IoT-Driven Workflows for Risk Management and Control of Beehives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Scenario and Methodology
2.2. Data Collection
2.2.1. Datasets
2.2.2. Global Collection of Information on Beehives
2.2.3. Weight Measurements
2.3. Build Time
2.3.1. Weight Patterns Detection and Analysis
- Data preprocessing
- Data analysis
2.3.2. Business Process Model and Notation (BPMN) & Workflows
3. Results
3.1. Weight Patterns Detection and Analysis
3.2. Artificial Intelligence (AI) and Neural Network
3.3. Process Models and Gamification Approach
3.3.1. Gamification
3.3.2. BPMN Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Honey Bee—Apis Mellifera. Available online: http://entnemdept.ufl.edu/creatures/MISC/BEES/euro_honey_bee.htm (accessed on 24 April 2021).
- About Honey Bees|Types, Races, and Anatomy of Honey Bees. Available online: https://www.uaex.uada.edu/farm-ranch/special-programs/beekeeping/about-honey-bees.aspx (accessed on 24 April 2021).
- Contributions & Position Papers—European Professional Beekeepers Association. Available online: http://www.professional-beekeepers.eu/?page_id=235 (accessed on 11 June 2021).
- Bradbear, N. Bees and their role in forest livelihoods A guide to the services provided by bees and the sustainable harvesting, processing and marketing of their products. P Non-Wood Forest Prod. 2009, 19, 194. [Google Scholar]
- Oberreiter, H.; Brodschneider, R. Austrian COLOSS Survey of Honey Bee Colony Winter Losses 2018/19 and Analysis of Hive Management Practices. Diversity 2020, 12, 99. [Google Scholar] [CrossRef] [Green Version]
- López-Uribe, M.M.; Simone-Finstrom, M. Special Issue: Honey Bee Research in the US: Current State and Solutions to Beekeeping Problems. Insects 2019, 10, 22. [Google Scholar] [CrossRef] [Green Version]
- Laurino, D.; Lioy, S.; Carisio, L.; Manino, A.; Porporato, M. Vespa velutina: An Alien Driver of Honey Bee Colony Losses. Diversity 2020, 12, 5. [Google Scholar] [CrossRef] [Green Version]
- Gregorc, A. Monitoring of Honey Bee Colony Losses: A Special Issue. Diversity 2020, 12, 403. [Google Scholar] [CrossRef]
- Căuia, E.; Siceanu, A.; Vișan, G.O.; Căuia, D.; Colța, T.; Spulber, R.A. Monitoring the Field-Realistic Exposure of Honeybee Colonies to Neonicotinoids by An Integrative Approach: A Case Study in Romania. Diversity 2020, 12, 24. [Google Scholar] [CrossRef] [Green Version]
- Havard, T.; Laurent, M.; Chauzat, M.-P. Impact of Stressors on Honey Bees (Apis mellifera; Hymenoptera: Apidae): Some Guidance for Research Emerge from a Meta-Analysis. Diversity 2020, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Gorecki, S.; Possik, J.; Zacharewicz, G.; Ducq, Y.; Perry, N. A Multicomponent Distributed Framework for Smart Production System Modeling and Simulation. Sustainability 2020, 12, 6969. [Google Scholar] [CrossRef]
- Polini, W.; Corrado, A. A Unique Model to Estimate Geometric Deviations in Drilling and Milling Due to Two Uncertainty Sources. Appl. Sci. 2021, 11, 1996. [Google Scholar] [CrossRef]
- Possik, J.; Amrani, A.; Zacharewicz, G. WIP: Co-simulation system serving the configuration of lean tools for a manufacturing assembly line. In Proceedings of the Works in Progress Symposium, WIP 2018, Part of the 2018 Spring Simulation Multiconference, SpringSim 2018, Baltimore, MD, USA, 9 July 2018; Available online: https://hal.archives-ouvertes.fr/hal-01924304 (accessed on 26 April 2021).
- Possik, J.J.; Amrani, A.A.; Zacharewicz, G. Development of a co-simulation system as a decision-aid in Lean tools implementation. In Proceedings of the 50th Computer Simulation Conference, Society for Computer Simulation International, San Diego, CA, USA, 9–12 July 2018; pp. 1–12. [Google Scholar]
- Gates, B.N. The Temperature of the Bee Colony; U.S. Department of Agriculture: Washington, DC, USA, 1914. [CrossRef] [Green Version]
- Munaye, Y.Y.; Juang, R.-T.; Lin, H.-P.; Tarekegn, G.B.; Lin, D.-B. Deep Reinforcement Learning Based Resource Management in UAV-Assisted IoT Networks. Appl. Sci. 2021, 11, 2163. [Google Scholar] [CrossRef]
- Cecchi, S.; Terenzi, A.; Orcioni, S.; Spinsante, S.; Primiani, V.; Moglie, F.; Ruschioni, S.; Mattei, C.; Riolo, P.; Isidoro, N. Multi-sensor platform for real time measurements of honey bee hive parameters. IOP Conf. Ser. Earth Environ. Sci. 2019, 275, 012016. [Google Scholar] [CrossRef]
- Magnier, B.; Gabbay, E.; Bougamale, F.; Moradi, B.; Pfister, F.; Slangen, P. Multiple honey bees tracking and trajectory modeling. In Proceedings of the Multimodal Sensing: Technologies and Applications, Munich, Germany, 6–27 June 2019; International Society for Optics and Photonics: Bellingham, DC, USA, 2019; Volume 11059, p. 110590Z. [Google Scholar] [CrossRef]
- Buchanan, G.; Tashakkori, R. A Web-App for Analysis of Honey Bee Hive Data. In Proceedings of the 2019 SoutheastConference, Huntsville, AL, USA, 11–14 April 2019; pp. 1–6. [Google Scholar]
- Abu, E.S. The use of smart apiculture management system. Asian J. Adv. Res. 2020, 5, 6–16. [Google Scholar]
- Debauche, O.; Moulat, M.E.; Mahmoudi, S.; Boukraa, S.; Manneback, P.; Lebeau, F. Web Monitoring of Bee Health for Researchers and Beekeepers Based on the Internet of Things. Procedia Comput. Sci. 2018, 130, 991–998. [Google Scholar] [CrossRef]
- Buchmann, S.; Thoenes, S. The Electronic Scale Honey Bee Colony as a Management and Research Tool. Bee Sci. 1990, 1, 40–47. [Google Scholar]
- Roy, C. Suivi de la Masse des Ruches: Intérêts Pour L’apiculteur et Pour le Vétérinaire Clinicien. 2019. Available online: https://www.researchgate.net/publication/337821147_Suivi_de_la_masse_des_ruches_interets_pour_l%27apiculteur_et_pour_le_veterinaire_clinicien (accessed on 8 March 2021).
- Meikle, W.G.; Rector, B.G.; Mercadier, G.; Holst, N. Within-day variation in continuous hive weight data as a measure of honey bee colony activity. Apidologie 2008, 39, 694–707. [Google Scholar] [CrossRef] [Green Version]
- Human, H.; Brodschneider, R.; Dietemann, V.; Dively, G.; Ellis, J.D.; Forsgren, E.; Fries, I.; Hatjina, F.; Hu, F.-L.; Jaffé, R.; et al. Miscellaneous standard methods for Apis mellifera research. J. Apic. Res. 2013, 52, 1–53. [Google Scholar] [CrossRef] [Green Version]
- Seeley, T.D.; Visscher, P.K. Survival of honeybees in cold climates: The critical timing of colony growth and reproduction. Ecol. Entomol. 1985, 10, 81–88. [Google Scholar] [CrossRef]
- Evans, S.K. Electronic beehive monitoring—Applications to research. In Proceedings of the 12th International Symposium of the ICP-PR Bee Protection Group, Ghent, Belgium, 15–17 September 2015; pp. 121–129. [Google Scholar]
- Meikle, W.G.; Weiss, M.; Stilwell, A.R. Monitoring colony phenology using within-day variability in continuous weight and temperature of honey bee hives. Apidologie 2016, 47, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Anand, N.; Raj, V.B.; Ullas, M.S.; Srivastava, A. Swarm Detection and Beehive Monitoring System using Auditory and Microclimatic Analysis. In Proceedings of the 2018 3rd International Conference on Circuits, Control, Communication and Computing (I4C), Bangalore, India, 3–5 October 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Beehive Metrics. Available online: https://kaggle.com/se18m502/bee-hive-metrics (accessed on 23 April 2021).
- Beeomatics, Un Système de Suivi de Rucher. Available online: https://connecthive.com/ (accessed on 25 March 2021).
- Deterding, S.; Dixon, D.; Khaled, R.; Nacke, L. From game design elements to gamefulness: Defining “gamification”. In Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments, Tampere, Finland, 30 September 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 9–15. [Google Scholar] [CrossRef]
- Sailer, M.; Hense, J.U.; Mayr, S.K.; Mandl, H. How gamification motivates: An experimental study of the effects of specific game design elements on psychological need satisfaction. Comput. Hum. Behav. 2017, 69, 371–380. [Google Scholar] [CrossRef]
- Cetinkaya, D.; Verbraeck, A.; Seck, M.D. Model transformation from BPMN to DEVS in the MDD4MS framework. In Proceedings of the SpringSim, Orlando FL, USA, 30 March 2012. [Google Scholar]
- Zacepins, A.; Brusbardis, V.; Meitalovs, J.; Stalidzans, E. Challenges in the development of Precision Beekeeping. Biosyst. Eng. 2015, 130, 60–71. [Google Scholar] [CrossRef]
- Gisder, S.; Genersch, E. Special Issue: Honey Bee Viruses. Viruses 2015, 7, 5603–5608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smart, M.; Otto, C.; Cornman, R.; Iwanowicz, D. Using Colony Monitoring Devices to Evaluate the Impacts of Land Use and Nutritional Value of Forage on Honey Bee Health. Agriculture 2018, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Martinello, M.; Manzinello, C.; Borin, A.; Avram, L.E.; Dainese, N.; Giuliato, I.; Gallina, A.; Mutinelli, F. A Survey from 2015 to 2019 to Investigate the Occurrence of Pesticide Residues in Dead Honeybees and Other Matrices Related to Honeybee Mortality Incidents in Italy. Diversity 2020, 12, 15. [Google Scholar] [CrossRef] [Green Version]
- Arnia’s Hive Monitoring. Available online: http://www.arnia.co.uk/product-beekeepers/ (accessed on 14 June 2021).
- ApisProtect. 2020. Available online: https://apisprotect.com/ (accessed on 14 June 2021).
- BeeCare—Beehive SMS Scale. Available online: http://www.beecare.io/beehivesmsscale/?utm_source=Klix.ba&utm_medium=Clanak (accessed on 14 June 2021).
- Apiary Excellence | BuzzTech. Available online: https://buzztech.nz/index.html (accessed on 14 June 2021).
- Nuu-Bee, T. Solutionbee. Available online: https://solutionbee.com/ (accessed on 14 June 2021).
- Broodminder. Available online: https://broodminder.com/ (accessed on 15 June 2021).
- OSBeehives | BuzzBox Hive Health Monitor & Beekeeping App. Available online: https://www.osbeehives.com (accessed on 15 June 2021).
- Moawad, A.; Hartmann, T.; Fouquet, F.; Nain, G.; Klein, J.; Traon, Y.L. Beyond discrete modeling: A continuous and efficient model for IoT. In Proceedings of the 2015 ACM/IEEE 18th International Conference on Model Driven Engineering Languages and Systems (MODELS), Ottawa, ON, Canada, 30 September–2 October 2015; pp. 90–99. [Google Scholar] [CrossRef] [Green Version]
- Allison, P. Can A Beehive Get Too Hot or Too Cold? Allisons Apiaries 2018. Available online: https://allisonsapiaries.com/ideal-beehive-temperature-bees-honey/ (accessed on 25 March 2021).
- L’Atelier Du Miel—Pure, Raw Honey, 100% Natural. Shop Now! Available online: https://www.atelierdumiel.com/ (accessed on 25 March 2021).
- OMG Business Process Model and Notation (BPMN) Version 2.0.2. 2013. Available online: https://www.omg.org/spec/BPMN/2.0.2/PDF (accessed on 27 March 2021).
- BPMNPoster—www.bpmb.de. Available online: http://www.bpmb.de/index.php/BPMNPoster (accessed on 23 April 2021).
- Possik, J.; D’Ambrogio, A.; Zacharewicz, G.; Amrani, A.; Vallespir, B. A BPMN/HLA-Based Methodology for Collaborative Distributed DES. In Proceedings of the 2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), Napoli, Italy, 12–14 June 2019; pp. 118–123. [Google Scholar] [CrossRef]
- Process-Aware Information Systems: Bridging People and Software Through Process Technology|Wiley. Available online: https://www.wiley.com/en-us/Process+Aware+Information+Systems%3A+Bridging+People+and+Software+Through+Process+Technology-p-9780471663065 (accessed on 23 April 2021).
- Press, T.M. Workflow Management|The MIT Press. Available online: https://mitpress.mit.edu/books/workflow-management (accessed on 23 April 2021).
- Workflow Management Coalition Glossary and Terminology. Available online: http://www.aiai.ed.ac.uk/project/wfmc/ARCHIVE/DOCS/glossary/glossary.html (accessed on 23 April 2021).
- Frank, L.; Roller, D. Production Workflow: Concepts and Techniques; Prentice Hall: Upper Saddle River, NJ, USA, 2000; ISBN 0-13-021753-0. [Google Scholar]
- Zacharewicz, G.; Frydman, C.; Giambiasi, N. G-DEVS/HLA Environment for Distributed Simulations of Workflows. Simulation 2008, 84, 197–213. [Google Scholar] [CrossRef] [Green Version]
- Ougaabal, K.; Zacharewicz, G.; Ducq, Y.; Tazi, S. Visual Workflow Process Modeling and Simulation Approach Based on Non-Functional Properties of Resources. Appl. Sci. 2020, 10, 4664. [Google Scholar] [CrossRef]
- Long Short-Term Memory|Neural Computation|MIT Press. Available online: https://direct.mit.edu/neco/article/9/8/1735/6109/Long-Short-Term-Memory (accessed on 23 April 2021).
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:14126980. Available online: http://arxiv.org/abs/1412.6980 (accessed on 23 April 2021).
- Getting Things Done®—David Allen’s GTD® Methodology. Available online: https://gettingthingsdone.com/ (accessed on 23 April 2021).
- Bazoun, H.; Bouanan, Y.; Zacharewicz, G.; Ducq, Y.; Boye, H. Business process simulation: Transformation of BPMN 2.0 to DEVS models (WIP). In Proceedings of the Symposium on Theory of Modeling & Simulation—DEVS Integrative, San Diego, CA, USA, 13–16 April 2014; Volume 46, pp. 1–7. [Google Scholar]
- Chen, D.; Daclin, N. Framework for enterprise interoperability. In Proceedings of the IFAC Workshop EI2N; ISTE: London, UK, 2006; pp. 77–88. [Google Scholar]
- OMG Decision Model and Notation Version 1.0. Object Managemnet Group (OMG). 2015. Available online: https://www.omg.org/spec/DMN/1.0/PDF (accessed on 27 March 2021).
- Pfister, F.; Chapurlat, V.; Huchard, M.; Nebut, C.; Wippler, J.-L. A proposed meta-model for formalizing systems engineering knowledge, based on functional architectural patterns. Syst. Eng. 2012, 15, 321–332. [Google Scholar] [CrossRef]
Location | Number of Hives | Observation Period | Sampling Frequency |
---|---|---|---|
Wurzburg | 1 | 2017 to 2019, 1 January 2017 to 19 May 2019 | 1 sample/min |
Schwartau | 1 | 2017 to 2019, 1 January 2017 to 19 May 2019 | 2 samples/day (at 1 a.m. and 1 p.m.) |
Villefranche de Rouergue | 20 | February 2019 to November 2019 | 2 samples/h, up to 1 sample/min |
IoT | Humidity | Weight | Sound | Temp. | Theft Alarm | Realtime Data | Alerts | Mobile App. | Nomad | RFID | Workflow | Smart App | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Arnia [39] | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ||||
ApisProtect [40] | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||
BeeHive Scales [43] | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||||
SolutionBee [43] | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||||
Broodminder [44] | ✔ | ✔ | ✔ | ✔ | ✔ | ||||||||
Osbeehives [45] | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||
ConnectHive [31] | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Atelier du Miel|South, Lebanon | ||||
---|---|---|---|---|
Altitude | Starting Day (MM/dd) | Season | Flower | Hive’s Status |
(0–450 m) | 02/15 | Spring | Citrus & Avocado trees | Colony Developpment |
Regular Tasks | Actions taken to be taken | |||
Checkup every three days | Check for colony expansion | |||
Check for supplies | ||||
Check anomalies | ||||
Check queen strength | Check if eggs are placed from middle to out | |||
Check queen activities (Circular, fast, organized) | ||||
… | … | |||
Anomalies | Actions taken to Countermeasure Anomalies occuring in the hive | |||
Old queen | Terminate (Could be terminated and replaced) | |||
If Varroa Detected | Treat and reallocate for one week to avoid infection | |||
Keep checking till varroa is cleared | ||||
Return the hive if varroa free | ||||
If Mold detected | Sperate/Eliminate infected frames from the rest | |||
Eliminate any cause of humidity | ||||
… | … | |||
Connecthive |Villefranche, France | ||||
Altitude | Starting Day (MM/dd) | Season | Flower | Hive’s Status |
(0–450 m) | 09/15 | Fall | Few flowers | Wintering Mode |
… | … | |||
Anomalies | Actions taken to Countermeasure Anomalies occuring in the hive | |||
Shortage in honey Supply | Feed with Liquid Proteins and check for absorption. | |||
In case there is no absorption, feed with Candyboard. | ||||
… | … |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kady, C.; Chedid, A.M.; Kortbawi, I.; Yaacoub, C.; Akl, A.; Daclin, N.; Trousset, F.; Pfister, F.; Zacharewicz, G. IoT-Driven Workflows for Risk Management and Control of Beehives. Diversity 2021, 13, 296. https://doi.org/10.3390/d13070296
Kady C, Chedid AM, Kortbawi I, Yaacoub C, Akl A, Daclin N, Trousset F, Pfister F, Zacharewicz G. IoT-Driven Workflows for Risk Management and Control of Beehives. Diversity. 2021; 13(7):296. https://doi.org/10.3390/d13070296
Chicago/Turabian StyleKady, Charbel, Anna Maria Chedid, Ingred Kortbawi, Charles Yaacoub, Adib Akl, Nicolas Daclin, François Trousset, François Pfister, and Gregory Zacharewicz. 2021. "IoT-Driven Workflows for Risk Management and Control of Beehives" Diversity 13, no. 7: 296. https://doi.org/10.3390/d13070296
APA StyleKady, C., Chedid, A. M., Kortbawi, I., Yaacoub, C., Akl, A., Daclin, N., Trousset, F., Pfister, F., & Zacharewicz, G. (2021). IoT-Driven Workflows for Risk Management and Control of Beehives. Diversity, 13(7), 296. https://doi.org/10.3390/d13070296