Same Diet, Different Strategies: Variability of Individual Feeding Habits across Three Populations of Ambrosi’s Cave Salamander (Hydromantes ambrosii)
Abstract
:1. Introduction
2. Methods
2.1. Study Species and Data
2.2. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wake, D.B. The enigmatic history of the European, Asian and American plethodontid salamanders. Amphib. Reptil. 2013, 34, 323–336. [Google Scholar] [CrossRef] [Green Version]
- Lanza, B.; Pastorelli, C.; Laghi, P.; Cimmaruta, R. A review of systematics, taxonomy, genetics, biogeography and natural history of the genus Speleomantes Dubois, 1984 (Amphibia Caudata Plethodontidae). Atti. Mus. Civ. Stor. Nat. Trieste 2006, 52, 5–135. [Google Scholar]
- Chiari, Y.; van der Meijden, A.; Mucedda, M.; Lourenço, J.M.; Hochkirch, A.; Veith, M. Phylogeography of Sardinian cave salamanders (genus Hydromantes) is mainly determined by geomorphology. PLoS ONE 2012, 7, e32332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ficetola, G.F.; Lunghi, E.; Cimmaruta, R.; Manenti, R. Transgressive niche across a salamander hybrid zone revealed by microhabitat analyses. J. Biogeogr. 2019, 46, 1342–1354. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Lunghi, E.; Canedoli, C.; Padoa-Schioppa, E.; Pennati, R.; Manenti, R. Differences between microhabitat and broad-scale patterns of niche evolution in terrestrial salamanders. Sci. Rep. 2018, 8, 10575. [Google Scholar] [CrossRef] [PubMed]
- Bruce, R.C.; Jaeger, R.G.; Houck, L.D. (Eds.) The Biology of Plethodontid Salamanders; Springer Science+Business Media, LLC: New York, NY, USA, 2000. [Google Scholar] [CrossRef]
- Spotila, J.R. Role of temperature and water in the ecology of lungless salamanders. Ecol. Monogr. 1972, 42, 95–125. [Google Scholar] [CrossRef]
- Culver, D.C.; Pipan, T. (Eds.) The Biology of Caves and Other Subterranean Habitats, 2nd ed.; Oxford University Press: New York, NY, USA, 2019. [Google Scholar]
- Lunghi, E.; Manenti, R.; Ficetola, G.F. Seasonal variation in microhabitat of salamanders: Environmental variation or shift of habitat selection? PeerJ 2015, 3, e1122. [Google Scholar] [CrossRef] [Green Version]
- Salvidio, S.; Palumbi, G.; Romano, A.; Costa, A. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats. Sci. Nat. 2017, 104, 20. [Google Scholar] [CrossRef]
- Pastorelli, C.; Laghi, P. Predation of Speleomantes italicus (Amphibia: Caudata: Plethodontidae) by Meta menardi (Arachnida: Araneae: Metidae). In Atti del 6° Congresso Nazionale della Societas Herpetologica Italica (Roma, 27.IX-1.X.2006); Museo Regionale di Scienze Naturali: Torino, Italy, 2006; pp. 45–48. [Google Scholar]
- Manenti, R.; Lunghi, E.; Canedoli, C.; Bonaccorsi, M.; Ficetola, G.F. Parasitism of the leech, Batracobdella algira (Moquin-Tandon, 1846), on Sardinian cave salamanders (genus Hydromantes) (Caudata: Plethodontidae). Herpetozoa 2016, 29, 27–35. [Google Scholar]
- Lunghi, E.; Corti, C.; Manenti, R.; Barzaghi, B.; Buschettu, S.; Canedoli, C.; Cogoni, R.; De Falco, G.; Fais, F.; Manca, A.; et al. Comparative reproductive biology of European cave salamanders (genus Hydromantes): Nesting selection and multiple annual breeding. Salamandra 2018, 54, 101–108. [Google Scholar]
- Deban, S.M.; Dicke, U. Motor control of tongue movement during prey capture in Plethodontid salamanders. J. Exp. Biol. 1999, 202, 3699–3714. [Google Scholar] [PubMed]
- Lunghi, E.; Cianferoni, F.; Ceccolini, F.; Mulargia, M.; Cogoni, R.; Barzaghi, B.; Cornago, L.; Avitabile, D.; Veith, M.; Manenti, R.; et al. Field-recorded data on the diet of six species of European Hydromantes cave salamanders. Sci. Data 2018, 5, 180083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deban, S.M.; Dicke, U. Activation patterns of the tongue-projector muscle during feeding in the imperial cave salamander Hydromantes imperialis. J. Exp. Biol. 2004, 207, 2071–2081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deban, S.M.; Richardson, J.C. Cold-Blooded snipers: Thermal independence of ballistic tongue projection in the salamander Hydromantes platycephalus. J. Exp. Zool. 2011, 315, 618–630. [Google Scholar] [CrossRef] [PubMed]
- Vignoli, L.; Caldera, F.; Bologna, M.A. Trophic niche of cave populations of Speleomantes italicus. J. Nat. Hist. 2006, 40, 1841–1850. [Google Scholar] [CrossRef]
- Salvidio, S.; Romano, A.; Oneto, F.; Ottonello, D.; Michelon, R. Different season, different strategies: Feeding ecology of two syntopic forest-dwelling salamanders. Acta Oecol. 2012, 43, 42–50. [Google Scholar]
- Salvidio, S. Diet and food utilization in the European plethodontid Speleomantes ambrosii. Vie et Milieu 1992, 42, 35–39. [Google Scholar]
- Lunghi, E.; Manenti, R.; Mulargia, M.; Veith, M.; Corti, C.; Ficetola, G.F. Environmental suitability models predict population density, performance and body condition for microendemic salamanders. Sci. Rep. 2018, 8, 7527. [Google Scholar] [CrossRef]
- Jiménez-Valverde, A.; Sendra, A.; Garay, P.; Reboleira, A.S.P.S. Energy and speleogenesis: Key determinants of terrestrial species richness in caves. Ecol. Evol. 2017, 7, 10207–10215. [Google Scholar] [CrossRef]
- Crump, M.L. Intra-population variability in energy parameters of the salamander Plethodon cinereus. Oecologia 1979, 38, 235–247. [Google Scholar] [CrossRef]
- Marvin, G.A.; Bryan, R.; Hardwick, J. Effect of chronic low body temperature on feeding and gut passage in a plethodontid salamander. J. Therm. Biol. 2017, 69, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Lunghi, E.; Cianferoni, F.; Ceccolini, F.; Veith, M.; Manenti, R.; Mancinelli, G.; Corti, C.; Ficetola, G.F. What shapes the trophic niche of European plethodontid salamanders? PLoS ONE 2018, 13, e0205672. [Google Scholar] [CrossRef] [PubMed]
- Bolnick, D.I.; Svanbäck, R.; Fordyce, J.A.; Yang, L.H.; Davis, J.M.; Hulsey, C.D.; Forister, M.L. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 2003, 161, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Bolnick, D.I.; Yang, L.H.; Fordyce, J.A.; Davis, J.M.; Svanbäck, R. Measuring individual-level resource specialization. Ecology 2002, 83, 2936–2941. [Google Scholar] [CrossRef]
- Roughgarden, J. Evolution of niche width. Am. Nat. 1972, 106, 683–718. [Google Scholar] [CrossRef]
- Roughgarden, J. Niche width: Biogeographic patterns among Anolis lizard populations. Am. Nat. 1974, 108, 429–442. [Google Scholar] [CrossRef]
- Bolnick, D.I.; Amarasekare, P.; Araújo, C.S.; Bürger, R.; Levine, J.M.; Novak, M.; Rudolf, V.H.W.; Schreiber, S.J.; Urban, M.C.; Vasseur, D.A. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 2011, 26, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Layman, C.A.; Newsome, S.D.; Crawford, T.G. Individual-level niche specialization within populations: Emerging areas of study. Oecologia 2015, 178, 1–4. [Google Scholar] [CrossRef]
- Svanbäck, R.; Bolnick, D.I. Intraspecific competition drives increased resource use diversity within a natural population. Proc. R. Soc. B 2007, 274, 839–844. [Google Scholar] [CrossRef]
- Araújo, M.S.; Bolnick, D.I.; Martinelli, L.A.; Giaretta, A.A.; dos Reis, S.F. Individual-level diet variation in four species of Brazilian frogs. J. Anim. Ecol. 2009, 78, 848–856. [Google Scholar] [CrossRef]
- Terraube, J.; Guixé, D.; Arroyo, B. Diet composition and foraging success in generalist predators: Are specialist individuals better foragers? Basic Appl. Ecol. 2014, 15, 616–624. [Google Scholar] [CrossRef] [Green Version]
- Salvidio, S.; Oneto, F.; Ottonello, D.; Costa, A.; Romano, A. Trophic specialization at the individual level in a terrestrial generalist salamander. Can. J. Zool. 2015, 93, 79–83. [Google Scholar] [CrossRef]
- Salvidio, S.; Pasmans, F.; Bogaerts, S.; Martel, A.; van de Loo, M.; Romano, A. Consistency in trophic strategies between populations of the Sardinian endemic salamander Speleomantes imperialis. Anim. Biol. 2017, 67, 1–16. [Google Scholar] [CrossRef]
- Lunghi, E.; Manenti, R.; Cianferoni, F.; Ceccolini, F.; Veith, M.; Corti, C.; Ficetola, G.F.; Mancinelli, G. Inter-specific and inter-population variation in individual diet specialization: Do environmental factors have a role? Ecology 2020. [Google Scholar] [CrossRef]
- Araújo, M.S.; Bolnick, D.L.; Layman, C.A. The ecological causes of individual specialisation. Ecol. Lett. 2011, 14, 948–958. [Google Scholar] [CrossRef]
- Araujo, M.S.; dos Reis, S.F.; Giaretta, A.A.; Machado, G.; Bolnick, D.I. Intrapopulation diet variation in four frogs (Leptodactylidae) of the Brazilian savannah. Copeia 2007, 2007, 855–865. [Google Scholar] [CrossRef]
- Pyke, G.H.; Pullian, H.R.; Charnov, E.L. Optimal foraging: A selective review of theory and tests. Quart. Rev. Biol. 1977, 52, 137–154. [Google Scholar] [CrossRef] [Green Version]
- Quiroga, M.F.; Bonansea, M.I.; Vaira, M. Population diet variation and individual specialization in the poison toad, Melanophryniscus rubriventris (Vellard, 1947). Amphib. Reptil. 2011, 32, 261–265. [Google Scholar] [CrossRef]
- Rosenblatt, A.E.; Nifong, J.C.; Heithaus, M.R.; Mazzotti, F.J.; Cherkiss, M.S.; Jeffery, B.M.; Elsey, R.M.; Decker, R.A.; Silliman, B.R.; Guillette, L.G.J.; et al. Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator. Oecologia 2015, 178, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Lunghi, E.; Bruni, G. Long-term reliability of Visual Implant Elastomers in the Italian cave salamander (Hydromantes italicus). Salamandra 2018, 54, 283–286. [Google Scholar]
- Salvidio, S. Homing behaviour in Speleomantes strinatii (Amphibia Plethodontidae): A preliminary displacement experiment. North West. J. Zool. 2013, 9, 429–433. [Google Scholar]
- Smith, M.A.; Green, D.M. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: Are all amphibian populations metapopulations? Ecography 2005, 28, 110–128. [Google Scholar] [CrossRef]
- Lunghi, E.; Corti, C.; Manenti, R.; Ficetola, G.F. Consider species specialism when publishing datasets. Nat. Ecol. Evol. 2019, 3, 319. [Google Scholar] [CrossRef] [PubMed]
- Novak, M.; Tinker, M.T. Timescales alter the inferred strength and temporal consistency of intraspecific diet specialization. Oecologia 2015, 178, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Ficetola, G.F.; Barzaghi, B.; Melotto, A.; Muraro, M.; Lunghi, E.; Canedoli, C.; Lo Parrino, E.; Nanni, V.; Silva-Rocha, I.; Urso, A.; et al. N-mixture models reliably estimate the abundance of small vertebrates. Sci. Rep. 2018, 8, 10357. [Google Scholar] [CrossRef] [Green Version]
- Băncilă, R.I.; Hartel, T.; Plăiaşu, R.; Smets, J. Cogălniceanu, D. Comparing three body condition indices in amphibians: A case study of yellow-bellied toad Bombina variegata. Amphib. Reptil. 2010, 31, 558–562. [Google Scholar] [CrossRef]
- Labocha, M.K.; Schutz, H.; Hayes, J.P. Which body condition index is best? Oikos 2014, 123, 111–119. [Google Scholar] [CrossRef]
- Scott, D.E.; Casey, E.D.; Donovan, M.F.; Lynch, T.K. Amphibian lipid levels at metamorphosis correlate to post-metamorphic terrestrial survival. Oecologia 2007, 153, 521–532. [Google Scholar] [CrossRef]
- Roughgarden, J. Theory of Population Genetics and Evolutionary Ecology; Macmillan Publishing Company: New York, NY, USA, 1979; p. 612. [Google Scholar]
- Zaccarelli, N.; Bolnick, D.I.; Mancinelli, G. RInSp: An R package for the analysis of individual specialization in resource use. Methods Ecol. Evol. 2013, 4, 1018–1023. [Google Scholar] [CrossRef]
- R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: http://www.R-project.org/ (accessed on 18 September 2019).
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package Version 2.5-6. Available online: http://cran.r-project.org/web/packages/vegan (accessed on 28 January 2020).
- Dray, S.; Dufour, A.B. ade4: Analysis of Ecological Data - Exploratory and Euclidean Methods in Environmental Sciences. Available online: https://CRAN.R-project.org/package=ade4 (accessed on 28 January 2020).
- Bale, J.S.; Hayward, S.A.L. Insect overwintering in a changing climate. J. Exp. Biol. 2010, 213, 980–994. [Google Scholar] [CrossRef] [Green Version]
- Kirk, D.A.; Gosler, A.G. Body condition varies with migration and competition in migrant and resident south American vultures. Auk 1994, 111, 933–944. [Google Scholar] [CrossRef]
- Petren, K.; Case, T.J. Habitat structure determines competition intensity and invasion success in gecko lizards. Proc. Natl. Acad. Sci. USA 1998, 95, 11739–11744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baur, B.; Cremene, C.; Groza, G.; Schileyko, A.A.; Baur, A.; Erhardt, A. Intensified grazing affects endemic plant and gastropod diversity in alpine grasslands of the Southern Carpathian mountains (Romania). Biologia 2007, 62, 438–445. [Google Scholar] [CrossRef]
- Norbury, G.; Heyward, R.; Parkes, J. Skink and invertebrate abundance in relation to vegetation, rabbits and predators in a New Zealand dryland ecosystem. N. Z. J. Ecol. 2009, 33, 24–31. [Google Scholar]
- Tinker, M.T.; Bentall, G.; Estes, J.A. Food limitation leads to behavioral diversification and dietary specialization in sea otters. Proc. Natl. Acad. Sci. USA 2008, 105, 560–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araújo, M.S.; Costa-Pereira, R. Latitudinal gradients in intraspecific ecological diversity. Biol. Lett. 2013, 9, 20130778. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.N.; Lu, C.-W.; Chu, J.-H.; Grismer, L.L.; Hung, C.-M.; Lin, S.-M. Historical demography of four gecko species specializing in boulder cave habitat – its implications in the evolutionary dead end hypothesis and conservation. Mol. Ecol. 2019, 28, 772–784. [Google Scholar] [CrossRef] [PubMed]
- Salvidio, S.; Pastorino, M.V. Spatial segregation in the European plethodontid Speleomantes strinatii in relation to age and sex. Amphib. Reptil. 2002, 23, 505–510. [Google Scholar]
- Ficetola, G.F.; Pennati, R.; Manenti, R. Spatial segregation among age classes in cave salamanders: Habitat selection or social interactions? Pop. Ecol. 2013, 55, 217–226. [Google Scholar] [CrossRef]
- Cejuela Tanalgo, K.; Tabora, J.A.G.; Hughes, A.C. Bat cave vulnerability index (BCVI): A holistic rapid assessment tool to identify priorities for effective cave conservation in the tropics. Ecol. Indic. 2018, 89, 852–860. [Google Scholar] [CrossRef]
- Whitten, T. Applying ecology for cave management in China and neighbouring countries. J. Appl. Ecol. 2009, 46, 520–523. [Google Scholar] [CrossRef]
- Cloyed, C.S.; Eason, P.K. Niche partitioning and the role of intraspecific niche variation in structuring a guild of generalist anurans. R. Soc. Open Sci. 2017, 4, 170060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa-Pereira, R.; Rudolf, V.H.W.; Souza, F.L.; Araújo, M.S. Drivers of individual niche variation in coexisting species. J. Anim. Ecol. 2018, 87, 1452–1464. [Google Scholar] [CrossRef] [PubMed]
Population 1 | Population 2 | Population 3 | F2,3 | HSD | |
---|---|---|---|---|---|
Longitude | 9.77 | 9.72 | 9.72 | ||
Latitude | 44.12 | 44.18 | 44.17 | ||
Elevation | 331 | 206 | 260 | ||
Arboreal vegetation | 55.3 (3.6) | 53.2 (3.5) | 45.75 (1.85) | 2.63 | 1 = 2 = 3 |
Non-arboreal vegetation | 38 (0.4) | 34.1 (2.6) | 47.1 (1.4) | 14.58 * | 1 = 2 < 3 |
Factor | All Salamanders | Adult Only | ||
---|---|---|---|---|
Pseudo-F | p(MC) | Pseudo-F | p(MC) | |
(1) SVL | 0.91 | 0.454 | 0.54 | 0.781 |
(2) Population | 1.23 | 0.246 | 0.99 | 0.444 |
(3) Age/Sex | 1.5 | 0.175 | 1.5 | 0.164 |
(4) Season | 16.03 | 0.001 | 14.07 | 0.001 |
(1) × (2) | 1.14 | 0.328 | 1.16 | 0.28 |
(1) × (3) | 1.64 | 0.124 | 0.29 | 0.976 |
(1) × (4) | 0.77 | 0.570 | 1.14 | 0.308 |
(2) × (3) | 0.44 | 0.981 | 0.70 | 0.755 |
(2) × (3) | 0.67 | 0.788 | 0.75 | 0.702 |
(3) × (4) | 1.25 | 0.257 | 1.92 | 0.077 |
(1) × (2) × (3) | 1.25 | 0.258 | 0.95 | 0.469 |
(1) × (2) × (4) | 1.65 | 0.067 | 1.45 | 0.142 |
(1) × (3) × (4) | 0.48 | 0.846 | 2.02 | 0.045 |
(2) × (3) × (4) | nd | - | 1.82 | 0.19 |
(1) × (2) × (3) × (4) | nd | - | nd | - |
Season | Population 1 | Population 2 | Population 3 | |
---|---|---|---|---|
Fall | [3 F, 6 J] | [12 F, 4 M] | [4 F, 4 M, 2 J] | |
WIC | 1.394 (1.38–1.408) | 1.482 (1.471–1.493) | 1.729 (1.718–1.741) | |
BIC | 0.859 (0.853–0.866) | 1.126 (1.118–1.135) | 0.864 (0.858–0.87) | |
TNW | 2.253 (2.24–2.267) | 2.608 (2.598–2.618) | 2.594 (2.581–2.606) | |
IS | 0.442 † | 0.340 † | 0.427 † | |
Spring | [22 F, 14 M, 6 J] | [17 M, 15 M, 1 J] | [9 F, 5 M] | |
WIC | 0.684 (0.681–0.686) | 0.603 (0.6–0.606) | 0.799 (0.795–0.802) | |
BIC | 0.517 (0.509–0.524) | 0.451 (0.444–0.458) | 0.338 (0.334–0.343) | |
TNW | 1.201 (1.192–1.209) | 1.054 (1.046–1.062) | 1.137 (1.129–1.145) | |
IS | 0.728 † | 0.699 † | 0.738 † | |
Density | 0.422 (144.5) | 0.144 (137.2) | 0.106 (67.1) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lunghi, E.; Cianferoni, F.; Ceccolini, F.; Zhao, Y.; Manenti, R.; Corti, C.; Ficetola, G.F.; Mancinelli, G. Same Diet, Different Strategies: Variability of Individual Feeding Habits across Three Populations of Ambrosi’s Cave Salamander (Hydromantes ambrosii). Diversity 2020, 12, 180. https://doi.org/10.3390/d12050180
Lunghi E, Cianferoni F, Ceccolini F, Zhao Y, Manenti R, Corti C, Ficetola GF, Mancinelli G. Same Diet, Different Strategies: Variability of Individual Feeding Habits across Three Populations of Ambrosi’s Cave Salamander (Hydromantes ambrosii). Diversity. 2020; 12(5):180. https://doi.org/10.3390/d12050180
Chicago/Turabian StyleLunghi, Enrico, Fabio Cianferoni, Filippo Ceccolini, Yahui Zhao, Raoul Manenti, Claudia Corti, Gentile Francesco Ficetola, and Giorgio Mancinelli. 2020. "Same Diet, Different Strategies: Variability of Individual Feeding Habits across Three Populations of Ambrosi’s Cave Salamander (Hydromantes ambrosii)" Diversity 12, no. 5: 180. https://doi.org/10.3390/d12050180
APA StyleLunghi, E., Cianferoni, F., Ceccolini, F., Zhao, Y., Manenti, R., Corti, C., Ficetola, G. F., & Mancinelli, G. (2020). Same Diet, Different Strategies: Variability of Individual Feeding Habits across Three Populations of Ambrosi’s Cave Salamander (Hydromantes ambrosii). Diversity, 12(5), 180. https://doi.org/10.3390/d12050180