Mining Sorghum Biodiversity—Potential of Dual-Purpose Hybrids for Bio-Economy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Plant Cultivation
2.3. Phenotyping of Plants and Internodes
2.4. Statistical Analysis
3. Results
3.1. Agro-Morphological Descriptive Analysis
3.2. Phenotypic Correlation Coefficients and Path Analysis
3.3. Sugar Accumulation Across Internodes of the Stem
3.4. Diversity Analysis of Agro-Morphological Traits
4. Discussion
4.1. More Cane and Sugar Yields in Dual-Purpose Hybrid Sorghum but Higher Sugar Content in Sweet Sorghum
4.2. Higher Cane and Juice Yields and More Sugar Accumulation in the Stem
4.3. Internode Weight Rather Than Length Can Be Used as Predictor for Sugar Yield
4.4. Sweet Sorghums Are More Closer to Dual-Purpose Hybrids Than Grain Landraces
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keairns, D.L.; Darton, R.C.; Irabien, A. The Energy-Water-Food Nexus. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 239–262. [Google Scholar] [CrossRef]
- Blätke, M.-A.; Bräutigam, A. Evolution of C4 photosynthesis predicted by constraint-based modelling. Elife 2019, 8. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Thompson, P. The Agricultural Ethics of Biofuels: The Food vs. Fuel Debate. Agriculture 2012, 2, 339–358. [Google Scholar] [CrossRef] [Green Version]
- Cuevas, H.E.; Prom, L.K.; Erpelding, J.E. Tapping the US Sweet Sorghum Collection to Identify Biofuel Germplasm. Sugar Tech 2015, 17, 428–438. [Google Scholar] [CrossRef]
- Tesfaye, K. Genetic diversity study of sorghum (Sorghum bicolor (L.) Moenc) genotypes, Ethiopia. Acta Univ. Sapientiae Agric. Environ. 2017, 9, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Irving, L. Carbon Assimilation, Biomass Partitioning and Productivity in Grasses. Agriculture 2015, 5, 1116–1134. [Google Scholar] [CrossRef] [Green Version]
- Regassa, T.H.; Wortmann, C.S. Sweet sorghum as a bioenergy crop: Literature review. Biomass Bioenergy 2014, 64, 348–355. [Google Scholar] [CrossRef]
- Wang, D.; Bean, S.; McLaren, J.; Seib, P.; Madl, R.; Tuinstra, M.; Shi, Y.; Lenz, M.; Wu, X.; Zhao, R. Grain sorghum is a viable feedstock for ethanol production. J. Ind. Microbiol. Biotechnol. 2008, 35, 313–320. [Google Scholar] [CrossRef]
- Shakoor, N.; Nair, R.; Crasta, O.; Morris, G.; Feltus, A.; Kresovich, S. A Sorghum bicolor expression atlas reveals dynamic genotype-specific expression profiles for vegetative tissues of grain, sweet and bioenergy sorghums. BMC Plant Biol. 2014, 14, 35. [Google Scholar] [CrossRef] [Green Version]
- Murray, S.C.; Rooney, W.L.; Hamblin, M.T.; Mitchell, S.E.; Kresovich, S. Sweet Sorghum Genetic Diversity and Association Mapping for Brix and Height. Plant Genome 2009, 2, 347. [Google Scholar] [CrossRef] [Green Version]
- Dicko, M.H.; Gruppen, H.; Traore, A.S.; Voragen, A.G.J.; van Berkel, W.J.H. Sorghum grain as human food in Africa: Relevance of content of starch and amylase activities. Afr. J. Biotechnol. 2006, 5, 384–395. [Google Scholar]
- Felderhoff, T.J.; Murray, S.C.; Klein, P.E.; Sharma, A.; Hamblin, M.T.; Kresovich, S.; Vermerris, W.; Rooney, W.L. QTLs for Energy-related Traits in a Sweet × Grain Sorghum [Sorghum bicolor (L.) Moench] Mapping Population. Crop Sci. 2012, 52, 2040–2049. [Google Scholar] [CrossRef]
- Abenavoli, L.; Milanovic, M.; Procopio, A.C.; Spampinato, G.; Maruca, G.; Perrino, E.V.; Mannino, G.C.; Fagoonee, S.; Luzza, F.; Musarella, C.M. Ancient wheats: Beneficial effects on insulin resistance. Minerva Med. 2020. [Google Scholar] [CrossRef]
- Disasa, T.; Feyissa, T.; Admassu, B.; Fetene, M.; Mendu, V. Mapping of QTLs Associated with Brix and Biomass-Related Traits in Sorghum Using SSR Markers. Sugar Tech 2018, 20, 275–285. [Google Scholar] [CrossRef]
- Makanda, I.; Derera, J.; Tongoona, P.; Sibiya, J. Development of sorghum for bio-energy: A view from the stakeholders and priorities for breeding dual purpose varieties. Afr. J. Agric. Res. 2011, 6, 4477–4486. [Google Scholar]
- Prasad, S.; Singh, A.; Jain, N.; Joshi, H.C. Ethanol Production from Sweet Sorghum Syrup for Utilization as Automotive Fuel in India. Energy Fuels 2007, 21, 2415–2420. [Google Scholar] [CrossRef]
- Tsuchihashi, N.; Goto, Y. Cultivation of Sweet Sorghum (Sorghum bicolor (L.) Moench) and Determination of its Harvest Time to Make Use as the Raw Material for Fermentation, Practiced during Rainy Season in Dry Land of Indonesia. Plant Prod. Sci. 2004, 7, 442–448. [Google Scholar] [CrossRef]
- Kanbar, A.; Shakeri, E.; Alhajturki, D.; Horn, T.; Emam, Y.; Tabatabaei, S.A.; Nick, P. Morphological and molecular characterization of sweet, grain and forage sorghum (Sorghum bicolor L.) genotypes grown under temperate climatic conditions. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2019, 154, 49–58. [Google Scholar] [CrossRef]
- Rao, P.S.; Kumar, C.G. Characterization of Improved Sweet Sorghum Cultivars; Springer: New Delhi, India, 2013; ISBN 978-81-322-0783-2. [Google Scholar]
- Smith, G.A.; Buxton, D.R. Temperate zone sweet sorghumethanol production potential. Bioresour. Technol. 1993, 43, 71–75. [Google Scholar] [CrossRef]
- Windpassinger, S.; Friedt, W.; Frauen, M.; Snowdon, R.; Wittkop, B. Designing adapted sorghum silage types with an enhanced energy density for biogas generation in temperate Europe. Biomass Bioenergy 2015, 81, 496–504. [Google Scholar] [CrossRef]
- Ritter, K.B.; McIntyre, C.L.; Godwin, I.D.; Jordan, D.R.; Chapman, S.C. An assessment of the genetic relationship between sweet and grain sorghums, within Sorghum bicolor ssp. bicolor (L.) Moench, using AFLP markers. Euphytica 2007, 157, 161–176. [Google Scholar] [CrossRef]
- Lingle, S.E. Sucrose Metabolism in the Primary Culm of Sweet Sorghum During Development. Crop Sci. 1987, 27, 1214–1219. [Google Scholar] [CrossRef]
- Cooper, E.A.; Brenton, Z.W.; Flinn, B.S.; Jenkins, J.; Shu, S.; Flowers, D.; Luo, F.; Wang, Y.; Xia, P.; Barry, K.; et al. A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: Implications for the genetics of sugar metabolism. BMC Genom. 2019, 20, 420. [Google Scholar] [CrossRef] [Green Version]
- Kanbar, A.; Shakeri, E.; Alhajturki, D.; Riemann, M.; Bunzel, M.; Morgano, M.; Stapf, D.; Nick, P. Sweet versus grain sorghum: Differential sugar transport and accumulation are linked with vascular bundle architecture. Ind. Crop. Prod. 2021, in press. [Google Scholar]
- Bihmidine, S.; Baker, R.F.; Hoffner, C.; Braun, D.M. Sucrose accumulation in sweet sorghum stems occurs by apoplasmic phloem unloading and does not involve differential Sucrose transporter expression. BMC Plant Biol. 2015, 15, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermuth, J.; Kosová, K. Characterization of the first Czech sorghum variety Ruzrok tested in Czech Republic. Czech J. Genet. Plant Breed. 2017, 53, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Undersander, D.J.; Lueschen, W.E.; Smith, L.H.; Kaminski, A.R.; Doll, D.J.; Kelling, K.A.; Oplinger, E.S. Sorghum-for syrup. In Alternative Field Crops Manual; University of Wisconsin-Extension, University of Minnesota, Center for the Alternative Plants and Animal Products and the Minnesota Extension Services: Madison, WI, USA; Waseca, MN, USA, 1990. [Google Scholar]
- Rao, D.B.; Chamarthy, R.; Karthikeyan, K.; Biswas, P.K.; Rao, S.S.; Kumar, B.S.; Seetharama, N. Sweet Sorghum Cane for Bio-Fuel Production: A SWOT Analysis in Indian Context; National Research Centre for Sorghum: Hyderabad, India, 2004; p. 500. [Google Scholar]
- Reddy, B.V.S.; Ramesh, S.; Sanjana, P.R.; Ramaiah, B.; Salimath, P.M.; Kachapur, R. Sweet Sorghum: A potential alternate raw material for bio-ethanol and bio-energy. J. Sat Agric. Res. 2005, 46, 79–86. [Google Scholar]
- Pearson, K. Note on regression and inheritance in the case of two parents. Proc. R. Soc. Lond. 1895, 58, 240–242. [Google Scholar] [CrossRef]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis; Englewood Cliffs: Prentice-Hall, NJ, USA, 1995. [Google Scholar]
- Sneath, P.H.A.; Sokal, R.R. The estimation of taxonomic resemblance. In Numerical Taxonomy: The Principles and Practice of Numerical Classification; Sneath, P.H.A., Sokal, R.R., Eds.; Freeman: San Francisco, CA, USA, 1973; pp. 129–132. ISBN 0716706970. [Google Scholar]
- Godoy, J.G.V.; Tesso, T.T. Analysis of Juice Yield, Sugar Content, and Biomass Accumulation in Sorghum. Crop Sci. 2013, 53, 1288–1297. [Google Scholar] [CrossRef]
- Kopecký, M.; Mráz, P.; Kolář, L.; Váchalová, R.; Bernas, J.; Konvalina, P.; Perná, K.; Murindangabo, Y.; Menšík, L. Effect of Fertilization on the Energy Profit of Tall Wheatgrass and Reed Canary Grass. Agronomy 2021, 11, 445. [Google Scholar] [CrossRef]
- Mathur, S.; Umakanth, A.V.; Tonapi, V.A.; Sharma, R.; Sharma, M.K. Sweet sorghum as biofuel feedstock: Recent advances and available resources. Biotechnol. Biofuels 2017, 10, 146. [Google Scholar] [CrossRef] [Green Version]
- Cifuentes, R.; Bressani, R.; Rolz, C. The potential of sweet sorghum as a source of ethanol and protein. Energy Sustain. Dev. 2014, 21, 13–19. [Google Scholar] [CrossRef]
- Wang, M.L.; Zhu, C.; Barkley, N.A.; Chen, Z.; Erpelding, J.E.; Murray, S.C.; Tuinstra, M.R.; Tesso, T.; Pederson, G.A.; Yu, J. Genetic diversity and population structure analysis of accessions in the US historic sweet sorghum collection. Appl. Genet. 2009, 120, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Motlhaodi, T.; Geleta, M.; Chite, S.; Fatih, M.; Ortiz, R.; Bryngelsson, T. Genetic diversity in sorghum [Sorghum bicolor (L.) Moench] germplasm from Southern Africa as revealed by microsatellite markers and agro-morphological traits. Genet. Resour. Crop Evol. 2017, 64, 599–610. [Google Scholar] [CrossRef]
- Abdi, A.; Bekele, E.; Asfaw, Z.; Teshome, A. Patterns of morphological variation of sorghum (Sorghum bicolor (L.) Moench) landraces in qualitative characters in North Shewa and South Welo, Ethiopia. Hereditas 2002, 137, 161–172. [Google Scholar] [CrossRef]
- Deu, M.; Rattunde, F.; Chantereau, J. A global view of genetic diversity in cultivated sorghums using a core collection. Genome 2006, 49, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Rani, C.; Umakanth, A.V. Genetic variation and trait inter-relationship in F1 Genetic variation and trait inter-relationship in F1 hybrids of sweet sorghum(Sorghum bicolor (L.) Moench). J. Trop. Agric. 2012, 50, 80–83. [Google Scholar]
- Wang, M.; Xin, Z.; Tonnis, B.; Farrell, G.; Pinnow, D.; Chen, Z.; Davis, J.; Yu, J.; Hung, Y.-C.; Pederson, G.A. Evaluation of Sweet Sorghum as a Feedstock by Multiple Harvests for Sustainable Bioenergy Production. J. Sustain. Bioenergy Syst. 2012, 2, 122–137. [Google Scholar] [CrossRef] [Green Version]
- Rooney, W.L.; Blumenthal, J.; Bean, B.; Mullet, J.E. Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod. Bioref. 2007, 1, 147–157. [Google Scholar] [CrossRef]
- Rao, S.S.; Patil, J.V.; Umakanth, A.V.; Mishra, J.S.; Ratnavathi, C.V.; Prasad, G.S.; Rao, B.D. Comparative Performance of Sweet Sorghum Hybrids and Open Pollinated Varieties for Millable Stalk Yield, Biomass, Sugar Quality Traits, Grain Yield and Bioethanol Production in Tropical Indian Condition. Sugar Tech 2013, 15, 250–257. [Google Scholar] [CrossRef]
- Kante, M.; Rattunde, F.; Nébié, B.; Sissoko, I.; Diallo, B.; Diallo, A.; Touré, A.; Weltzien, E.; Haussmann, B.I.G.; Leiser, W.L. Sorghum Hybrids for Low-Input Farming Systems in West Africa: Quantitative Genetic Parameters to Guide Hybrid Breeding. Crop Sci. 2019, 59, 2544–2561. [Google Scholar] [CrossRef] [Green Version]
- Hermuth, J.; Janovská, D.; Čepková, P.H.; Ustak, S.; Strašil, Z.; Dvoráková, Z. Sorghum and Foxtail Millet—Promising Crops for the Changing Climate in Central Europe. In Alternative Crops and Cropping Systems; Konvalina, P., Ed.; IntechOpen: London, UK, 2016; ISBN 978-953-51-2279-1. [Google Scholar]
- Almodares, A.; Mostafafi Darany, S.M. Effects of planting date and time of nitrogen application on yield and sugar content of sweet sorghum. J. Environ. Biol. 2006, 27, 601–605. [Google Scholar] [PubMed]
- Alhajturki, D.; Al Jamali, M.; Kanbar, A. Genetic variation of sorghum (Sorghum bicolor L. Moench) varieties assessed by ISSR markers. Adv. Environ. Biol. 2011, 5, 3504–3510. [Google Scholar]
- Shukla, S.; Felderhoff, T.J.; Saballos, A.; Vermerris, W. The relationship between plant height and sugar accumulation in the stems of sweet sorghum (Sorghum bicolor (L.) Moench). Field Crops Res. 2017, 203, 181–191. [Google Scholar] [CrossRef]
- Murray, S.C.; Sharma, A.; Rooney, W.L.; Klein, P.E.; Mullet, J.E.; Mitchell, S.E.; Kresovich, S. Genetic Improvement of Sorghum as a Biofuel Feedstock: I. QTL for Stem Sugar and Grain Nonstructural Carbohydrates. Crop Sci. 2008, 48, 2165–2179. [Google Scholar] [CrossRef]
- Shiringani, A.L.; Frisch, M.; Friedt, W. Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Appl. Genet. 2010, 121, 323–336. [Google Scholar] [CrossRef]
- Naoura, G.; Sawadogo, N.; Atchozou, E.A.; Emendack, Y.; Hassan, M.A.; Reoungal, D.; Amos, D.N.; Djirabaye, N.; Tabo, R.; Laza, H. Assessment of agro-morphological variability of dry-season sorghum cultivars in Chad as novel sources of drought tolerance. Sci. Rep. 2019, 9, 19581. [Google Scholar] [CrossRef] [PubMed]
- McKinley, B.; Rooney, W.; Wilkerson, C.; Mullet, J. Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor. Plant J. 2016, 88, 662–680. [Google Scholar] [CrossRef]
- Morey, S.R.; Hashida, Y.; Ohsugi, R.; Yamagishi, J.; Aoki, N. Evaluation of performance of sorghum varieties grown in Tokyo for sugar accumulation and its correlation with vacuolar invertase genes SbInv1 and SbInv2. Plant Prod. Sci. 2018, 21, 328–338. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.-a.; Wang, H.-l.; Qin, L.; Zhang, H.-w.; Yang, Y.-b.; Gao, F.-j.; Li, R.-y.; Wang, H.-g. QTL mapping of bio-energy related traits in Sorghum. Euphytica 2011, 182, 431–440. [Google Scholar] [CrossRef]
- Ni, Z.; Kim, E.-D.; Ha, M.; Lackey, E.; Liu, J.; Zhang, Y.; Sun, Q.; Chen, Z.J. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 2009, 457, 327–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann-Thoma, G.; Hinkel, K.; Nicolay, P.; Willenbrink, J. Sucrose accumulation in sweet sorghum stem internodes in relation to growth. Physiol. Plant. 1996, 97, 277–284. [Google Scholar] [CrossRef]
- Li, Y.; Tu, M.; Feng, Y.; Wang, W.; Messing, J. Common metabolic networks contribute to carbon sink strength of sorghum internodes: Implications for bioenergy improvement. Biotechnol. Biofuels 2019, 12, 274. [Google Scholar] [CrossRef] [PubMed]
- Murray, S.C.; Rooney, W.L.; Mitchell, S.E.; Sharma, A.; Klein, P.E.; Mullet, J.E.; Kresovich, S. Genetic Improvement of Sorghum as a Biofuel Feedstock: II. QTL for Stem and Leaf Structural Carbohydrates. Crop Sci. 2008, 48, 2180–2193. [Google Scholar] [CrossRef]
- Shiringani, A.L.; Friedt, W. QTL for fibre-related traits in grain × sweet sorghum as a tool for the enhancement of sorghum as a biomass crop. Appl. Genet. 2011, 123, 999–1011. [Google Scholar] [CrossRef]
- Luo, F.; Pei, Z.; Zhao, X.; Liu, H.; Jiang, Y.; Sun, S. Genome-Wide Association Study for Plant Architecture and Bioenergy Traits in Diverse Sorghum and Sudangrass Germplasm. Agronomy 2020, 10, 1602. [Google Scholar] [CrossRef]
- Gutjahr, S.; Cl Ment-Vidal, A.; Soutiras, A.; Sonderegger, N.; Braconnier, S.; Dingkuhn, M.L.; Luquet, D. Grain, sugar and biomass accumulation in photoperiod-sensitive sorghums. II. Biochemical processes at internode level and interaction with phenology. Funct. Plant Biol. 2013, 40, 355–368. [Google Scholar] [CrossRef]
- Lin, Y.R.; Schertz, K.F.; Paterson, A.H. Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 1995, 141, 391. [Google Scholar] [CrossRef]
- Burks, P.S.; Kaiser, C.M.; Hawkins, E.M.; Brown, P.J. Genomewide Association for Sugar Yield in Sweet Sorghum. Crop Sci. 2015, 55, 2138–2148. [Google Scholar] [CrossRef] [Green Version]
- Beuningen, L.T.; Busch, R.H. Genetic Diversity among North American Spring Wheat Cultivars: I. Analysis of the Coeffecient of Parentage Matrix. Crop Sci. 1997, 37, 570–579. [Google Scholar] [CrossRef]
- Perrino, E.V.; Wagensommer, R.P. Crop Wild Relatives (CWR) Priority in Italy: Distribution, Ecology, In Situ and Ex Situ Conservation and Expected Actions. Sustainability 2021, 13, 1682. [Google Scholar] [CrossRef]
- Souza, E.; Sorrells, M.E. Relationships among 70 North American Oat Germplasms: I. Cluster Analysis Using Quantitative Characters. Crop Sci. 1991, 31, 599–605. [Google Scholar] [CrossRef]
- Sinha, S.; Kumaravadivel, N. Understanding Genetic Diversity of Sorghum Using Quantitative Traits. Scientifica 2016, 2016, 3075023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mindaye, T.T.; Mace, E.S.; Godwin, I.D.; Jordan, D.R. Heterosis in locally adapted sorghum genotypes and potential of hybrids for increased productivity in contrasting environments in Ethiopia. Crop J. 2016, 4, 479–489. [Google Scholar] [CrossRef] [Green Version]
ID | Cultivars | Group | Lodging | Type | Origin |
---|---|---|---|---|---|
9472 | Zerberus | Grain, biomass | Resistant | S. bicolor x S. bicolor | KWS, Germany |
9473 | Juno | Grain, biomass | Resistant | S. bicolor x S. bicolor | KWS, Germany |
9474 | Bulldozer | Grain, biomass | Resistant | S. bicolor x S. bicolor | KWS, Germany |
9475 | Ganymed | Grain, biomass | Resistant | S. bicolor x S. bicolor | KWS, Germany |
9576 | Phoenix | Grain, biomass | Resistant | S. bicolor x S. bicolor | KWS, Germany |
9477 | Hannibal | Grain, biomass | Resistant | S. bicolor x S. bicolor | KWS, Germany |
9478 | Freya | Grain, biomass | susceptible | S. bicolor x S. sudanense | KWS, Germany |
9479 | Merlin | Grain, biomass | Resistant | S. bicolor x S. bicolor | KWS, Germany |
9480 | Tarzan | Grain, biomass | Resistant | S. bicolor x S. bicolor | KWS, Germany |
9481 | Sole | Grain, biomass | susceptible | S. bicolor x S. sudanense | KWS, Germany |
9145 | Razinieh | Grain | Moderate | Landrace | Syria |
9482 | Ruzrok | Grain | Moderate | variety | Czech Republic |
9483 | So-29 | Sweet, biofuel | susceptible | variety | Czech Republic |
9484 | KIT1 | Sweet, biofuel | Resistant | Elite line | KIT, Germany |
Cultivar | Plant Height (cm) | Leaf Number | Internode Number | Leaf Weight (g/Plant) | Cane Yield (t/ha) | Juice Yield (kl/ha) | Bagasse yield (t/ha) | Sugar Content (°Brix) | Sugar Yield (t/ha) | Ethanol Yield (kl/ha) |
---|---|---|---|---|---|---|---|---|---|---|
Zerberus | 361.66 | 12.00 | 12.00 | 46.87 | 93.87 | 41.87 | 33.53 | 11.27 | 4.20 | 3.77 |
Juno | 382.50 | 13.00 | 13.00 | 44.30 | 82.80 | 35.00 | 38.20 | 12.80 | 3.97 | 3.31 |
Bulldozer | 315.50 | 14.00 | 12.00 | 65.00 | 93.70 | 38.50 | 33.80 | 11.80 | 4.03 | 3.75 |
Ganymed | 426.50 | 14.00 | 12.00 | 80.75 | 124.80 | 52.20 | 49.80 | 11.10 | 5.14 | 4.99 |
Phoenix | 305.50 | 10.00 | 10.00 | 39.40 | 54.50 | 21.80 | 26.30 | 13.60 | 2.63 | 2.18 |
Hannibal | 397.50 | 12.00 | 12.00 | 54.40 | 106.50 | 46.10 | 47.60 | 13.30 | 5.43 | 4.26 |
Freya | 415.00 | 10.00 | 11.00 | 25.85 | 55.10 | 18.20 | 29.00 | 12.70 | 2.05 | 2.20 |
Merlin | 403.00 | 11.00 | 11.00 | 36.65 | 84.20 | 41.40 | 35.20 | 13.70 | 5.02 | 3.37 |
Tarzan | 442.50 | 11.00 | 12.00 | 47.50 | 109.40 | 38.70 | 45.80 | 13.60 | 4.66 | 4.38 |
Sole | 396.00 | 10.00 | 10.00 | 15.05 | 38.11 | 9.10 | 21.50 | 9.70 | 0.78 | 1.52 |
Razinieh | 284.00 | 10.00 | 10.00 | 30.50 | 42.39 | 11.46 | 18.95 | 6.90 | 0.71 | 1.69 |
Ruzrok | 277.67 | 7.67 | 7.67 | 5.97 | 16.65 | 2.67 | 12.74 | 8.10 | 0.19 | 0.67 |
So-29 | 308.50 | 11.00 | 11.00 | 24.50 | 76.00 | 35.30 | 32.00 | 12.70 | 3.97 | 3.04 |
KIT1 | 284.00 | 9.33 | 9.33 | 63.43 | 78.57 | 35.40 | 23.45 | 15.16 | 4.75 | 3.14 |
Overall mean | 357.13 | 11.07 | 10.92 | 41.44 | 75.47 | 30.55 | 31.99 | 11.88 | 3.39 | 3.01 |
F-test | **** | **** | **** | **** | **** | **** | **** | **** | **** | **** |
LSD (0.05) | 12.25 | 0.36 | 0.36 | 4.02 | 4.87 | 1.82 | 2.57 | 0.56 | 0.32 | 0.19 |
C.V (%) | 9.06 | 3.78 | 3.56 | 13.78 | 15.84 | 11.55 | 9.79 | 6.82 | 8.62 | 11.85 |
Traits | Leaf Number | Internode Number | Leaf Weight | Cane Yield | Juice Yield | Bagasse Yield | °Brix | Sugar Yield |
---|---|---|---|---|---|---|---|---|
Plant height | 0.43 ** | 0.62 **** | 0.23ns | 0.54 *** | 0.43 ** | 0.71 *** | 0.28ns | 0.40 ** |
Leaf number | 1.00 | 0.88 **** | 0.72 **** | 0.79 **** | 0.76 **** | 0.76 **** | 0.21ns | 0.64 **** |
Internode number | 1.00 | 0.56 **** | 0.79 **** | 0.74 **** | 0.83 **** | 0.37 * | 0.66 **** | |
Leaf weight | 1.00 | 0.84 **** | 0.81 **** | 0.68 **** | 0.44 ** | 0.77 **** | ||
Cane yield | 1.00 | 0.96 **** | 0.92 **** | 0.54 *** | 0.92 **** | |||
Juice yield | 1.00 | 0.86 **** | 0.60 *** | 0.97 **** | ||||
Bagasse yield | 1.00 | 0.49 *** | 0.82 **** | |||||
°Brix | 1.00 | 0.75 **** |
Characters | Plant Height | Leaf Number | Internode Number | Leaf Weight | Cane Yield | Juice Yield | Bagasse Yield | °Brix | Sugar Yield |
---|---|---|---|---|---|---|---|---|---|
Plant height | −0.039 | −0.053 | 0.001 | −0.001 | 0.006 | 0.386 | 0.044 | 0.061 | 0.405 ** |
Leaf number | −0.017 | −0.123 | 0.001 | −0.003 | 0.008 | 0.681 | 0.047 | 0.046 | 0.640 **** |
Internode number | −0.025 | −0.109 | 0.002 | −0.003 | 0.009 | 0.662 | 0.052 | 0.079 | 0.666 **** |
Leaf weight | −0.009 | −0.089 | 0.001 | −0.005 | 0.010 | 0.732 | 0.042 | 0.095 | 0.776 **** |
Cane yield | −0.021 | −0.098 | 0.001 | −0.004 | 0.011 | 0.864 | 0.057 | 0.115 | 0.925 **** |
Juice yield | −0.017 | −0.094 | 0.001 | −0.004 | 0.011 | 0.894 | 0.053 | 0.128 | 0.972 **** |
Bagasse yield | −0.028 | −0.095 | 0.001 | −0.004 | 0.010 | 0.777 | 0.062 | 0.104 | 0.828 **** |
°Brix | −0.011 | −0.027 | 0.001 | −0.002 | 0.006 | 0.544 | 0.031 | 0.211 | 0.752 **** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanbar, A.; Flubacher, N.; Hermuth, J.; Kosová, K.; Horn, T.; Nick, P. Mining Sorghum Biodiversity—Potential of Dual-Purpose Hybrids for Bio-Economy. Diversity 2021, 13, 192. https://doi.org/10.3390/d13050192
Kanbar A, Flubacher N, Hermuth J, Kosová K, Horn T, Nick P. Mining Sorghum Biodiversity—Potential of Dual-Purpose Hybrids for Bio-Economy. Diversity. 2021; 13(5):192. https://doi.org/10.3390/d13050192
Chicago/Turabian StyleKanbar, Adnan, Noemi Flubacher, Jiří Hermuth, Klára Kosová, Thomas Horn, and Peter Nick. 2021. "Mining Sorghum Biodiversity—Potential of Dual-Purpose Hybrids for Bio-Economy" Diversity 13, no. 5: 192. https://doi.org/10.3390/d13050192
APA StyleKanbar, A., Flubacher, N., Hermuth, J., Kosová, K., Horn, T., & Nick, P. (2021). Mining Sorghum Biodiversity—Potential of Dual-Purpose Hybrids for Bio-Economy. Diversity, 13(5), 192. https://doi.org/10.3390/d13050192