Ammophila Invasion Ecology and Dune Restoration on the West Coast of North America
Abstract
:1. Introduction
2. Biology, Introduction, and Spread
2.1. Ammophila arenaria
2.2. Ammophila breviligulata
3. Invasion Ecology
3.1. Invasibility
3.2. Plant and Soil Pathogens and Beneficial Microbiota
3.3. Competition
3.4. Wildlife
3.5. Dune Morphodynamics
4. Restoration of Ammophila-Invaded Dunes
5. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Silva, R.; Martínez, M.L.; Odériz, I.; Mendoza, E.; Feagin, R.A. Response of vegetated dune–beach systems to storm conditions. Coast Eng. 2016, 109, 53–62. [Google Scholar] [CrossRef]
- Sigren, J.M.; Figlus, J.; Highfield, W.; Feagin, R.A.; Armitage, A.R. The effects of coastal dune volume and vegetation on storm-induced property damage: Analysis from Hurricane Ike. J. Coast. Res. 2018, 34, 164–173. [Google Scholar] [CrossRef]
- Davidson-Arnott, R.G. Conceptual model of the effects of sea level rise on sandy coasts. J. Coast. Res. 2005, 21, 1166–1172. [Google Scholar] [CrossRef] [Green Version]
- Psuty, N.P.; Silveira, T.M. Global climate change: An opportunity for coastal dunes? J. Coast. Conserv. 2010, 14, 153–160. [Google Scholar] [CrossRef]
- Cooper, W.S. Coastal Sand Dunes of Oregon and Washington; Memoir 72; Geological Society of America: Washington, DC, USA, 1958. [Google Scholar]
- Cooper, W.S. Coastal Dunes of California; Memoir 104; Geological Society of America: Washington, DC, USA, 1967. [Google Scholar]
- Wiedemann, A.M. The Ecology of Pacific Northwest Coastal Sand Dunes: A Community Profile; U.S. Fish and Wildlife Service: Arcata, CA, USA, 1984. [Google Scholar]
- Kindermann, G.; Gormally, M.J. Vehicle damage caused by recreational use of coastal dune systems in a Special Area of Conservation (SAC) on the west coast of Ireland. J. Coast. Conserv. 2010, 14, 173–188. [Google Scholar] [CrossRef]
- Pickart, A.J.; Sawyer, J.O. Ecology and Restoration of Northern California Coastal Dunes; California Native Society Press: Sacramento, CA, USA, 1998. [Google Scholar]
- Sawyer, J.O.; Keeler-Wolf, T.; Evans, J. Manual of California Vegetation, 2nd ed.; California Native Plant Society Press: Sacramento, CA, USA, 2009. [Google Scholar]
- Cooper, W.S. The strand and dune flora of the Pacific coast of North America: A geographic study. In Essays in Geobotany in Honor of William Albert Setchell; Goodspeed, T.H., Ed.; University of Caifornia Press: Berkeley, CA, USA, 1936. [Google Scholar]
- Wiedemann, A.M.; Pickart, A.J. Temperate zone coastal dunes. In Coastal Dunes, Ecology and Conservation; Martínez, M.L., Psuty, N.P., Eds.; Springer: Berlin, Germany, 2004. [Google Scholar]
- Jones, C.G.; Lawton, J.H.; Shachak, M. Organisms as ecosystem engineers. In Ecosystem Management; Springer: New York, NY, USA, 1994; pp. 130–147. [Google Scholar]
- Crooks, J.A. Characterizing ecosystem-level consequences of biological invasions: The role of ecosystem engineers. Oikos 2002, 97, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Pickart, A.J.; Maslach, W.R.; Parsons, L.S.; Jules, E.S.; Reynolds, C.M.; Goldsmith, L.M. Comparing restoration treatments and time intervals to determine the success of invasive species removal at three coastal dune sites in northern California, USA. J. Coast. Res. 2021, 37, 557–567. [Google Scholar] [CrossRef]
- Lithgow, D.; Martínez, M.L.; Gallego-Fernández, J.B.; Hesp, P.A.; Flores, P.; Gachuz, S.; Rodríguez-Revelo, N.; Jiménez-Orocio, O.; Mendoza-González, G.; Álvarez-Molina, L.L. Linking restoration ecology with coastal dune restoration. Geomorphology 2013, 199, 214–224. [Google Scholar] [CrossRef]
- Walker, I.J.; Eamer, J.B.; Darke, I.B. Assessing significant geomorphic changes and effectiveness of dynamic restoration in a coastal dune ecosystem. Geomorphology 2013, 199, 192–204. [Google Scholar] [CrossRef]
- Huiskes, A.H.L. Ammophila arenaria (L.) Link (Psamma arenaria (L.) Roem. et Schult.; Calamgrostis arenaria (L.) Roth. J. Ecol. 1979, 67, 363–382. [Google Scholar] [CrossRef]
- Lamson-Scribner, F. Grasses as soil and soil binders. In Yearbook, U.S. Department of Agriculture; U.S. Government Printing Office: Washington, DC, USA, 1894; pp. 421–436. [Google Scholar]
- McLaughlin, W.T.; Brown, R.L. Controlling Coastal Sand Dunes in the Pacific Northwest; Circular no. 660; U.S. Department of Agriculture, U.S. Government Printing Office: Washington, DC, USA, 1942.
- Breckon, G.J.; Barbour, M.G. Review of North American Pacific coast beach vegetation. Madroño 1974, 22, 333–360. [Google Scholar]
- Boyd, R.S. Influence of Ammophila arenaria on foredune plant microdistributions at Point Reyes National Seashore, California. Madrono 1992, 39, 67–76. [Google Scholar]
- Purer, E.A. Anatomy and ecology of Ammophila arenaria Link. Madrono 1942, 6, 167–171. [Google Scholar]
- Chergui, A.; El Hafid, L.; Melhaoui, M. Characteristics of marram grass (Ammophila arenaria L.), plant of the coastal dunes of the Mediterranean Eastern Morocco: Ecological, morpho-anatomical and physiological Aspects. J. Mater. Environ. Sci. 2017, 8, 3759–3765. [Google Scholar]
- Gemmel, A.R.; Greig-Smith, P.; Gimingham, C.H. A note on the behaviour of Ammophila arenaria (L.) Link. in relation to sand dune formation. In Proceedings of the Botanical Society of Edinburgh; Botanical Society of Edinburgh: Edinburgh, Scotland, 1953; Volume 36, pp. 132–136. [Google Scholar]
- Greig-Smith, P.; Gemmel, A.R.; Giminhamm, C.H. Tussock formation in Ammophila arenaria (L.) Link. New Phytol. 1953, 46, 262–268. [Google Scholar] [CrossRef]
- Bonte, D.F.; Batsleer, S.; Provoost, V.; Reijers, M.L.; Vandegehuchte, R.; Van De Walle, S.; Dan, H.; Matheve, P.; Rauwoens, G.; Strypsteen, T.; et al. Biomorphogenic feedbacks and the spatial organization of a dominant grass steer dune development. Ecol. Evol. 2021, 670. [Google Scholar] [CrossRef]
- Marshall, J.K. Corynephorus canescens (L.) P. Beauv. as a model for the Ammophila problem. J. Ecol. 1965, 53, 447–463. [Google Scholar] [CrossRef]
- Maun, M.A.; Baye, P.R. The ecology of Ammophila breviligulata Fern. on coastal dune systems. CRC Crit. Rev. Aquat. Sci. 1989, 1, 661–681. [Google Scholar]
- Wallén, B. Changes in structure and function of Ammophila during primary succession. Oikos 1980, 34, 227–238. [Google Scholar] [CrossRef]
- Fay, P.J.; Jeffrey, D.W. The foreshore as a nitrogen source for marram grass. In Coastal Dunes: Geomorphology, Ecology, and Management for Conservation; Carter, R.W.G., Curtis, T.G., Sheehy-Skeffington, M.J., Eds.; Balkema: Rotterdam, The Netherlands, 1992; pp. 177–188. [Google Scholar]
- Eppinga, M.B.; Rietkerk, M.; Dekker, S.C.; De Ruiter, P.C.; Van der Putten, W.H. Accumulation of local pathogens: A new hypothesis to explain exotic plant invasions. Oikos 2006, 114, 168–176. [Google Scholar] [CrossRef] [Green Version]
- Brinkman, E.P.; Duyts, H.; van der Putten, W.H. Competition between endoparasitic nematodes and effect on biomass of Ammophila arenaria (marram grass) as affected by timing of inoculation and plant age. J. Nematol. 2005, 7, 169–178. [Google Scholar]
- De Rooij-van der Goes, P.C.E.M.; Van Dijk, C.; Van der Putten, W.H.; Jungerius, P.D. Effects of sand movement by wind on nematodes and soil-borne fungi in coastal foredunes. J. Coast. Conserv. 1997, 3, 133–142. [Google Scholar] [CrossRef]
- Van der Putten, W.H.; Yeates, G.W.; Duyts, H.; Reis, C.S.; Karssen, G. Invasive plants and their escape from root herbivory: A worldwide comparison of the root-feeding nematode communities of the dune grass Ammophila arenaria in natural and introduced ranges. Biol. Invas. 2005, 7, 733–746. [Google Scholar] [CrossRef] [Green Version]
- Giovannetti, M. Seasonal variations of vesicular-arbuscular mycorrhizas and endogonaceous spores in a maritime sand dune. Trans. Br. Mycol. Soc. 1985, 84, 679–684. [Google Scholar] [CrossRef]
- Allen, M.F. The Ecology of Mycorrhizae; Cambridge University Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Miller, R.M. Mycorrhizae. Restor. Manag. Notes 1985, 3, 14–20. [Google Scholar] [CrossRef]
- Little, L.R.; Maun, M.A. The Ammophila Problem revisited: A role for mycorrhizal fungi. J. Ecol. 1996, 84, 1–7. [Google Scholar] [CrossRef]
- Kowalchuk, G.A.; De Souza, F.A.; Van Veen, J.A. Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Mol. Ecol. 2002, 11, 571–581. [Google Scholar] [CrossRef]
- De La Peña, E.; Echeverría, S.R.; Van Der Putten, W.H.; Freitas, H.; Moens, M. Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytol. 2006, 169, 829–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koske, R.E.; Polson, W.R. Are VA mycorrhizae required for sand dune stabilization? Bioscience 1984, 420–424. [Google Scholar] [CrossRef]
- Dalton, D.A.; Kramer, S.; Azios, N.; Fusaro, S.; Cahill, E.; Kennedy, C. Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiol. Ecol. 2004, 49, 469–479. [Google Scholar] [CrossRef]
- Wahab, A.A. Nitrogen fixation by Bacillus strains isolated from the rhizosphere of Ammophila arenaria. Plant Soil 1975, 42, 703–708. [Google Scholar] [CrossRef]
- Van der Putten, W.H.; Van Dijk, C.; Troelstra, S.R. Biotic soil factors affecting the growth and development of Ammophila arenaria. Oecologia 1988, 76, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Webley, D.M.; Eastwood, D.J.; Gimingham, C.H. Development of a soil microflora in relation to plant succession on -sand-dunes, including the rhizosphere flora associated with colonizing species. J. Ecol. 1952, 40, 168–178. [Google Scholar] [CrossRef]
- Baye, P.R. Comparative Growth Responses and Population Ecology of European and American Beachgrasses (Ammophila spp.) in Relation to Sand Accretion and Salinity. Ph.D. Thesis, University of Western Ontario, London, ON, Canada, 1990. [Google Scholar]
- Aptekar, R.; Rejmánek, M. The effect of seawater submergence on rhizome bud viability of introduced and native dune grasses (Ammophila arenaria and Leymus mollis) in California. J. Coast. Conserv. 2000, 6, 107–111. [Google Scholar]
- Laing, C.C. Studies in the ecology of Ammophila breviligulata. I. Seedling survival and its relation to population increase and dispersal. Bot. Gaz. 1958, 119, 208–216. [Google Scholar] [CrossRef]
- Huiskes, A.H.L. The natural establishment of Ammophila arenaria from seed. Oikos 1977, 29, 133–136. [Google Scholar] [CrossRef]
- Hilton, M.; Konlechner, T.; McLachlan, K.; Lim, D.; Lord, J. Long-lived seed banks of Ammophila arenaria prolong dune restoration programs. J. Coast. Conserv. 2019, 23, 461–471. [Google Scholar] [CrossRef]
- Buell, A.C.; Pickart, A.J.; Stuart, J.D. Introduction history and invasion patterns of Ammophila arenaria on the north coast of California. Conserv. Biol. 1995, 9, 1587–1593. [Google Scholar] [CrossRef]
- Seabloom, E.W.; Wiedemann, A.M. Distribution and effects of Ammophila breviligulata Fern. (American beachgrass) on the foredunes of the Washington coast. J. Coast. Res. 1994, 10, 178–188. [Google Scholar]
- Hitchcock, C.L.; Cronquist, A. Flora of the Pacific Northwest: An Illustrated Manual; University of Washington Press: Seattle, WA, USA, 2018. [Google Scholar]
- Darke, I.B.; Eamer, J.B.; Beaugrand, H.E.; Walker, I.J. Monitoring considerations for a dynamic dune restoration project: Pacific Rim National Park Reserve, British Columbia, Canada. Earth Surf Process Landf 2013, 38, 983–993. [Google Scholar] [CrossRef]
- Hacker, S.D.; Zarnetske, P.; Seabloom, E.; Ruggiero, P.; Mull, J.; Gerrity, S.; Jones, C. Subtle differences in two non-native congeneric beach grasses significantly affect their colonization, spread, and impact. Oikos 2012, 121, 138–148. [Google Scholar] [CrossRef]
- David, A.S.; Zarnetske, P.L.; Hacker, S.D.; Ruggiero, P.; Biel, R.G.; Seabloom, E.W. Invasive congeners differ in successional impacts across space and time. PLoS ONE 2015, 10, e0117283. [Google Scholar] [CrossRef] [PubMed]
- Biel, R.G.; Hacker, S.D.; Ruggiero, P.; Cohn, N.; Seabloom, E.W. Coastal protection and conservation on sandy beaches and dunes: Context-dependent tradeoffs in ecosystem service supply. Ecosphere 2017, 8, 1–19. [Google Scholar] [CrossRef]
- Seabloom, E.W.; Ruggiero, P.; Hacker, S.D.; Mull, J.; Zarnetske, P. Invasive grasses, climate change, and exposure to storm-wave overtopping in coastal dune ecosystems. Glob. Chang. Biol. 2013, 19, 824–832. [Google Scholar] [CrossRef] [PubMed]
- Calflora. Available online: https://www.calflora.org/ (accessed on 15 September 2021).
- Zarnetske, P.L.; Hacker, S.D.; Seabloom, E.W.; Ruggiero, P.; Killian, J.R.; Maddux, T.B.; Cox, D. Biophysical feedback mediates effects of invasive grasses on coastal dune shape. Ecology 2012, 93, 1439–1450. [Google Scholar] [CrossRef] [PubMed]
- Jepson eFlora. Available online: https://ucjeps.berkeley.edu/eflora/eflora_display.php?tid=13042 (accessed on 15 September 2021).
- Maun, M.A.; Lapierre, J. The effects of burial by sand on Ammophila breviligulata. J. Ecol. 1984, 72, 827–839. [Google Scholar] [CrossRef]
- Disraeli, D.J. The effect of sand deposits on the growth and morphology of Ammophila breviligulata. J. Ecol. 1984, 145–154. [Google Scholar] [CrossRef]
- Seliskar, D.M. The effect of accelerated sand accretion on growth, carbohydrate reserves, and ethylene production in Ammophila breviligulata (Poaceae). Am. J. Bot. 1994, 81, 536–541. [Google Scholar] [CrossRef]
- Brown, J.K.; Zinnert, J.C. Mechanisms of surviving burial: Dune grass interspecific differences drive resource allocation after sand deposition. Ecosphere 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Gratani, L. A critical approach to the problem of the vigour of Ammophila littoralis (Beauv.) Rothm. Ecol. Mediterr. 1987, 13, 53–60. [Google Scholar] [CrossRef]
- Eldred, R.A.; Maun, M.A. A multivariate approach to the problem of decline in vigour of Ammophila. Can. J. Bot. 1982, 60, 1371–1380. [Google Scholar] [CrossRef]
- Mostow, R.S.; Barreto, F.; Biel, R.; Meyer, E.; Hacker, S.D. Discovery of a dune-building hybrid beachgrass (Ammophila arenaria× A. breviligulata) in the US Pacific Northwest. Ecosphere 2021, 12, e03501. [Google Scholar] [CrossRef]
- Wiedemann, A.M.; Pickart, A. The Ammophila problem on the Northwest coast of North America. Landsc. Urban. Plan. 1996, 34, 287–299. [Google Scholar] [CrossRef]
- Rejmánek, M. Species richness and resistance to invasions. In Biodiversity and Ecosystem Processes in Tropical Forests; Springer: Berlin/Heidelberg, Germany, 1996; pp. 153–172. [Google Scholar]
- Baker, H.G. Patterns of plant invasion in North America. In Ecology of Biological Invasions of North America and Hawaii; Springer: New York, NY, USA, 1986; pp. 44–57. [Google Scholar]
- Bazzaz, F.A. Life history of colonizing plants: Some demographic, genetic, and physiological features. In Ecology of Biological Invasions of North America and Hawaii; Springer: New York, NY, USA, 1986; pp. 96–110. [Google Scholar]
- Rejmánek, M.; Richardson, D.M.; Pyšek, P. Plant invasions and invasibility of plant communities. Veg. Ecol. 2005, 20, 332–355. [Google Scholar]
- Xu, K.; Ye, W.; Cao, H.; Deng, X.; Yang, Q.; Zhang, Y. The role of diversity and functional traits of species in community invasibility. Bot. Bull. Acad. Sin. 2004, 45, 149–157. [Google Scholar]
- Pickart, A.J.; Hesp, P.A. Spatio-temporal geomorphological and ecological evolution of a transgressive dunefield system, Northern California, USA. Glob. Planet. Chang. 2019, 172, 88–103. [Google Scholar] [CrossRef]
- Cavieres, L.A. The role of plant–plant facilitation in nonnative plant invasions. In Plant Invasions: The Role of Biotic Interactions; Traveset, A., Richardson, D., Eds.; CABI: Oxfordshire, UK, 2020; pp. 138–152. [Google Scholar]
- Bertness, M.D.; Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 1994, 9, 191–193. [Google Scholar] [CrossRef]
- Callaway, R.M.; Walker, L.R. Competition and facilitation: A synthetic approach to interactions in plant communities. Ecology 1997, 78, 1958–1965. [Google Scholar] [CrossRef]
- Van der Putten, W.H.; Peters, B.A. How soil-borne pathogens may affect plant competition. Ecology 1997, 78, 1785–1795. [Google Scholar] [CrossRef]
- Van der Putten, W.H.; Bardgett, R.D.; Bever, J.D.; Bezemer, T.M.; Casper, B.B.; Fukami, T.; Kardol, P.; Klironomos, J.N.; Kulmatiski, A.; Schweitzer, J.A.; et al. Plant–soil feedbacks: The past, the present and future challenges. J. Ecol. 2013, 101, 265–276. [Google Scholar] [CrossRef]
- Maron, J.L.; Vilà, M. When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 2001, 95, 361–373. [Google Scholar] [CrossRef] [Green Version]
- Beckstead, J.; Parker, I.M. Invasiveness of Ammophila arenaria: Release from soil-borne pathogens? Ecology 2003, 84, 2824–2831. [Google Scholar] [CrossRef]
- Prior, K.M.; Powell, T.H.; Joseph, A.L.; Hellmann, J.J. Insights from community ecology into the role of enemy release in causing invasion success: The importance of native enemy effects. Biol. Invas. 2015, 17, 1283–1297. [Google Scholar] [CrossRef]
- Van der Stoel, C.D.; Van der Putten, W.H.; Duyts, H. Development of a negative plant–soil feedback in the expansion zone of the clonal grass Ammophila arenaria following root formation and nematode colonization. J. Ecol. 2002, 90, 978–988. [Google Scholar] [CrossRef]
- Cushman, J.H.; Lortie, C.J.; Christian, C.E. Native herbivores and plant facilitation mediate the performance and distribution of an invasive exotic grass. J. Ecol. 2011, 99, 524–531. [Google Scholar] [CrossRef]
- Van der Putten, W.H.; Breteler, J.V.D.W.K.; Van Dijk, C. Colonization of the root zone of Ammophila arenaria by harmful soil organisms. Plant Soil. 1989, 120, 213–223. [Google Scholar] [CrossRef]
- Emery, S.M.; Reid, M.L.; Hacker, S.D. Soil nematodes differ in association with native and non-native dune-building grass species. Appl. Soil. Ecol. 2020, 145, 103306. [Google Scholar] [CrossRef]
- Turnbull, L.A.; Levine, J.M.; Fergus, A.J.; Petermann, J.S. Species diversity reduces invasion success in pathogen-regulated communities. Oikos 2010, 119, 1040–1046. [Google Scholar] [CrossRef] [Green Version]
- Mangla, S.; Inderjit; Callaway, R.M. Exotic invasive plant accumulates native soil pathogens which inhibit native plants. J. Ecol. 2008, 96, 58–67. [Google Scholar] [CrossRef]
- Colautti, R.I.; Ricciardi, A.; Grigorovich, I.A.; MacIsaac, H.J. Is invasion success explained by the enemy release hypothesis? Ecol. Lett. 2004, 7, 721–733. [Google Scholar] [CrossRef]
- Torchin, M.E.; Mitchell, C.E. Parasites, pathogens, and invasions by plants and animals. Front. Ecol. Environ. 2004, 2, 183–190. [Google Scholar] [CrossRef]
- Zarnetske, P.L.; Gouhier, T.C.; Hacker, S.D.; Seabloom, E.W.; Bokil, V.A. Indirect effects and facilitation among native and non-native species promote invasion success along an environmental stress gradient. J. Ecol. 2013, 101, 905–915. [Google Scholar] [CrossRef]
- Olson, G.T. A Multivariate Statistical Analysis of the Encroachment of the Introduced Species European Beachgrass (Ammophila arenaria) on the Native Habitat (Northern California Foredune Grassland). M.S. Thesis, Humboldt State University, Arcata, CA, USA, 1994. [Google Scholar]
- Dangremond, E.M.; Pardini, E.A.; Knight, T.M. Apparent competition with an invasive plant hastens the extinction of an endangered lupine. Ecology 2010, 91, 2261–2271. [Google Scholar] [CrossRef] [PubMed]
- Pardini, E.A.; Parsons, L.S.; Ştefan, V.; Knight, T.M. GLMM BACI environmental impact analysis shows coastal dune restoration reduces seed predation on an endangered plant. Rest. Ecol. 2018, 26, 1190–1194. [Google Scholar] [CrossRef]
- Barbour, M.G.; de Jong, T.M.; Johnson, A.F. Synecology of beach vegetation along the Pacific Coast of the United States of America: A first approximation. J. Biogeogr. 1976, 3, 55–69. [Google Scholar] [CrossRef]
- Hilton, M.; Duncan, M.; Jul, A. Processes of Ammophila arenaria (marram grass) invasion and indigenous species displacement, Stewart Island, New Zealand. J. Coast. Res. 2005, 21, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Pavlik, B.M. Nutrient and productivity relations of the dune grasses Ammophila arenaria and Elymus mollis. Oecologia 1983, 57, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Pavlik, B.M. Nutrient and productivity relations of the dune grasses Ammophila arenaria and Elymus mollis. II. Growth and patterns of dry matter and nitrogen allocation as influenced by nitrogen supply. Oecologia 1983, 57, 233–238. [Google Scholar] [CrossRef]
- Pavlik, B.M. Nutrient and productivity relations of the dune grasses Ammophila arenaria and Elymus mollis. III. Spatial aspects of clonal expansion with reference to rhizome growth and the dispersal of buds. Bull. Torrey Bot. Club 1983, 110, 271–279. [Google Scholar] [CrossRef]
- Pavlik, B.M. Water relations of the dune grasses Ammophila arenaria and Elymus mollis on the coast of Oregon, USA. Oikos 1985, 110, 197–205. [Google Scholar] [CrossRef]
- Pavlik, B.M. Nutrient and Productivity Relations of the Beach Grasses, Ammophila arenaria and Elymus mollis at Point Reyes, California. Ph.D. Thesis, University of California, Davis, CA, USA, 1982. [Google Scholar]
- Pickart, A.J. Dune restoration over two decades at the Lanphere and Ma-le’l Dunes in northern California. In Restoration of Coastal Dunes; Springer: Berlin/Heidelberg, Germany, 2013; pp. 159–171. [Google Scholar]
- Julian, L.S. A Comparison of Bee Fauna in Two Northern California Coastal Dune Systems. Master’s Thesis, Humboldt State University, Arcata, CA, USA, 2012. [Google Scholar]
- Doudna, J.W.; Connor, E.F. Response of terrestrial arthropod assemblages to coastal dune restoration. Ecol. Rest. 2012, 30, 20–26. [Google Scholar] [CrossRef]
- Slobodchikoff, C.N.; Doyen, J.T. Effects of Ammophila arenaria on sand dune arthropod communities. Ecology 1977, 58, 1171–1175. [Google Scholar] [CrossRef]
- Pitts, W.D.; Barbour, M.G. The microdistribution and feeding preferences of Peromyscus maniculatus in the strand at Point Reyes National Seashore, California. Am. Midl. Nat. 1979, 101, 38–48. [Google Scholar] [CrossRef]
- Johnson, M.D.; De León, Y.L. Effect of an invasive plant and moonlight on rodent foraging behavior in a coastal dune ecosystem. PLoS ONE 2015, 10, e0117903. [Google Scholar] [CrossRef]
- De la Flor, Y.A.D.; Johnson, M.D. Influence of invasive European Beachgrass on mesopredator activity in the coastal dunes of Northern California. West. Wildl. 2015, 2, 29–34. [Google Scholar]
- Meisman, E.; Bortot, C.; Enrirquez, L.; Herr, C.; Ihle, S.; Jensen, S.; Wendt, C. Coastal vegetation communities affect mesocarnivore activity in northern California dune ecosystems. West Wildl 2018, 5, 1–6. [Google Scholar]
- Hesp, P.A.; Hernández-Calvento, L.; Gallego-Fernández, J.B.; Miot da Silva, G.; Hernández-Cordero, A.I.; Ruz, M.H.; Romero, L.G. Nebkha or not?-Climate control on foredune mode. J. Arid Environ. 2021, 187, 10444. [Google Scholar] [CrossRef]
- Wiedemann, A.M. Coastal foredune development, Oregon, USA. In Proceedings of the Palm Beach International Coastal Symposium, Palm Beach, FL, USA, 19–23 May 1998; pp. 45–51. [Google Scholar]
- Zarnetske, P.L.; Seabloom, E.W.; Hacker, S.D. Non-target effects of invasive species management: Beachgrass, birds, and bulldozers in coastal dunes. Ecosphere 2010, 1, 1–20. [Google Scholar] [CrossRef]
- Atwater, B.F.; Nelson, A.R.; Clague, J.J.; Carver, G.A.; Yamaguchi, D.K.; Bobrowsky, P.T.; Bourgeois, J.; Darienzo, M.E.; Grant, W.C.; Hemphill-Haley, E.; et al. Summary of coastal geologic evidence for past great earthquakes at the Cascadia subduction zone. Earthq. Spectra 1995, 11, 1–18. [Google Scholar] [CrossRef]
- Davidson, S.G.; Hesp, P.A.; Miot da Silva, G. Controls on dune scarping. Prog Phys Geogr Earth Environ 2020, 44, 923–947. [Google Scholar] [CrossRef]
- Rader, A.M.; Pickart, A.J.; Walker, I.J.; Hesp, P.A.; Bauer, B.O. Foredune morphodynamics and sediment budgets at seasonal to decadal scales: Humboldt Bay National Wildlife Refuge, California, USA. Geomorphology 2018, 318, 69–87. [Google Scholar] [CrossRef]
- McDonald, K.L. Differences in the morphology of restored and invaded foredunes on the North Spit of Humboldt Bay, California, USA. J. Coast. Res. 2020, 36, 973–980. [Google Scholar] [CrossRef]
- Ruggiero, P.; Hacker, S.; Seabloom, E.; Zarnetske, P. The Role of vegetation in determining dune morphology, exposure to sea-level rise, and storm-induced coastal hazards: A US Pacific Northwest perspective. In Barrier Dynamics and Response to Changing Climate; Moore, L.J., Murray, A.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 337–361. [Google Scholar]
- Nordstrom, K.F.; Gares, P.A. Changes in the volume of coastal dunes in New Jersey, USA. Ocean Shorel. Manag. 1990, 14, 1–10. [Google Scholar] [CrossRef]
- Nordstrom, K.F. Beach and Dune Restoration; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar]
- Nordstrom, K.F.; Jackson, N.L.; Kraus, N.C.; Kana, T.W.; Bearce, R.; Bocamazo, L.M.; Young, D.R.; de Butts, H.A. Enhancing geomorphic and biologic functions and values on backshores and dunes of developed shores: A review of opportunities and constraints. Environ. Conserv. 2011, 38, 288–302. [Google Scholar] [CrossRef]
- Mull, J.; Ruggiero, P. Estimating storm-induced dune erosion and overtopping along US West Coast beaches. J. Coast. Res. 2014, 30, 1173–1187. [Google Scholar] [CrossRef]
- Christiansen, M.B.; Davidson-Arnott, R. Rates of landward sand transport over the foredune at Skallingen, Denmark and the role of dune ramps. Geogr. Tidsskr.-Dan. J. Geogr. 2004, 104, 31–43. [Google Scholar] [CrossRef]
- Hesp, P.A. A 34 year record of foredune evolution, Dark Point, NSW, Australia. J. Coast. Res. 2013, 65, 1295–1300. [Google Scholar] [CrossRef]
- Davidson-Arnott, R.G.D.; Bauer, B.O. Controls on the geomorphic response of beach-dune systems to water level rise. J. Great Lakes Res. 2021, in press. [Google Scholar] [CrossRef]
- Hilgendorf, Z.; Marvin, M.C.; Turner, C.M.; Walker, I.J. Assessing geomorphic change in restored coastal dune ecosystems using a multi-platform aerial approach. Remote Sens. 2021, 13, 354. [Google Scholar] [CrossRef]
- Society for Ecological Restoration. Available online: https://www.ser-rrc.org/what-is-ecological-restoration/ (accessed on 12 September 2021).
- Martínez, M.L.; Hesp, P.A.; Gallego-Fernández, J.B. Coastal dune restoration: Trends and perspectives. In Restoration of Coastal Dunes; Springer: Berlin/Heidelberg, Germany, 2013; pp. 323–339. [Google Scholar]
- Baker, M. Socioeconomic Characteristics of the Natural Resources Restoration System in Humboldt County, California; Forest Community Research: Taylorsville, CA, USA, 2004. [Google Scholar]
- Colwell, M.A.; Millett, C.B.; Meyer, J.J.; Hall, J.N.; Hurley, S.J.; McAllister, S.E.; Transou, A.N.; LeValley, R.R. Snowy Plover reproductive success in beach and river habitats. J. Field Ornithol. 2005, 76, 373–382. [Google Scholar] [CrossRef]
- Leja, S.D. Habitat selection and response to restoration by breeding Western Snowy Plovers in coastal northern California. Master’s Thesis, Humboldt State University, Arcata, CA, USA, 2014. [Google Scholar]
- Todd, L.; Elbert, D. Western Snowy Plover in Oregon: Community creates recovery. Northwest Sci. 2014, 88, 58–60. [Google Scholar] [CrossRef]
- Carroll, L.J. Evaluating Coastal Protection Services Associated with Restoration Management of an Endangered Shorebird in Oregon, USA. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 2016. [Google Scholar]
- Parsons, L.S.; Becker, B.H. Invasion by Ammophila arenaria alters soil chemistry, leaving lasting legacy effects on restored coastal dunes in California. Invas. Plant Sci. Manag. 2021, 14, 75–91. [Google Scholar] [CrossRef]
- Pardini, E.A.; Vickstrom, K.E.; Knight, T.M. Early successional microhabitats allow the persistence of endangered plants in coastal sand dunes. PLoS ONE 2015, 10, e0119567. [Google Scholar] [CrossRef]
- Mills, A.J. Evaluating the Effects of Mechanical and Manual Removal of Ammophila arenaria within Coastal Dunes of Humboldt County. Ph.D. Thesis, Humboldt State University, Arcata, CA, USA, 2015. [Google Scholar]
- Darke, I.B.; Walker, I.J.; Hesp, P.A. Beach–dune sediment budgets and dune morphodynamics following coastal dune restoration, Wickaninnish Dunes, Canada. Earth Surf. Process. Landf. 2016, 41, 1370–1385. [Google Scholar] [CrossRef]
- Crossman, M.R.S. Effects of Manual and Mechanical Ammophila arenaria Removal Techniques on Coastal Dune Plant Communities and Dune Morphology. Master’s Thesis, Department of Natural Resources, Humboldt State University, Arcata, CA, USA, 2018. [Google Scholar]
- Hesp, P. Foredunes and blowouts: Initiation, geomorphology and dynamics. Geomorphology 2002, 48, 245–268. [Google Scholar] [CrossRef]
- Hyland, T.; Holloran, P. Controlling European beachgrass (Ammophila arenaria) using prescribed burns and herbicide. Chico CA Cal-IPC (Calif. Invas. Plant Counc.) 2005. Available online: https://www.cal-ipc.org/wp-content/uploads/2017/12/Hyland-Controlling-European-Beach.pdf (accessed on 26 November 2021).
- Parsons, L.S.; Sayre, J.; Ender, C.; Rodrigues, J.L.; Barberán, A. Soil microbial communities in restored and unrestored coastal dune ecosystems in California. Restor. Ecol. 2020, 28, S311–S321. [Google Scholar] [CrossRef] [Green Version]
- Ruessink, B.G.; Arens, S.M.; Kuipers, M.; Donker, J.J.A. Coastal dune dynamics in response to excavated foredune notches. Aeolian Res. 2018, 31, 3–17. [Google Scholar] [CrossRef]
- Arens, S.M.; Slings, Q.L.; Geelen, L.H.W.T.; Van der Hagen, H.G.J.M. Restoration of Dune Mobility in The Netherlands. In Restoration of Coastal Dunes; Martínez, M., Gallego-Fernández, J., Hesp, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Delgado-Fernandez, I.; Davidson-Arnott, R.G.; Hesp, P.A. Is ‘re-mobilisation’ nature restoration or nature destruction? A commentary. J. Coast. Conserv. 2019, 23, 1093–1103. [Google Scholar] [CrossRef] [Green Version]
- Walter, H. Bad Weed. North Coast J. 2011, 22. Available online: https://www.northcoastjournal.com/humboldt/bad-weed/Content?oid=2132017 (accessed on 26 November 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pickart, A.J. Ammophila Invasion Ecology and Dune Restoration on the West Coast of North America. Diversity 2021, 13, 629. https://doi.org/10.3390/d13120629
Pickart AJ. Ammophila Invasion Ecology and Dune Restoration on the West Coast of North America. Diversity. 2021; 13(12):629. https://doi.org/10.3390/d13120629
Chicago/Turabian StylePickart, Andrea J. 2021. "Ammophila Invasion Ecology and Dune Restoration on the West Coast of North America" Diversity 13, no. 12: 629. https://doi.org/10.3390/d13120629
APA StylePickart, A. J. (2021). Ammophila Invasion Ecology and Dune Restoration on the West Coast of North America. Diversity, 13(12), 629. https://doi.org/10.3390/d13120629