethnopharmacol. 2004, 95, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Kannappan, S.; Anuradha, C.V. Insulin sensitizing actions of fenugreek seed polyphenols, quercetin and metformin in a rat model. Indian. J. Med. Res. 2009, 129, 401–408. [Google Scholar] [PubMed]
- Sushma, N.; Devasena, T. Aqueous extract of Trigonella foenum-graecum (fenugreek) prevents cypermethrin-induced hepatotoxicity and nephrotoxicity. Hum. Exp. Toxicol. 2010, 29, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Tewari, D.; Jóźwik, A.; Łysek-Gładysińska, M.; Grzybek, W.; Adamus-Białek, W.; Bicki, J.; Strzałkowska, N.; Kamińska, A.; Horbańczuk, O.K.; Atanasov, A.G. Fenugreek (Trigonella foenum-graecum L.) Seeds Dietary Supplementation Regulates Liver Antioxidant Defense Systems in Aging Mice. Nutrients 2020, 12, 2552. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Kalaiselvan, V.; Srivastava, S.; Saxena, R.; Agrawal, S.S. Trigonella foenum-graecum (fenugreek) protects against selenite-induced oxidative stress in experimental cataractogenesis. Biol. Trace Elem. Res. 2010, 136, 258–268. [Google Scholar] [CrossRef]
- Sauvare, Y.; Pett, P.; Baissao, Y.; Ribes, G. Chemistry and pharmacology of fenugreek. In Herbs, Botanicals and Teas; Mazza, G., Oomah, B.D., Eds.; Technomic Publishing Company Inc.: Lancaster, PA, USA, 2000; pp. 107–129. [Google Scholar]
- Alwahebi, M.; Soliman, D. Evaluating the antibacterial activity of fenugreek (Trigonella foenum-graecum) seed extract against a selection of different pathogenic bacteria. J. Pure Appl. Microbiol. 2014, 8, 817–821. [Google Scholar]
- Randhir, R.; Lin, Y.T.; Shetty, K. Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in response to peptide and phytochemical elicitors. Asia Pac. J. Clin. Nutr. 2004, 13, 295–307. [Google Scholar]
- Norziah, M.H.; Fezea, F.A.; Bhat, F.A.; Bhat, R.; Ahmad, M. Effect of extraction solvents on antioxidant and antimicrobial properties of fenugreek seeds (Trigonella foenum-graecum L.). Int. Food Res. J. 2015, 22, 1261–1271. [Google Scholar]
- Luan, G.; Wang, Y.; Wang, Z.; Zhou, W.; Hu, N.; Li, G.; Wang, H. Flavonoid glycosides from fenugreek seeds regulate glycolipid metabolism by improving mitochondrial function in 3t3-l1 adipocytes in vitro. J. Agric. Food Chem. 2018, 66, 3169–3178. [Google Scholar] [CrossRef]
- Xu, B.J.; Chang, S.K. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 2007, 72, 159–166. [Google Scholar] [CrossRef]
- Tiwari, P.; Kumar, B.; Kaur, M.; Kaur, G.; Kaur, H. Phytochemical screening and extraction: A Review. Int. Pharm. Sci. 2011, 1, 98–106. [Google Scholar]
- Hikmawanti, N.P.E.; Fatmawati, S.; Asri, A.W. The Effect of Ethanol Concentrations as The Extraction Solvent on Antioxidant Activity of Katuk (Sauropus androgynus (L.) Merr.) Leaves Extracts. IOP Conf. Ser. Earth Environ. Sci. 2021, 755, 012060. [Google Scholar] [CrossRef]
- McDonald, S.; Prenzler, P.D.; Antolovich, M.; Robards, K. Phenolic content and antioxidant activity of olive extracts. Food Chem. 2001, 73, 73–84. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Decker, E.A.; Welch, B. Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 1990, 38, 674–677. [Google Scholar] [CrossRef]
- Wijekoon, M.M.J.O.; Bhat, R.; Karim, A.A. Effect of extraction solvents on the phenolic compounds and antioxidant activities of bunga kantan (Etlingera elatior Jack) inflorescence. J. Food Compos. Anal. 2011, 24, 615–619. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Houghton, P.J.; Raman, A. Laboratory Handbook for the Fractionation of Natural Extracts. In Laboratory Handbook for the Fractionation of Natural Extracts; Springer Science Business Media: London, UK, 1998. [Google Scholar]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Chatterjee, S.; Variyar, P.S.; Sharma, A. Effect of γ-irradiation on the antioxidant activity of fenugreek (Trigonella Foenum-graecum) seed extract. J. Environ. Agric. Food Chem. 2011, 10, 2798–2805. [Google Scholar]
- Kim, H.S.; Chin, K.B. Food Science of Animal Resources Evaluation of Antioxidative Activity of Various Levels of Ethanol Extracted Tomato Powder and Application to Pork Patties. Korean J. Food Sci. Anim. Resour. 2017, 37, 242–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadj, S.; Ju, Y.H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mani, B.; Thuruthiyil, D.T. Evaluation of the antioxidant potential of pittosporum dasycaulon miq. stem bark. Food Sci. Biotechnol. 2014, 23, 2045–2052. [Google Scholar] [CrossRef]
- Rababah, T.M.; Hettiarachchy, N.S.; Horax, R. Total Phenolics and Antioxidant Activities of Fenugreek, Green Tea, Black Tea, Grape Seed, Ginger, Rosemary, Gotu Kola, and Ginkgo Extracts, Vitamin E, and tert-Butylhydroquinone. Am. Chem. Soc. 2004, 52, 5183–5186. [Google Scholar] [CrossRef]
- Garti, N.; Madar, Z.; Aserin, A.; Sternheim, B. Fenugreek galactomannans as food emulsifiers. Food Sci. Technol. 1997, 30, 305–311. [Google Scholar] [CrossRef]
- Jiang, J.X.; Zhu, L.W.; Zhang, W.M.; Sun, R.C. Characterization of Galactomannan Gum from Fenugreek (Trigonella foenum-graecum) Seeds and Its Rheological Properties. Int. J. Polym. Mater. Polym. Biomater. 2007, 56, 1145–1154. [Google Scholar] [CrossRef]
- Rice-Evans, C.; Miller, M.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Fernandez-Panchon, M.S.; Villano, D.; Troncoso, A.M.; Garcia-Parrilla, M.C. Antioxidant Activity of Phenolic Compounds: From In Vitro Results to In Vivo Evidence. Crit. Rev. Food Sci. Nutr. 2008, 48, 649–671. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Cheng, I.F.; Breen, K. On the ability of four flavonoids, baicilein, luteolin, naringenin, and quercetin, to suppress the Fenton reaction of the iron-ATP complex. Biometals 2000, 13, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Ratty, A.K.; Das, N.P. Effects of flavonoids on nonenzymatic lipid peroxidation: Structure-activity relationship. Biochem Med Metab Biol 1988, 39, 69–79. [Google Scholar] [CrossRef]
- Mora, A.; Paya, M.; Rios, J.L.; Alcaraz, M.J. Structure-activity relationships of polymethoxyflavones and other flavonoids as inhibitors of non-enzymic lipid peroxidation. Biochem. Pharmacol. 1990, 40, 793–797. [Google Scholar] [CrossRef]
- Andjelković, M.; Van Camp, J.; De Meulenaer, B.; Depaemelaere, G.; Socaciu, C.; Verloo, M.; Verhe, R. Ironchelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem. 2006, 98, 23–31. [Google Scholar] [CrossRef]
- Arefin, S.; Islam, T.; Hossain, T. Proximate analysis, phytochemical screening and antioxidant activity of Tagetes erecta flower growing in coastal area of Bangladesh. J. Glob. Biosci. 2015, 4, 2060–2066. [Google Scholar]
- Aparadh, V.T.; Naik, V.V.; Karadge, B.A. Antioxidative properties (TPC, DPPH, FRAP, metal chelating ability, reducing power and TAC) within some Cleome species. Ann. Bot. 2012, 2, 49–56. [Google Scholar]
- Foti, M.C.; Amorati, R. Non-phenolic radical-trapping antioxidants. J. Pharm. Pharmacol. 2009, 61, 1435–1448. [Google Scholar] [CrossRef]
- Kenny, O.; Smyth, T.J.; Hawage, C.M.; Brunton, N.P. Antioxidant properties and quantitative UPLC-MS analysis of phenolic compounds from extracts of fenugreek (Trigonella foenum-graecum) seeds and bitter melon (Momordica charantia) fruit. Food Chem. 2013, 141, 4295–4302. [Google Scholar] [CrossRef]
- Boubakri, H.; Jdey, A.; Taamalli, A.; Taamalli, W.; Jebara, M.; Brini, F.; Riciputi, Y.; Pasini, F.; Cristian, M.; Verardo, V. Phenolic composition as measured by liquid chromatography/mass spectrometry and biological properties of Tunisian barley. Int. J. Food Prop. 2017, 20, 1783–1797. [Google Scholar] [CrossRef] [Green Version]
- Rayyan, S.; Fossen, T.; Andersen, Ø.M. Flavone C-Glycosides from Seeds of Fenugreek, Trigonella foenum-graecum L. J. Agric. Food Chem 2010, 58, 7211–7217. [Google Scholar] [CrossRef] [PubMed]
- Benayad, Z.; Gómez-Cordovés, C.; Es-Safi, N.E. Characterization of Flavonoid Glycosides from Fenugreek (Trigonella foenum-graecum) Crude Seeds by HPLC–DAD–ESI/MS Analysis. Int. J. Mol. Sci. 2014, 15, 20668–20685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seshadri, T.R.; Varshney, I.P.; Sood, A.R. Glycosides from Trigonella corniculata and Trigonella foenum-graecum Linn, seeds. Curr. Sei. 1973, 42, 412–414. [Google Scholar]
- Wagner, H.; Iyengar, M.A.; Horhammer, L. Vicenin-1 and -2 in the seeds of Trigonella foenumgraecum. Phytochemistry 1973, 12, 2548. [Google Scholar] [CrossRef]
- Shang, M.; Cais, H.J.; Li, J.; Zhao, Y.; Zheng, J.; Namba, T.; Kadota, S.; Tezuka, Y.; Fan, W. Studies on flavonoids from fenugreek (Trigonella foenum graecum L). Zhongguo Zhong Yao Za Zhi 1998, 23, 614–639. [Google Scholar]
- Ram, S.G.; Thiruvengadam, V.; Vinod, K.K. Genetic diversity among cultivars, landraces and wild relatives of rice as revealed by microsatellite markers. J. Appl. Genet. 2007, 48, 337–345. [Google Scholar] [CrossRef]
- Gupta, P.C.; Nair, A.K. Antioxidant flavonoids in common Indian diet. South Asian J. Prev. Cardiol. 1999, 3, 83–94. [Google Scholar]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- Hirano, R.; Sasamoto, W.; Matsumoto, A.; Itakura, H.; Igarashi, O.; Kondo, K. Antioxidant ability of various flavonoids against DPPH radicals and LDL oxidation. J. Nutr. Sci. Vitaminol. 2001, 47, 357–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Meyers, K.J.; Heide, J.V.D.; Liu, R.H. Varietal differences in phenolic content and antioxidant and antiproliferative activities of onions. J. Agric. Food Chem. 2004, 52, 6787–6793. [Google Scholar] [CrossRef] [PubMed]
- Al-Saikhan, M.S.; Howard, L.R.; Miller, J.C. Antioxidant activity and total phenolics in different genotypes of potato (Solanum tuberosum, L.). J. Food Sci. 1995, 60, 341–343. [Google Scholar] [CrossRef]
- Kumar, S.; Sandhir, R.; Ojha, S. Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC Res. Notes 2014, 22, 560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirmiran, S.M.; Nezami, A.; Kafi, M. Evaluation of freezing tolerance in fenugreek (Trigonella foenum-graceum L.). IJFCS Res. 2018, 16, 299–315. [Google Scholar]
- Huber, A.E.; Bauerle, T.L. Long-distance plant signaling pathways in response multiple stressors: The gap in knowledge. J. Exp. Bot. 2016, 67, 2063–2079. [Google Scholar] [CrossRef] [Green Version]
- Bartwal, A.; Mall, R.; Lohani, P.; Guru, S.K.; Arora, S. Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J. Plant Growth Regul. 2013, 32, 216–232. [Google Scholar] [CrossRef]
- Samec, D.; Karalija, E.; Sola, I.; Bok, V.V.; Salopek-Sondi, B. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef]
- Meena, Y.K.; Khurana, D.S.; Kaur, N.; Singh, K. Phenolic compounds enhanced low temperature stress tolerance in tomato (Solanum lycopersicum L.). Br. J. Appl. Sci. Technol. 2017, 20, 1–9. [Google Scholar] [CrossRef]
- Rivero, R.M.; Ruiz, J.M.; Garcia, P.C.; Lopez-Lefebre, L.R.; Sanchez, E.; Romero, L. Resistance to cold and heat stress: Accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 2001, 160, 315–321. [Google Scholar] [CrossRef]
- Olenichenko, N.A.; Ossipov, V.I.; Zagoskina, N. Effect of cold hardening on the phenolic complex of winter wheat leaves. Russ. J. Plant Physiol. 2006, 53, 495–500. [Google Scholar] [CrossRef]
No | Studies | Extraction Solvents | TPC | |
---|---|---|---|---|
The Mean Value | The Unit | |||
1 | Kaviarasan et al., 2004 [28] | 80% aqueous methanol (v/v) | 0.48 | mM GAE |
2 | Rababah et al., 2004 [58] | 60% aqueous ethanol (v/v) | 24.3 | mg ChAE per g of dry extract |
3 | Kaviarasan et al., 2007 [25] | 80% aqueous methanol (v/v) | 78.6 | mg GAE per g of dry weight |
4 | Bukhari et al., 2008 [31] | 100% methanol | 5.75 | mg GAE per g of dry weight |
100% ethanol | 6.85 | |||
100% dichloromethane | 2.27 | |||
100% acetone | 4.04 | |||
100% hexane | 1.35 | |||
100% ethyl acetate | 3.32 | |||
5 | Chatterjee et al., 2011 [54] | 80% aqueous methanol (v/v) | 81.98 | mg GAE per g of dry extract |
6 | Subhashini et al., 2011 [30] | 70% aqueous ethanol (v/v) | 40.0 | µg PE per g of dry extract |
7 | Yacoubi et al., 2011 [21] | 70% aqueous acetone (v/v) | 15.18 | mg GAE per g of dry weight |
8 | Norziah et al., 2015 [41] | 100% ethanol | 44.96 | mg GAE per g of dry weight |
100% methanol | 43.15 | |||
cool water (30°C) | 19.31 | |||
hot water (80°C) | 25.60 |
Treatments | Variety of Fenugreek | |
---|---|---|
FWV | FSV | |
Et30 | 0.203 ± 0.008 a | 0.225 ± 0.012 e |
Et50 | 0.166 ± 0.012 b | 0.201 ± 0.011 f |
Et70 | 0.093 ± 0.005 c | 0.108 ± 0.004 g |
Et96 | 0.088 ± 0.006 c | 0.100 ± 0.006 g |
Ascorbic acid | 0.036 ± 0.003 d |
Treatments | Variety of Fenugreek | |
---|---|---|
FWV | FSV | |
Et30 | 0.203 ± 0.015 a | 0.253 ± 0.015 e |
Et50 | 0.385 ± 0.021 b | 0.416 ± 0.025 b |
Et70 | 0.817 ± 0.021 c | 0.844 ± 0.031 c |
Et96 | 0.732 ± 0.013 d | 0.724 ± 0.023 d |
Ascorbic acid | 0.602 ± 0.036 f |
Treatments | Variety of Fenugreek | |
---|---|---|
FWV | FSV | |
Et30 | 0.451 ± 0.024 a | 0.494 ± 0.018 a |
Et50 | 0.258 ± 0.013 b | 0.212 ± 0.013 e |
Et70 | 0.121 ± 0.010 c | 0.099 ± 0.007c |
Et96 | 0.172 ± 0.015 d | 0.162 ± 0.010 d |
EDTA | 0.054 ± 0.003 f |
Peak | RT (min) | [M-H]- (m/z) | FWV | FSSV | Tentatively Identified Compound |
---|---|---|---|---|---|
1 | 7.5 | 153 | + | − | Gentisic |
2 | 9.0 | 593 | + | − | Apigenin 6-C-β-xylopyranosyl-8-C-β-galactopyranoside |
3 | 10.0 | 563 | + | − | Apigenin 6-C-β-arabinopyranosyl-8-C-β-galactopyranoside |
4 | 11.0 | 447 | + | + | Luteolin 8-C-β-glucopyranoside |
5 | 11.5 | 447 | + | + | Luteolin 6-C-β-glucopyranoside |
6 | 13.6 | 431 | + | + | Apigenin 8-C-β-glucopyranoside |
7 | 14.2 | 431 | + | + | Apigenin 6-C-β-glucopyranoside |
8 | 22.0 | 593 | + | − | Not identified |
9 | 23.8 | 593 | + | − | Luteolin 8-C-(2′′-O-(E)-p-coumaroyl-β-glucopyranoside) |
10 | 30.7 | 557 | + | − | Not identified |
11 | 34.7 | 593 | + | + | Not identified |
12 | 37.7 | 449 | + | − | Not identified |
13 | 37.8 | 577 | − | + | Not identified |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lohvina, H.; Sándor, M.; Wink, M. Effect of Ethanol Solvents on Total Phenolic Content and Antioxidant Properties of Seed Extracts of Fenugreek (Trigonella foenum-graecum L.) Varieties and Determination of Phenolic Composition by HPLC-ESI-MS. Diversity 2022, 14, 7. https://doi.org/10.3390/d14010007
Lohvina H, Sándor M, Wink M. Effect of Ethanol Solvents on Total Phenolic Content and Antioxidant Properties of Seed Extracts of Fenugreek (Trigonella foenum-graecum L.) Varieties and Determination of Phenolic Composition by HPLC-ESI-MS. Diversity. 2022; 14(1):7. https://doi.org/10.3390/d14010007
Chicago/Turabian StyleLohvina, Hanna, Makai Sándor, and Michael Wink. 2022. "Effect of Ethanol Solvents on Total Phenolic Content and Antioxidant Properties of Seed Extracts of Fenugreek (Trigonella foenum-graecum L.) Varieties and Determination of Phenolic Composition by HPLC-ESI-MS" Diversity 14, no. 1: 7. https://doi.org/10.3390/d14010007
APA StyleLohvina, H., Sándor, M., & Wink, M. (2022). Effect of Ethanol Solvents on Total Phenolic Content and Antioxidant Properties of Seed Extracts of Fenugreek (Trigonella foenum-graecum L.) Varieties and Determination of Phenolic Composition by HPLC-ESI-MS. Diversity, 14(1), 7. https://doi.org/10.3390/d14010007