On the Use of Stable Hydrogen Isotope Measurements (δ2H) to Discern Trophic Level in Avian Terrestrial Food Webs
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Model Selection
3.2. Trophic Enrichment
3.3. Isotopic Niches
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hobson, K.A.; Welch, H.E. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Mar. Ecol. Progr. Ser. 1992, 84, 9–18. [Google Scholar] [CrossRef]
- Caut, S.; Angulo, E.; Courchamp, F. Variation in discrimination factors (Δ15N and Δ13C): The effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 2009, 46, 443–453. [Google Scholar] [CrossRef]
- Hobson, K.A.; Clark, R.G. Assessing avian diets using stable isotopes II: Factors influencing diet-tissue fractionation. Condor 1992, 94, 189–197. [Google Scholar] [CrossRef]
- McCutchan, J.H.; Lewis, W.M.; Kendall, C.; McGrath, C.C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 2003, 102, 378–390. [Google Scholar] [CrossRef]
- Robbins, C.T.; Felicetti, L.; Sponheimer, M. The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds. Oecologia 2005, 144, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Hobson, K.A.; Wassenaar, L.I. Tracking Animal Migration with Stable Isotopes, 2nd ed.; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Meier-Augenstein, W.; Hobson, K.A.; Wassenaar, L.I. Critique: Measuring hydrogen stable isotope abundance of proteins to infer origins of wildlife, food and people. Bioanalysis 2013, 5, 751–767. [Google Scholar] [CrossRef] [PubMed]
- Vander Zanden, H.; Soto, D.; Bowen, G.; Hobson, K.A. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies. Front. Ecol. Evol. 2016, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Birchall, J.; O’Connell, T.C.; Heaton, T.H.E.; Hedges, R.E.M. Hydrogen isotope ratios in animal body protein reflect trophic level. J. Anim. Ecol. 2005, 74, 877–881. [Google Scholar] [CrossRef]
- Soto, D.X.; Wassenaar, L.I.; Hobson, K.A.; Catalan, J. Effects of size and diet on stable hydrogen isotope values (δD) in fish: Implications for tracing origins of individuals and their food sources. Can. J. Fish. Aquat. Sci. 2011, 68, 2011–2019. [Google Scholar] [CrossRef]
- Topalov, K.; Schimmelmann, A.; David Polly, P.; Sauer, P.E.; Lowry, M. Environmental, trophic, and ecological factors influencing bone collagen δ2H. Geochim. Cosmochim. Acta 2013, 111, 88–104. [Google Scholar] [CrossRef]
- Soto, D.X.; Wassenaar, L.I.; Hobson, K.A. Stable hydrogen and oxygen isotopes in aquatic food webs are tracers of diet and provenance. Funct. Ecol. 2013, 27, 535–543. [Google Scholar] [CrossRef]
- Ehleringer, J.R.; Bowen, G.J.; Chesson, L.A.; West, A.G.; Podlesak, D.W.; Cerling, T.E. Hydrogen and oxygen isotope ratios in human hair are related to geography. Proc. Nat. Acad. Sci. USA 2008, 105, 2788–2793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobson, K.A.; Wassenaar, L.I.; Taylor, O.R. Stable Isotopes (ΔD and δ13C) Are Geographic Indicators of Natal Origins of Monarch Butterflies in Eastern North America. Oecologia 1999, 120, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Myers, D.J.; Whitledge, G.W.; Whiles, M.R. 2012 Evaluation of δD and δ18O as natural markers of invertebrate source environment and dispersal in the middle Mississippi River-floodplain ecosystem. River Res. Applic. 2012, 28, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Solomon, C.T.; Cole, J.J.; Doucett, R.R.; Pace, M.L.; Preston, N.D.; Smith, L.E.; Weidel, B.C. The influence of environmental water on the hydrogen stable isotope ratio in aquatic consumers. Oecologia 2009, 161, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.M.; Wolf, N.; Stricker, C.A.; Collier, T.R.; Martínez del Rio, C. Effects of trophic level and metamorphosis on discrimination of hydrogen isotopes in a plant-herbivore system. PLoS ONE 2012, 7, e32744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezealor, A.U. Nigeria. In Important Bird Areas in Africa and Associated Islands: Priority Sites for Conservation, 1st ed.; Fishpool, L.D.C., Evans, M.I., Eds.; Pisces Publications & BirdLife International: Newbury/Cambridge, UK, 2001; pp. 673–692. [Google Scholar]
- Wassenaar, L.I.; Hobson, K.A. Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isot. Environ. Health Stud. 2003, 39, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R Package Version 0.3.3.0. 2020. Available online: https://CRAN.R-project.org/package=DHARMa (accessed on 25 February 2021).
- Barton, K. MuMIn: Multi-Model Inference. R Package Version 1.43.17. 2020. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 25 February 2021).
- Jackson, A.L.; Parnell, A.C.; Inger, R.; Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 2011, 80, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Pardo, L.H.; Nadelhoffer, K.J. Using nitrogen isotope ratios to assess terrestrial ecosystems at regional and global scales. In Isoscapes: Understanding Movement, Pattern, and Process on Earth through Isotope Mapping, 2nd ed.; West, J.B., Bowen, G.J., Dawson, T.E., Tu, K.P., Eds.; Springer: London, UK, 2010; pp. 221–249. [Google Scholar]
Model | R2 | Overall AICc |
---|---|---|
δ2H | ||
trophic level ** + site ** + delta_13C * + delta_15N | 0.37 | 219.2 |
trophic level ** + site ** + delta_13C *** | 0.34 | 220.6 |
trophic level ** + site ** + delta_13C ** + delta_15N ** + delta_13C x delta_15N *** | 0.37 | 221.5 |
trophic level + site + delta_13C ** + delta_15N + trophic level x site | 0.37 | 221.5 |
δ13C | ||
trophic level + delta_D * + delta_15N *** + delta_D x delta_15N ** | 0.45 | 203.1 |
delta_D * + delta_15N ** + delta_D x delta_15N *** | 0.47 | 204.0 |
trophic level + site + delta_D ** + delta_15N *** + delta_D x delta_15N *** | 0.48 | 204.6 |
trophic level + site + delta_D * + delta_15N *** + delta_D x delta_15N *** + trophic level x site | 0.49 | 204.9 |
δ15N | ||
site ** + delta_D + delta_13C ** + delta_D x delta_13C | 0.41 | 212.4 |
site ** + delta_D + delta_13C *** | 0.39 | 213.7 |
trophic level + site ** + delta_D * + delta_13C ** + delta_D x delta_13C | 0.42 | 214.4 |
site * + delta_13C *** | 0.37 | 214.8 |
Guild | N | δ2H (‰) | δ13C (‰) | δ15N (‰) |
---|---|---|---|---|
Nectarivores | 8 | −32.85 (−35.2–−32.1) | −20.84 (−21.7–−20.5) | 10.46 (8.4–10.7) |
Frugivores | 14 | −43.10 (−48.2–−38.8) | −22.67 (−23.3–−22.3) | 10.06 (7.9–11.0) |
Granivores | 25 | −56.30 (−60.6–−44.1) | −10.38 (−10.9–−9.8) | 4.40 (4.1–5.1) |
Omnivores | 25 | −31.00 (−38.8–−22.5) | −19.88 (−21.6–−17.2) | 8.47 (7.5–9.7) |
Insectivores | 15 | −24.30 (−29.6–−7.9) | −20.13 (−22.0–−17.5) | 7.88 (6.7–8.9) |
Guild | δ2H (‰) | δ13C (‰) | δ15N (‰) |
---|---|---|---|
Nectarivores–Frugivores | n.s. | n.s. | n.s. |
Nectarivores–Granivores | p < 0.001 | p < 0.001 | p < 0.001 |
Nectarivores–Omnivores | n.s. | n.s. | n.s. |
Nectarivores–Insectivores | n.s. | n.s. | n.s. |
Frugivores–Granivores | n.s. | p < 0.001 | p < 0.001 |
Frugivores–Omnivores | n.s. | p < 0.001 | n.s. |
Frugivores–Insectivores | p < 0.01 | p < 0.01 | n.s. |
Granivores–Omnivores | p < 0.001 | p < 0.001 | p < 0.001 |
Granivores–Insectivores | p < 0.001 | p < 0.001 | p < 0.001 |
Omnivores–Insectivores | n.s. | n.s. | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Wijk, R.E.; Barshep, Y.; Hobson, K.A. On the Use of Stable Hydrogen Isotope Measurements (δ2H) to Discern Trophic Level in Avian Terrestrial Food Webs. Diversity 2021, 13, 202. https://doi.org/10.3390/d13050202
van Wijk RE, Barshep Y, Hobson KA. On the Use of Stable Hydrogen Isotope Measurements (δ2H) to Discern Trophic Level in Avian Terrestrial Food Webs. Diversity. 2021; 13(5):202. https://doi.org/10.3390/d13050202
Chicago/Turabian Stylevan Wijk, Rien E., Yahkat Barshep, and Keith A. Hobson. 2021. "On the Use of Stable Hydrogen Isotope Measurements (δ2H) to Discern Trophic Level in Avian Terrestrial Food Webs" Diversity 13, no. 5: 202. https://doi.org/10.3390/d13050202
APA Stylevan Wijk, R. E., Barshep, Y., & Hobson, K. A. (2021). On the Use of Stable Hydrogen Isotope Measurements (δ2H) to Discern Trophic Level in Avian Terrestrial Food Webs. Diversity, 13(5), 202. https://doi.org/10.3390/d13050202