Taxonomic Implication of Integrated Chemical, Morphological, and Anatomical Attributes of Leaves of Eight Apocynaceae Taxa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials Collection, Preparation, and Identification
2.2. Leaf Morphology
2.3. Scanning Electron Microscope (SEM)
2.4. Leaf Blade Anatomy
2.5. Chemical Analysis of the Plant Materials
2.6. Statistical Analysis
3. Results and Discussion
3.1. Macro-Morphological Attributes
3.2. Micro-Morphological Investigation
3.2.1. Epidermal Cells
3.2.2. Stomata
3.2.3. Trichomes
3.3. Leaf Blade Anatomy
3.3.1. Epidermal Layers
3.3.2. Mesophyll Tissue and Midrib Zone
3.3.3. Vascular Bundles
3.4. Chemical Attributes
3.5. Correlation Analysis of the Studied Apocynaceae Species
3.5.1. Principal Component Analysis (PCA) Based on the Chemical Composition
3.5.2. Cluster Analysis of the Eight Species
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, R. On the Asclepiadeae. Preprinted from 1811, Mem. Wernerian Nat. Hist. Soc. 1810, 1, 12–78. [Google Scholar]
- Endress, M.E.; Bruyns, P.V. A revised classification of the Apocynaceae s.l. Bot. Rev. 2000, 66, 1–56. [Google Scholar] [CrossRef] [Green Version]
- Endress, M.E.; Liede-Schumann, S.; Meve, U. An updated classification for Apocynaceae. Phytotaxa 2014, 159, 175–194. [Google Scholar] [CrossRef]
- Judd, W.S.; Sanders, R.W.; Donoghue, M. Angiosperm family pairs: Preliminary phylogenetic analyses. Harv. Pap. Bot. 1994, 5, 1–51. [Google Scholar]
- Struwe, L.; Albert, V.A.; Bremer, B. Cladistics and family level classification of the Gentianales. Cladistics 1994, 10, 175–206. [Google Scholar] [CrossRef]
- Civeyrel, L.; Le Thomas, A.; Ferguson, K.; Chase, M.W. Critical Reexamination of palynological characters used to delimit Asclepiadaceae in comparison to the molecular phylogeny obtained from plastidmatk sequences. Mol. Phylogenet. Evol. 1998, 9, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Potgieter, K.; Albert, V.A. Phylogenetic relationships within Apocynaceae sl based on trnL intron and trnL-F spacer sequences and propagule characters. Ann. Missouri Bot. Gard. 2001, 88, 523–549. [Google Scholar] [CrossRef]
- Boulos, L. Flora of Egypt (Vol. 2); Al Hadara Publishing: Cairo, Egypt, 2000. [Google Scholar]
- Tackholm, V. Students’ Flora of Egypt, 2nd ed.; Cairo University Press.: Cairo, Egypt, 1974. [Google Scholar]
- El-fiki, M.A.; El-Taher, A.M.; EL-Gendy, A.G.; Lila, M.I. Morphological and anatomical studies on some taxa of family Apocynaceae. Al-Azhar J. Agric. Res. 2019, 44, 136–147. [Google Scholar]
- El-fiki, M.A.; Hamz, M.K. Normal and abnormal stomatal features in some magnoliophyta. Ann. Agric. Sci. Aim Shams Univ. 1984, 29, 581–593. [Google Scholar]
- Gabr, D.G.; Khafagi, A.A.F.; Mohamed, A.H.; Mohamed, F.S. The significance of leaf morphological characters in the identification of some species of Apocynaceae and Asclepiadaceae. J. Am. Sci. 2015, 11, 61–70. [Google Scholar]
- Khan, D. Some morphological observations on leaves of Carissa macrocarpa (eckl.) A. DC.(family Apocynaceae). Int. J. Biol. Biotechnol. 2019, 16, 1027–1045. [Google Scholar]
- Aguoru, C.; Abah, O.; Olasan, J. Systematic descriptions and taxonomic studies on three species of Plumeria in North Central Nigeria. Int. J. Innov. Sci. Res. 2015, 17, 403–411. [Google Scholar]
- Abdalla, M.M.; Eltahir, A.S.; El-Kamali, H.H. Comparative morph-anatomical leaf characters of Nerium oleander and Catharanthus roseus family (Apocynaceae). Eur. J. Basic Appl. Sci. 2016, 3, 68–73. [Google Scholar]
- Kapoor, S.; Mitra, R. Epidermal and venation studies in Apocynaceae-VI. Nelumbo 1979, 21, 68–80. [Google Scholar]
- Al-Massarani, S. Pharmacognostical and Biological Study of Caralluma Sinaica Growing in Saudi Arabia; King Saud University, Faculty of Pharmacy: Riyadh, Saudi Arabia, 2011. [Google Scholar]
- Camargo, M.A.B.; Marenco, R.A. Density, size and distribution of stomata in 35 rainforest tree species in Central Amazonia. Acta Amazon. 2011, 41, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Inamdar, J.; Patel, R.; Mohan, J. Structure and ontogeny of stomata in vegetative and floral organs of some Apocynaceae. Feddes Repert. 1991, 102, 409–423. [Google Scholar] [CrossRef]
- Duarte, M.d.R.; Larrosa, C.R.R. Morpho-anatomical characters of the leaf and stem of Mandevilla coccinea (Hook. et Arn.) Woodson, Apocynaceae. Braz. J. Pharm. Sci. 2011, 47, 137–144. [Google Scholar]
- Broyles, S.B.; Wyatt, R. Allozyme diversity and genetic structure in southern Appalachian populations of poke milkweed. Asclepias exaltata. Syst. Bot. 1993, 18, 18–30. [Google Scholar] [CrossRef]
- Edwards, A.L.; Wyatt, R. Population genetics of the rare Asclepias texana and its widespread sister species, A. Perennis. Syst. Bot. 1994, 19, 291–307. [Google Scholar] [CrossRef]
- Tada, F.; Yamashiro, T.; Maki, M. Development of microsatellite markers for the endangered grassland perennial herb Vincetoxicum atratum (Apocynaceae–Asclepiadoideae). Conserv. Genet. 2009, 10, 1057–1059. [Google Scholar] [CrossRef]
- Kabat, S.M.; Dick, C.W.; Hunter, M.D. Isolation and characterization of microsatellite loci in the common milkweed, Asclepias syriaca (Apocynaceae). Am. J. Bot. 2010, 97, e37–e38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakahama, N.; Kaneko, S.; Hayano, A.; Isagi, Y.; Inoue-Murayama, M.; Tominaga, T. Development of microsatellite markers for the endangered grassland species Vincetoxicum pycnostelma (Apocynaceae) by using next-generation sequencing technology. Conserv. Genet. Resour. 2012, 4, 669–671. [Google Scholar] [CrossRef]
- Yamashiro, T.; Yamashiro, A.; Inoue, M.; Maki, M. Genetic diversity and divergence in populations of the threatened grassland perennial Vincetoxicum atratum (Apocynaceae-Asclepiadoideae) in Japan. J. Hered. 2016, 107, 455–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, P.; Hegde, G.; Hegde, G.R. Ethnomedicinal practices in different communities of Uttara Kannada district of Karnataka for treatment of wounds. J. Ethnopharmacol. 2012, 143, 501–514. [Google Scholar] [CrossRef]
- Singh, A.; Uppal, G.K. Review on Carissa carandas-phytochemistry, ethno-pharmacology, and micropropagation as conservation strategy. Asian J. Pharm. Clin. Res. 2015, 8, 26–30. [Google Scholar]
- Bhadane, B.S.; Patil, M.P.; Maheshwari, V.L.; Patil, R.H. Ethnopharmacology, phytochemistry, and biotechnological advances of family Apocynaceae: A review. Phytother. Res. 2018, 32, 1181–1210. [Google Scholar] [CrossRef]
- El-Gazzar, A.E.; Hamza, M. The subdivision of Asclepiadaceae. Phytologia 1980, 45, 1–16. [Google Scholar] [CrossRef]
- Trivedi, B.; Upadhyay, N. Morphological studies in Apocynaceae: Epidermal structures. Geophytology 1977, 7, 29–37. [Google Scholar]
- Amulya, L.; Hemanth Kumar, N.; Jagannath, S. Air pollution impact on micromorphological and biochemical response of Tabernaemontana divaricata L. (Gentianales: Apocynaceae) and Hamelia patens Jacq. (Gentianales: Rubiaceae). Braz. J. Biol. Sci. 2015, 2, 287–294. [Google Scholar]
- Poornima, N.; Umarajan, K.; Babu, K. Studies on anatomical and phytochemical analysis of Oxystelma esculentum (Lf) R. br. Ex Schltes. Bot. Res. Int. 2009, 2, 239–243. [Google Scholar]
- Kakkar, A.; Verma, D.; Suryavanshi, S.; Dubey, P. Characterization of chemical constituents of Calotropis procera. Chem. Nat. Compd. 2012, 48, 155–157. [Google Scholar] [CrossRef]
- Souza, W. Técnicas Básicas de Microscopia Eletrônica Aplicadas às Ciências Biológicas; Sociedade Brasileira de Microscopia Eletrônica: Rio de Janeiro, Brazil, 1998. [Google Scholar]
- Nassar, M.A.; El-Sahhar, K.F. Botanical Preparations and Microscopy (Microtechnique), In Arabic; Academic Bookshop: Giza, Egypt, 1998. [Google Scholar]
- Farag, M.A.; Ammar, N.M.; El Gendy, A.N.; Mohsen, E. Effect of grilling as processing method on Zea mays (corn) metabolites composition as analyzed via SPME GC-MS and chemometrics. J. Food Process. Pres. 2019, 43, e14165. [Google Scholar] [CrossRef]
- Farag, M.A.; Mohsen, E.; Abd El Nasser, G. Sensory metabolites profiling in Myristica fragrans (Nutmeg) organs and in response to roasting as analyzed via chemometric tools. LWT 2018, 97, 684–692. [Google Scholar] [CrossRef]
- Legendre, P.; Legendre, L. Numerical Ecology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Bashir, K.; Sohail, A.; Ali, U.; Ullah, A.; Ul Haq, Z.; Gul, B.; Ullah, I.; Asghar, M. Foliar micromorphology and its role in identification of the Apocynaceae taxa. Microsc. Res. Techniq. 2020, 83, 755–766. [Google Scholar] [CrossRef] [PubMed]
- Barkatullah, M.I.; Jelani, G.; Ahmad, I. Leaf, stem bark and fruit anatomy of zanthoxylum armatum dc. (Rutaceae). Paki. J. Bot. 2014, 46, 1343–1349. [Google Scholar]
- Salas, D.; Sinamban, E.; Buenavista, D. Comparative morpho-anatomical studies of Hoya incrassata and Hoya soligamiana (Apocynaceae) from Mount Hamiguitan, Philippines. Ruhuna J. Sci. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Nisa, S.U.; Shah, S.A.; Mumtaz, A.S.; Sultan, A. Stomatal novelties in Vincetoxicum arnottianum (Asclepiadeae: Asclepiadoideae: Apocynaceae). Flora 2019, 260, 151464. [Google Scholar] [CrossRef]
- Akyalçın, H.; Özen, F.; Dülger, B. Anatomy, morphology, palynology and antimicrobial activity of Amsonia orientalis Decne. (Apocynaceae) growing in Turkey. Int. J. Bot. 2006, 2, 93–99. [Google Scholar]
- Albert, S.; Padhiar, A.; Gandhi, D.; Nityanand, P. Morphological, anatomical and biochemical studies on the foliar galls of Alstonia scholaris (Apocynaceae). Braz. J. Bot. 2011, 34, 343–358. [Google Scholar] [CrossRef] [Green Version]
- Formiga, A.T.; Isaias, R.M. Responses of the host plant tissues to gall induction in Aspidosperma spruceanum Müell. Arg. (Apocynaceae). Am. J. Plant Sci. 2011, 2, 823–834. [Google Scholar] [CrossRef] [Green Version]
- El-Kashef, D.F.; Hamed, A.N.; Khalil, H.E.; Kamel, M.S. Botanical studies of the leaf of Pachypodium lamerei Drake, family Apocynaceae, cultivated in Egypt. J. Pharmacogn. Phytochem. 2015, 3, 40–45. [Google Scholar]
- Thomas, V.; Dave, Y. Structure and development of follicles of Nerium indicum Mill.(Apocynaceae). Feddes Repert. 1991, 102, 399–407. [Google Scholar] [CrossRef]
- Versiani, M.A.; Ahmed, S.K.; Ikram, A.; Ali, S.T.; Yasmeen, K.; Faizi, S. Chemical constituents and biological activities of Adenium obesum (Forsk.) Roem. et Schult. Chem. Biodivers. 2014, 11, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Vikas, G.; Payal, M. Phytochemical and pharmacological potential of Nerium oleander: A review. Int. J. Pharm. Sci. Res. 2010, 1, 21–27. [Google Scholar]
- Warashina, T.; Noro, T. Steroidal glycosides from the roots of Asclepias curassavica. Chem. Pharm. Bull. 2008, 56, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-Z.; Qing, C.; Chen, C.-X.; Hao, X.-J.; Liu, H.-Y. Cytotoxicity of cardenolides and cardenolide glycosides from Asclepias curassavica. Bioorg. Med. Chem. Lett. 2009, 19, 1956–1959. [Google Scholar] [CrossRef]
- Haribal, M.; Renwick, J.A.A. Oviposition stimulants for the monarch butterfly: Flavonol glycosides from Asclepias curassavica. Phytochemistry 1996, 41, 139–144. [Google Scholar] [CrossRef]
- Begum, S.; Adil, Q.; Siddiqui, B.S.; Siddiqui, S. Constituents of the leaves of Thevetia neriifolia. J. Nat. Prod. 1993, 56, 613–617. [Google Scholar] [CrossRef]
No. | Compound Name | Retention Time | A. besum | D. boliviensis | N. oleander | A. curassavica | C. procera | A. oblongifolia | C. carandas | T. neriifolia |
---|---|---|---|---|---|---|---|---|---|---|
1 | Propylene glycol | 3.14 | 2.07 | 2.55 | 0.38 | 0 | 1.29 | 0.22 | 0 | 0.16 |
2 | O,N Bis(3TMS) hydroxyethylamine | 3.67 | 0 | 0 | 0 | 0.81 | 0.8 | 0 | 0 | 0 |
3 | D-Lactic acid-2TMS | 4.09 | 3.71 | 3.31 | 0.44 | 0.84 | 3.2 | 0 | 0.57 | 0.56 |
4 | Alanine-2TMS | 4.83 | 1.27 | 0.37 | 0.17 | 0.96 | 1.12 | 0 | 0.31 | 0.25 |
5 | Hydracrylic acid-2TMS | 5.48 | 0 | 4.81 | 0.1 | 0 | 0 | 0 | 0.18 | 0.18 |
6 | Benzyl alcohol, TMS | 6.12 | 0.41 | 0 | 0 | 0 | 0.53 | 0 | 0 | 0 |
7 | N,O-2-TMS-Norvaline | 6.87 | 2.73 | 0.45 | 0.49 | 2.28 | 4 | 0.53 | 0 | 0.41 |
8 | Glycerol-3TMS ether | 7.93 | 7.96 | 0.73 | 1.22 | 5.06 | 9.59 | 1.65 | 1.23 | 2.87 |
9 | Isoleucine, 2TMS | 8.35 | 1.02 | 0 | 0 | 1.32 | 1.51 | 0 | 0 | 0 |
10 | Myristamide | 8.49 | 0.65 | 0 | 0 | 4.12 | 7.32 | 0 | 0 | 0.22 |
11 | γ-Aminobutyric acid-2TMS | 8.67 | 0 | 0 | 0 | 1.43 | 0 | 0 | 0 | 0 |
12 | 11-β-Hydroxyandrosterone | 8.84 | 0.52 | 0.88 | 0 | 0 | 0.52 | 0.17 | 0.42 | 0.51 |
13 | Glyceric acid, (3TMS) | 9.05 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.26 |
14 | Serine 3TMS | 9.6 | 1.19 | 0 | 0 | 0.67 | 0.56 | 0 | 0 | 0 |
15 | N,O,O-Tris(3TMS)-L-threonine | 10.03 | 0.86 | 0.43 | 0 | 0.36 | 0 | 0 | 0 | 0 |
16 | Homoserine (N,O,O-3TMS) | 11.25 | 0 | 0 | 0 | 0 | 0.44 | 0 | 0 | 0 |
17 | 3-Methyl-5-keto-3-hexenoic acid, bis(3TMS) | 11.46 | 0 | 0 | 0 | 0 | 0 | 0.54 | 0 | 0 |
18 | Malic acid-3TMS | 12 | 2.18 | 0.42 | 0 | 0.75 | 1.12 | 0.3 | 0 | 0.51 |
19 | L-Threitol, tetrakis(3TMS) ether | 12.12 | 0.69 | 0.52 | 0 | 0.52 | 1.3 | 0 | 0 | 0.2 |
20 | Pimelic acid (2TMS) | 12.53 | 0 | 0 | 0 | 0 | 0 | 0.19 | 0 | 0 |
21 | Pyroglutamic acid, bis(3TMS)- | 12.75 | 0 | 0 | 0 | 0.88 | 1.07 | 0 | 0 | 0.48 |
22 | Cystathionine, 2TMS | 13.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.19 |
23 | D-(+)-Ribono-1,4-lactone, tris(3TMS) ether | 13.47 | 0.57 | 0 | 0.21 | 0 | 0 | 0 | 0 | 0 |
24 | Asparagine, N,N,N′-tris(3TMS)-, 3TMS ester | 14.17 | 1.53 | 0 | 0 | 0.93 | 4.02 | 0 | 0 | 0 |
25 | Glutamic acid (3TMS) | 14.4 | 0 | 0 | 0 | 0.57 | 1.48 | 0 | 0 | 0 |
26 | Aasparagine-3TMS | 15.13 | 0 | 0 | 0 | 0.85 | 0 | 0 | 0 | 0.16 |
27 | D-Pinitol, pentakis(3TMS) ether | 15.37 | 0 | 0 | 0 | 0 | 0 | 0.32 | 28.87 | 0 |
28 | Cystathionine-2TMS | 15.44 | 0.67 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
29 | L-(−)-Arabitol, pentakis(3TMS) ether | 15.52 | 2.45 | 0.7 | 0 | 6.21 | 0.88 | 0 | 0.24 | 0.17 |
30 | Erythrose-3TMS | 15.82 | 3.97 | 0 | 0.69 | 0.98 | 1.41 | 0.22 | 0.5 | 0 |
31 | D-(−)-Fructopyranose, pentakis(3TMS) ether (isomer 2) | 16.95 | 3.67 | 7.15 | 8.02 | 5.21 | 2.81 | 12.11 | 1.3 | 4.72 |
32 | Glucofuranoside, methyl 2,3,5,6-tetrakis-O-(3TMS)-, α-D- | 17.51 | 0 | 0 | 0.38 | 0.51 | 0 | 0.54 | 1.17 | 1.11 |
33 | Quinic acid--5TMS | 17.64 | 14.5 | 17.86 | 1.2 | 0.36 | 0.99 | 8.85 | 15.1 | 16.19 |
34 | β-D-(+)-Mannopyranose, pentakis(3TMS) ether | 18.18 | 0.94 | 0 | 3.71 | 0.79 | 1.49 | 5.79 | 1.2 | 0 |
35 | 1,5-Anhydro-D-sorbitol, tetrakis(3TMS) ether | 18.23 | 0.93 | 2.11 | 0 | 0 | 0 | 0 | 0 | 20.04 |
36 | D-Mannitol, 1,2,3,4,5,6-hexakis-O-(3TMS)- | 18.53 | 1.43 | 0.79 | 0.12 | 0.43 | 0.72 | 0 | 0.19 | 0.94 |
37 | Xylopyranose, 3-O-methyl-1,2,4-tris-O-(3TMS)- | 18.69 | 1.81 | 1.01 | 8.36 | 0 | 0 | 2.54 | 1.01 | 0 |
38 | α-D-Glucopyranosiduronic acid, TMS | 18.90 | 0 | 0.66 | 0.41 | 0 | 0 | 0 | 0.21 | 4.51 |
39 | β-D-Glucopyranosiduronic acid | 19.13 | 0 | 0.65 | 0.52 | 1.95 | 0.44 | 0.19 | 0 | 1.2 |
40 | β-D-Glucopyranose, TMS | 19.49 | 0.62 | 4.85 | 5.63 | 4.69 | 1.06 | 9.63 | 0.55 | 3.62 |
41 | D-Pinitol, pentakis(3TMS) ether | 19.59 | 12.82 | 4.35 | 6.25 | 2.33 | 1.33 | 22.08 | 8.43 | 28.84 |
42 | β-D-Arabinopyranose, 1,2,3,4-tetrakis-O-(3TMS)- | 19.8 | 0 | 0 | 0.11 | 2.14 | 0 | 0 | 0 | 0.37 |
43 | Myoinositol-TMS | 20.81 | 4.56 | 1.86 | 0.69 | 3.74 | 4.72 | 0.99 | 0.19 | 0 |
44 | β-D-Arabinopyranose, 1,2,3,4-tetrakis-O-(3TMS) | 21.83 | 0 | 0.47 | 0 | 0.4 | 0.63 | 0 | 0 | 0 |
45 | Bis (3TMS) derivative of nonamide | 22.2 | 0 | 1.08 | 0 | 1.61 | 2.18 | 0.5 | 0.39 | 0.24 |
46 | D-(+)-Glucosamine | 23.44 | 2.09 | 2.22 | 0 | 0.79 | 1.16 | 0.25 | 0.49 | 0 |
47 | Glucosamine per-TMS | 24.31 | 1.4 | 4.41 | 0.15 | 6.71 | 8.9 | 2.51 | 1.58 | 0.75 |
48 | 2,2-Dideutero-nonyl-3TMS ether | 24.62 | 0 | 0 | 0 | 0.83 | 0.99 | 0.36 | 0.21 | 0 |
49 | Oleamide, N-3TMS | 25.51 | 6.69 | 10.6 | 5.38 | 5.17 | 6.13 | 1.88 | 4.89 | 0.86 |
50 | Tetradecanamide, N-5TMS | 25.83 | 0.85 | 1.59 | 0 | 0.63 | 1.01 | 0.22 | 0.46 | 0 |
51 | Aucubin, hexakis(3TMS) ether | 26.08 | 0 | 3.28 | 8.39 | 7.18 | 0 | 4.1 | 4.04 | 1.63 |
52 | cis-13-Eicosenoic acid | 26.63 | 1.19 | 2.89 | 2 | 1.45 | 3.64 | 0.5 | 1.69 | 0 |
53 | D-(+)-Turanose, octakis(3TMS) ether | 26.83 | 0 | 6.69 | 6.56 | 9.07 | 0.47 | 3.55 | 5.64 | 0.95 |
54 | Sucrose, octakis(3TMS) ether | 27.27 | 1.44 | 4.34 | 27.33 | 6.75 | 9.2 | 10.99 | 6.2 | 3.01 |
55 | D-(+)-Turanose, octakis(3TMS) ether | 27.43 | 0 | 1.35 | 4.81 | 1.87 | 0 | 2.42 | 0.99 | 0.24 |
56 | 1-Monostearin-2TMS | 29.31 | 2.62 | 0 | 0.99 | 0.84 | 2.38 | 0.41 | 1.28 | 0.68 |
57 | dl-6-Thioctic amide, N-3TMS | 29.9 | 1.54 | 0 | 0.22 | 1.51 | 1.52 | 0.8 | 2.34 | 0 |
58 | Friedelan-3-TMS | 31.06 | 0 | 0 | 0 | 0 | 0 | 0 | 3.39 | 0 |
59 | 1-Monolinoleoylglycerol-3TMS ether | 32.81 | 0.45 | 0 | 0.24 | 0 | 2.34 | 0.27 | 0.98 | 0.58 |
60 | Quercetin 7,3′,4′-trimethoxy-2TMS | 33.84 | 0.71 | 0 | 0 | 0 | 0.58 | 0 | 0 | 0 |
61 | 1-Monolinoleoylglycerol-3TMS ether | 34.06 | 0.64 | 0 | 0 | 0 | 0.65 | 0.17 | 0 | 0 |
62 | β-Sitosterol, 3TMS ether | 34.71 | 1.22 | 0.26 | 0.16 | 0.73 | 1.18 | 0.22 | 0.4 | 0.53 |
63 | β-Amyrin-3TMS ether | 35.02 | 0.64 | 0 | 0.1 | 0.45 | 0 | 0.55 | 0.4 | 0.6 |
Total | 97.2 | 95.6 | 95.4 | 97.7 | 98.7 | 96.6 | 97 | 98.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Taher, A.M.; Gendy, A.E.-N.G.E.; Alkahtani, J.; Elshamy, A.I.; Abd-ElGawad, A.M. Taxonomic Implication of Integrated Chemical, Morphological, and Anatomical Attributes of Leaves of Eight Apocynaceae Taxa. Diversity 2020, 12, 334. https://doi.org/10.3390/d12090334
El-Taher AM, Gendy AE-NGE, Alkahtani J, Elshamy AI, Abd-ElGawad AM. Taxonomic Implication of Integrated Chemical, Morphological, and Anatomical Attributes of Leaves of Eight Apocynaceae Taxa. Diversity. 2020; 12(9):334. https://doi.org/10.3390/d12090334
Chicago/Turabian StyleEl-Taher, Ahmed M., Abd El-Nasser G. El Gendy, Jawaher Alkahtani, Abdelsamed I. Elshamy, and Ahmed M. Abd-ElGawad. 2020. "Taxonomic Implication of Integrated Chemical, Morphological, and Anatomical Attributes of Leaves of Eight Apocynaceae Taxa" Diversity 12, no. 9: 334. https://doi.org/10.3390/d12090334
APA StyleEl-Taher, A. M., Gendy, A. E. -N. G. E., Alkahtani, J., Elshamy, A. I., & Abd-ElGawad, A. M. (2020). Taxonomic Implication of Integrated Chemical, Morphological, and Anatomical Attributes of Leaves of Eight Apocynaceae Taxa. Diversity, 12(9), 334. https://doi.org/10.3390/d12090334