Disturbance Effects on Spatial Autocorrelation in Biodiversity: An Overview and a Call for Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search and Study Selection
2.2. Data Extraction and Coding
2.2.1. Classifying the Scale of Disturbance
2.2.2. Classifying Habitat Spatial Heterogeneity, and Pre-Versus Post-Disturbance Spatial Pattern
2.2.3. Classifying the Causes of Disturbance-Driven Changes in Spatial Patterns
2.3. Data Analysis
3. Results
3.1. State of the Literature
3.2. Patterns of Change in Spatial Autocorrelation (Spatial Connectedness)
3.3. Patterns of Change in Spatial Range (Biodiversity Patch Size)
3.4. Pre- Versus Post-Disturbance Spatial Pattern
3.5. Causes of Disturbance-Driven Change in Spatial Biodiversity Patterns
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Spatial Patterns of Biodiversity and Its Underlying Processes
Appendix B
References
- Pereira, H.M.; Leadley, P.W.; Proença, V.; Alkemade, R.; Scharlemann, J.P.W.; Fernandez-Manjarrés, J.F.; Araújo, M.B.; Balvanera, P.; Biggs, R.; Cheung, W.W.L.; et al. Scenarios for Global Biodiversity in the 21st Century. Science 2010, 330, 1496–1501. [Google Scholar] [CrossRef] [Green Version]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45. [Google Scholar] [CrossRef] [Green Version]
- Sala, O.E.; Chapin, S.F.I.; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global Biodiversity Scenarios for the Year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef]
- Vellend, M.; Dornelas, M.; Baeten, L.; Beauséjour, R.; Brown, C.D.; De Frenne, P.; Elmendorf, S.C.; Gotelli, N.J.; Moyes, F.; Myers-Smith, I.H.; et al. Estimates of local biodiversity change over time stand up to scrutiny. Ecology 2017, 98, 583–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legendre, P. Spatial Autocorrelation: Trouble or New Paradigm? Ecology 1993, 74, 1659–1673. [Google Scholar] [CrossRef]
- Fletcher, R.; Fortin, M. Spatial Ecology and Conservation Modeling; Springer: Berlin/Heidelberg, Germany, 2018; p. 523. [Google Scholar] [CrossRef]
- Hovick, T.J.; Elmore, R.D.; Fuhlendorf, S.D.; Engle, D.M.; Hamilton, R.G. Spatial heterogeneity increases diversity and stability in grassland bird communities. Ecol. Appl. 2015, 25, 662–672. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape Ecology: The Effect of Pattern on Process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Hautier, Y.; Isbell, F.; Borer, E.T.; Seabloom, E.W.; Harpole, W.S.; Lind, E.M.; MacDougall, A.S.; Stevens, C.J.; Adler, P.B.; Alberti, J.; et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat. Ecol. Evol. 2018, 2, 50–56. [Google Scholar] [CrossRef]
- Maestre, F.T.; Escudero, A.; Martinez, I.; Guerrero, C.; Rubio, A. Does spatial pattern matter to ecosystem functioning? Insights from biological soil crusts. Funct. Ecol. 2005, 19, 566–573. [Google Scholar] [CrossRef]
- Rayburn, A.P.; Schupp, E.W. Effects of community- and neighborhood-scale spatial patterns on semi-arid perennial grassland community dynamics. Oecologia 2013, 172, 1137–1145. [Google Scholar] [CrossRef]
- Castillo-Monroy, A.P.; Bowker, M.A.; García-Palacios, P.; Maestre, F.T. Aspects of soil lichen biodiversity and aggregation interact to influence subsurface microbial function. Plant Soil 2015, 386, 303–316. [Google Scholar] [CrossRef]
- Franklin, J.F. Spatial Pattern and Ecosystem Function: Reflections on Current Knowledge and Future Directions. In Ecosystem Function in Heterogeneous Landscapes; Lovett, G.M., Turner, M.G., Jones, C.G., Weathers, K.C., Eds.; Springer: New York, NY, USA, 2005; pp. 427–441. [Google Scholar] [CrossRef]
- Possingham, H.P.; Franklin, J.; Wilson, K.; Regan, T.J. The Roles of Spatial Heterogeneity and Ecological Processes in Conservation Planning. In Ecosystem Function in Heterogeneous Landscapes; Lovett, G.M., Turner, M.G., Jones, C.G., Weathers, K.C., Eds.; Springer: New York, NY, USA, 2005; pp. 389–406. [Google Scholar] [CrossRef]
- Biswas, S.R.; MacDonald, R.; Chen, H. Disturbance increases negative spatial autocorrelation in species diversity. Landsc. Ecol. 2017, 32, 823–834. [Google Scholar] [CrossRef]
- Adler, P.; Raff, D.; Lauenroth, W. The effect of grazing on the spatial heterogeneity of vegetation. Oecologia 2001, 128, 465–479. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.G. Disturbance and landscape dynamics in a changing world. Ecology 2010, 91, 2833–2849. [Google Scholar] [CrossRef] [Green Version]
- Fuhlendorf, S.D.; Harrell, W.C.; Engle, D.M.; Hamilton, R.G.; Davis, C.A.; Leslie, D.M., Jr. Should heterogeneity be the basis for conservation? Grassland bird response to fire and grazing. Ecol. Appl. 2006, 16, 1706–1716. [Google Scholar] [CrossRef] [Green Version]
- Seiferling, I.S.; Proulx, R.; Peres-Neto, P.R.; Fahrig, L.; Messier, C. Measuring Protected-Area Isolation and Correlations of Isolation with Land-Use Intensity and Protection Status. Conserv. Biol. 2012, 26, 610–618. [Google Scholar] [CrossRef] [Green Version]
- Ferrier, S. Mapping spatial pattern in biodiversity for regional conservation planning: Where to from here? Syst. Biol. 2002, 51, 331–363. [Google Scholar] [CrossRef]
- Biswas, S.R.; Mallik, A.U.; Braithwaite, N.T.; Wagner, H.H. A conceptual framework for the spatial analysis of functional trait diversity. Oikos 2016, 125, 192–200. [Google Scholar] [CrossRef]
- Browning, D.M.; Franklin, J.; Archer, S.R.; Gillan, J.K.; Guertin, D.P. Spatial patterns of grassland–shrubland state transitions: A 74-year record on grazed and protected areas. Ecol. Appl. 2014, 24, 1421–1433. [Google Scholar] [CrossRef]
- Fortin, M.-J.; Dale, M.R.T. Spatial Analysis: A Guide for Ecologists; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar] [CrossRef]
- Fraterrigo, J.M.; Rusak, J.A. Disturbance-driven changes in the variability of ecological patterns and processes. Ecol. Lett. 2008, 11, 756–770. [Google Scholar] [CrossRef]
- Levin, S.A. The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture. Ecology 1992, 73, 1943–1967. [Google Scholar] [CrossRef]
- Biswas, S.R.; Wagner, H.H. Landscape contrast: A solution to hidden assumptions in the metacommunity concept? Landsc. Ecol. 2012, 27, 621–631. [Google Scholar] [CrossRef]
- Kim, T.J.; Bullock, B.P.; Stape, J.L. Effects of silvicultural treatments on temporal variations of spatial autocorrelation in Eucalyptus plantations in Brazil. Forest Ecol. Manag. 2015, 358, 90–97. [Google Scholar] [CrossRef]
- Veen, G.F.; Blair, J.M.; Smith, M.D.; Collins, S.L. Influence of grazing and fire frequency on small-scale plant community structure and resource variability in native tallgrass prairie. Oikos 2008, 117, 859–866. [Google Scholar] [CrossRef]
- Benot, M.-L.-L.; Bonis, A.; Rossignol, N.; Mony, C. Spatial patterns in defoliation and the expression of clonal traits in grazed meadows. Botany 2011, 89, 43–54. [Google Scholar] [CrossRef]
- Birkhofer, K.; Scheu, S.; Wise, D.H. Small-Scale Spatial Pattern of Web-Building Spiders (Araneae) in Alfalfa: Relationship to Disturbance from Cutting, Prey Availability, and Intraguild Interactions. Environ. Entomol. 2007, 36, 801–810. [Google Scholar] [CrossRef]
- Camarero, J.J.; Gutiérrez, E.; Fortin, M.-J. Spatial patterns of plant richness across treeline ecotones in the Pyrenees reveal different locations for richness and tree cover boundaries. Glob. Ecol. Biogeogr. 2006, 15, 182–191. [Google Scholar] [CrossRef]
- Chen, J.; Yamamura, Y.; Hori, Y.; Shiyomi, M.; Yasuda, T.; Zhou, H.-K.; Li, Y.-N.; Tang, Y.-H. Small-scale species richness and its spatial variation in an alpine meadow on the Qinghai-Tibet Plateau. Ecol. Res. 2008, 23, 657–663. [Google Scholar] [CrossRef]
- Chen, B.; Yang, G.; Zang, H.; Duan, Q.; Xin, X. Spatial pattern analysis of Leymus chinensis population under different disturbances. Acta Ecol. Sin. 2010, 30, 5868–5874. [Google Scholar]
- Deléglise, C.; Loucougaray, G.; Alard, D. Spatial patterns of species and plant traits in response to 20 years of grazing exclusion in subalpine grassland communities. J. Veg. Sci. 2011, 22, 402–413. [Google Scholar] [CrossRef]
- Díaz, E.R.; Erlandsson, J.; McQuaid, C.D. Detecting spatial heterogeneity in intertidal algal functional groups, grazers and their co-variation among shore levels and sites. J. Exp. Mar. Biol. Ecol. 2011, 409, 123–135. [Google Scholar] [CrossRef]
- Fehmi, J.S.; Bartolome, J.W. Impacts of livestock and burning on the spatial patterns of the grass nassella pulchra (poaceae). Madro 2003, 50, 8–14. [Google Scholar]
- Limb, R.F.; Hovick, T.J.; Norland, J.E.; Volk, J.M. Grassland plant community spatial patterns driven by herbivory intensity. Agric. Ecosyst. Environ. 2018, 257, 113–119. [Google Scholar] [CrossRef]
- Lin, Y.; Hong, M.; Han, G.; Zhao, M.; Bai, Y.; Chang, S.X. Grazing intensity affected spatial patterns of vegetation and soil fertility in a desert steppe. Agric. Ecosyst. Environ. 2010, 138, 282–292. [Google Scholar] [CrossRef]
- Liu, Z.-G.; Li, Z.-Q. Fine-scale spatial patterns of Artemisia frigida population under different grazing intensities. Acta Ecol. Sin. 2004, 24, 227–234. [Google Scholar]
- Liu, J.; Zhang, K. Spatial Pattern and Population Structure of Artemisia ordosica Shrub in a Desert Grassland under Enclosure, Northwest China. Int. J. Environ. Res. Public Health 2018, 15, 946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.-G.; Li, Z.-Q.; Nijs, I.; Bogaert, J. Fine-scale spatial pattern of Cleistogenes squarrosa population under different grazing intensities. Acta Pratacult. Sin. 2005, 14, 11–17. [Google Scholar]
- Liu, Z.; Li, Z.; Fu, L.; Dong, M. Small scale spatial pattern of Potentilla acaulis population under different grazing intensities. Chin. J. Appl. Environ. Biol. 2006, 12, 308–312. [Google Scholar]
- Meyers, L.M.; DeKeyser, E.S.; Norland, J.E. Differences in spatial autocorrelation (SAc), plant species richness and diversity, and plant community composition in grazed and ungrazed grasslands along a moisture gradient, North Dakota, USA. Appl. Veg. Sci. 2014, 17, 53–62. [Google Scholar] [CrossRef]
- Montané, F.; Casals, P.; Taull, M.; Lambert, B.; Dale, M. Spatial patterns of shrub cover after different fire disturbances in the Pyrenees. Ann. For. Sci. 2011, 66, 612. [Google Scholar] [CrossRef] [Green Version]
- Moustakas, A. Fire acting as an increasing spatial autocorrelation force: Implications for pattern formation and ecological facilitation. Ecol. Complex. 2015, 21, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Ngoc Le, D.T.; Van Thinh, N.; The Dung, N.; Mitlöhner, R. Effect of Disturbance Regimes on Spatial Patterns of Tree Species in Three Sites in a Tropical Evergreen Forest in Vietnam. Int. J. For. Res. 2016, 2016, 4903749. [Google Scholar] [CrossRef] [Green Version]
- Nolte, S.; Esselink, P.; Smit, C.; Bakker, J.P. Herbivore species and density affect vegetation-structure patchiness in salt marshes. Agric. Ecosyst. Environ. 2014, 185, 41–47. [Google Scholar] [CrossRef]
- Nunes, P.A.d.A.; Bredemeier, C.; Bremm, C.; Caetano, L.A.M.; de Almeida, G.M.; de Souza Filho, W.; Anghinoni, I.; Carvalho, P.C.d.F. Grazing intensity determines pasture spatial heterogeneity and productivity in an integrated crop-livestock system. Grassl. Sci. 2019, 65, 49–59. [Google Scholar] [CrossRef]
- Olofsson, J.; de Mazancourt, C.; Crawley, M.J. Spatial heterogeneity and plant species richness at different spatial scales under rabbit grazing. Oecologia 2008, 156, 825–834. [Google Scholar] [CrossRef]
- Rietkerk, M.; Ketner, P.; Burger, J.; Hoorens, B.; Olff, H. Multiscale soil and vegetation patchiness along a gradient of herbivore impact in a semi-arid grazing system in West Africa. Plant Ecol. 2000, 148, 207–224. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, J.A. Spatial patterns in taiga plant communities following fire. Can. J. Bot. 1993, 71, 1568–1573. [Google Scholar] [CrossRef]
- Yu, H.; Yang, X.-H.; Ci, L.-J. Variations of spatial pattern in fire-mediated mongolian pine forest, Hulun Buir sand region, Innner Mongolia, China. Chin. J. Plant Ecol. 2009, 33, 71–80. [Google Scholar]
- Yuan, F.; Wu, J.; Li, A.; Rowe, H.; Bai, Y.; Huang, J.; Han, X. Spatial patterns of soil nutrients, plant diversity, and aboveground biomass in the Inner Mongolia grassland: Before and after a biodiversity removal experiment. Landsc. Ecol. 2015, 30, 1737–1750. [Google Scholar] [CrossRef]
- Gibson, D.J. The Relationship of Sheep Grazing and Soil Heterogeneity to Plant Spatial Patterns in Dune Grassland. J. Ecol. 1988, 76, 233–252. [Google Scholar] [CrossRef]
- Vellend, M.; Baeten, L.; Myers-Smith, I.H.; Elmendorf, S.C.; Beauséjour, R.; Brown, C.D.; De Frenne, P.; Verheyen, K.; Wipf, S. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl. Acad. Sci. USA 2013, 110, 19456–19459. [Google Scholar] [CrossRef] [Green Version]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Crowder, D.W.; Northfield, T.D.; Gomulkiewicz, R.; Snyder, W.E. Conserving and promoting evenness: Organic farming and fire-based wildland management as case studies. Ecology 2012, 93, 2001–2007. [Google Scholar] [CrossRef] [Green Version]
- Adler, P.B.; Smull, D.; Beard, K.H.; Choi, R.T.; Furniss, T.; Kulmatiski, A.; Meiners, J.M.; Tredennick, A.T.; Veblen, K.E. Competition and coexistence in plant communities: Intraspecific competition is stronger than interspecific competition. Ecol. Lett. 2018, 21, 1319–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, G.E.P.; Romanuk, T.N. A Meta-Analysis of Community Response Predictability to Anthropogenic Disturbances. Am. Nat. 2012, 180, 316–327. [Google Scholar] [CrossRef]
- Erdős, L.; Kröel-Dulay, G.; Bátori, Z.; Kovács, B.; Németh, C.; Kiss, P.J.; Tölgyesi, C. Habitat heterogeneity as a key to high conservation value in forest-grassland mosaics. Biol. Conserv. 2018, 226, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Dray, S. A New Perspective about Moran’s Coefficient: Spatial Autocorrelation as a Linear Regression Problem. Geogr. Anal. 2011, 43, 127–141. [Google Scholar] [CrossRef]
- Abadie, J.-C.; Machon, N.; Muratet, A.; Porcher, E. Landscape disturbance causes small-scale functional homogenization, but limited taxonomic homogenization, in plant communities. J. Ecol. 2011, 99, 1134–1142. [Google Scholar] [CrossRef]
- Legendre, P.; Fortin, M.J. Spatial pattern and ecological analysis. Vegetatio 1989, 80, 107–138. [Google Scholar] [CrossRef]
- McIntire, E.J.B.; Fajardo, A. Beyond description: The active and effective way to infer processes from spatial patterns. Ecology 2009, 90, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.R.; Wagner, H.H. Spatial structure in invasive Alliaria petiolata reflects restricted seed dispersal. Biol. Invasions 2015, 17, 3211–3223. [Google Scholar] [CrossRef] [Green Version]
- Cottenie, K. Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett. 2005, 8, 1175–1182. [Google Scholar] [CrossRef]
- Stakhovych, S.; Bijmolt, T.H.A. Specification of spatial models: A simulation study on weights matrices. Pap. Reg. Sci. 2009, 88, 389–408. [Google Scholar] [CrossRef]
- Kareiva, P. Special Feature: Space: The Final Frontier for Ecological Theory. Ecology 1994, 75, 1. [Google Scholar] [CrossRef]
- Socolar, J.B.; Gilroy, J.J.; Kunin, W.E.; Edwards, D.P. How Should Beta-Diversity Inform Biodiversity Conservation? Trends Ecol. Evol. 2016, 31, 67–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keane, R.E.; Hessburg, P.F.; Landres, P.B.; Swanson, F.J. The use of historical range and variability (HRV) in landscape management. For. Ecol. Manag. 2009, 258, 1025–1037. [Google Scholar] [CrossRef]
- Wagner, H.H.; Fortin, M.-J. Spatial analysis of landscapes: Concepts and statistics. Ecology 2005, 86, 1975–1987. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, S.R.; Xiang, J.; Li, H. Disturbance Effects on Spatial Autocorrelation in Biodiversity: An Overview and a Call for Study. Diversity 2021, 13, 167. https://doi.org/10.3390/d13040167
Biswas SR, Xiang J, Li H. Disturbance Effects on Spatial Autocorrelation in Biodiversity: An Overview and a Call for Study. Diversity. 2021; 13(4):167. https://doi.org/10.3390/d13040167
Chicago/Turabian StyleBiswas, Shekhar R., Jingyin Xiang, and Hui Li. 2021. "Disturbance Effects on Spatial Autocorrelation in Biodiversity: An Overview and a Call for Study" Diversity 13, no. 4: 167. https://doi.org/10.3390/d13040167
APA StyleBiswas, S. R., Xiang, J., & Li, H. (2021). Disturbance Effects on Spatial Autocorrelation in Biodiversity: An Overview and a Call for Study. Diversity, 13(4), 167. https://doi.org/10.3390/d13040167