Effects of Invasive Watermilfoil on Primary Production in Littoral Zones of North-Temperate Lakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Characterization of Macrophyte Assemblages
2.3. Collection of Primary Producers for Production and Biomass
2.4. Bottle Production Estimates
2.5. Primary Producer Standing Crop Measurement
2.6. Open-Water Metabolism
2.7. Production Mass Balance Estimates
2.8. Statistical Analyses
3. Results
3.1. Comparison of Study Sites
3.2. Primary Production Rates
3.3. Standing Crop
3.4. Open-Water Metabolism
3.5. Production Mass Balance Estimates
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Waterbody | Plot Type | Light Extinction Coefficient | Water Temperature (°C) | Conductivity (mS/cm) | SRP (µg/L) | NO3− + NO2− (µg/L) | NH4+ (µg/L) | TDN (mg/L) | DOC (mg/L) |
---|---|---|---|---|---|---|---|---|---|
Horseshoe Lake | −IWM | 0.563 | 23.91 | 0.244 | 0.89 | 6.0 | 18.11 | 0.444 | 7.27 |
+IWM | 0.612 | 22.31 | 0.243 | 0.89 | 1.6 | 24.08 | 0.446 | 7.48 | |
Lake St. Helen | −IWM | 1.277 | 22.37 | 0.179 | 0.89 | 9.0 | 9.89 | 0.542 | 14.89 |
+IWM | 1.190 | 22.14 | 0.179 | 11.10 | 1.6 | 16.80 | 0.577 | 14.32 | |
Islington Bay of Lake Huron | −IWM | 0.395 | 20.67 | 0.208 | 0.89 | 30.0 | 8.46 | 0.187 | 3.05 |
+IWM | 0.366 | 20.35 | 0.209 | 2.00 | 71.0 | 6.72 | 0.218 | 3.21 | |
Sturgeon Sloughs of Portage Lake | −IWM | 1.545 | 18.21 | 0.125 | 0.89 | 4.0 | 1.84 | 0.305 | 9.15 |
+IWM | 0.989 | 18.98 | 0.124 | 3.10 | 46.0 | 3.99 | 0.342 | 9.17 | |
Iron Lake | −IWM | 1.647 | 20.32 | 0.074 | 0.89 | 5.0 | 26.92 | 0.523 | 13.33 |
+IWM | 0.990 | 20.83 | 0.073 | 0.89 | 6.0 | 12.00 | 0.533 | 11.89 | |
Torch Lake | −IWM | 1.050 | 20.15 | 0.150 | 0.89 | 14.0 | 7.32 | 0.418 | 8.05 |
+IWM | 0.882 | 20.99 | 0.149 | 8.10 | 71.0 | 7.64 | 0.259 | 6.70 |
Waterbody | Plot Type | Species Richness | Evenness | Shannon’s Diversity Index | Simpson’s Diversity Index |
---|---|---|---|---|---|
Horseshoe Lake | −IWM | 6 | 0.23 | 0.44 | 0.18 |
+IWM | 7 | 0.36 | 0.70 | 0.30 | |
Lake St. Helen | −IWM | 8 | 0.10 | 0.21 | 0.08 |
+IWM | 7 | 0.63 | 1.32 | 0.67 | |
Islington Bay of Lake Huron | −IWM | 5 | 0.38 | 0.62 | 0.34 |
+IWM | 8 | 0.55 | 1.15 | 0.54 | |
Sturgeon Sloughs of Portage Lake | −IWM | 8 | 0.18 | 0.37 | 0.16 |
+IWM | 11 | 0.67 | 1.61 | 0.75 | |
Iron Lake | −IWM | 4 | 0.58 | 0.81 | 0.43 |
+IWM | 3 | 0.69 | 0.75 | 0.46 | |
Torch Lake | −IWM | 9 | 0.52 | 1.13 | 0.60 |
+IWM | 8 | 0.24 | 0.50 | 0.20 |
References
- Cook, C.D.K. Worldwide distribution and taxonomy of Myriophyllum species. In Proceedings of the First International Symposium on Watermilfoil (Myriophyllum Spicatum) and Related Haloragaceae Species, Vancouver, BC, Canada, 23–24 July 1985; pp. 1–7. [Google Scholar]
- CABI Invasive Species Compendium: Myriophyllum spicatum. Available online: https://www.cabi.org/isc/datasheet/34941#2F8C4408-E2DA-4356-B1FA-98EC9FB8FFCE (accessed on 23 January 2020).
- Smith, C.S.; Barko, J.W. Ecology of Eurasian watermilfoil. J. Aquat. Plant Manag. 1990, 28, 55–64. [Google Scholar]
- Moody, M.L.; Palomino, N.; Weyl, P.S.; Coetzee, J.A.; Newman, R.M.; Harms, N.E.; Liu, X.; Thum, R.A. Unraveling the biogeographic origins of the Eurasian watermilfoil (Myriophyllum spicatum) invasion in North America. Am. J. Bot. 2016, 103, 709–718. [Google Scholar] [CrossRef] [Green Version]
- Madsen, J.D.; Sutherland, J.W.; Bloomfield, J.A.; Eichler, L.W.; Boylen, C.W. The decline of native vegetation under dense Eurasian watermilfoil canopies. J. Aquat. Plant Manag. 1991, 29, 94–99. [Google Scholar]
- Boylen, C.W.; Eichler, L.W.; Madsen, J.D. Loss of native plant species in a community dominated by Eurasian watermilfoil. Hydrobiologia 1999, 415, 207–211. [Google Scholar] [CrossRef]
- Madsen, J.D.; Boylen, C.W. Eurasian watermilfoil seed ecology from an oligotrophic and eutrophic lake. J. Aquat. Plant Manag. 1989, 27, 119–121. [Google Scholar]
- Nichol, S.A.; Shaw, B.H. Ecological life histories of the three aquatic nuisance plants, Myriophyllum spicatum, Potamogeton crispus and Elodea canadensis. Hydrobiologia 1986, 131, 3–21. [Google Scholar] [CrossRef]
- LaRue, E.A.; Zuellig, M.P.; Netherland, M.D.; Heilman, M.A.; Thum, R.A. Hybrid watermilfoil lineages are more invasive and less sensitive to a commonly used herbicide than their exotic parent (Eurasian watermilfoil). Evol. Appl. 2013, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Parks, S.R.; McNair, J.N.; Hausler, P.; Tyning, P.; Thum, R.A. Divergent responses of cryptic invasive watermilfoil to treatment with auxinic herbicides in a large Michigan lake. Lake Reserv. Manag. 2016, 32, 366–372. [Google Scholar] [CrossRef]
- Thum, R.A.; Parks, S.; Mcnair, J.N.; Tyning, P.; Hausler, P.; Chadderton, L.; Tucker, A.; Monfils, A. Survival and vegetative regrowth of Eurasian and hybrid watermilfoil following operational treatment with auxinic herbicides in Gun Lake, Michigan. J. Aquat. Plant Manag. 2017, 55, 103–107. [Google Scholar]
- Moody, M.L.; Les, D.H. Geographic distribution and genotypic composition of invasive hybrid watermilfoil (Myriophyllum spicatum x M. sibiricum) populations in North America. Biol. Invasions 2007, 9, 559–570. [Google Scholar] [CrossRef]
- Parkinson, H.; Mangold, J.; Jacobs, J.; Madsen, J.; Halpop, J. Biology, Ecology and Management of Eurasian Watermilfoil (Myriophyllum spicatum), 2nd ed.; Montana State University Extension: Bozeman, MT, USA, 2011. [Google Scholar]
- Kovalenko, K.E.; Dibble, E.D. Invasive macrophyte effects on littoral trophic structure and carbon sources. Hydrobiologia 2014, 721, 23–34. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Lodge, D.M. Effects of submerged macrophytes on ecosystem processes. Aquat. Bot. 1986, 26, 341–370. [Google Scholar] [CrossRef]
- Scheffer, M.; Hosper, S.H.; Meijer, M.L.; Moss, B.; Jeppesen, E. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 1993, 8, 275–279. [Google Scholar] [CrossRef]
- Lauster, G.H.; Hanson, P.C.; Kratz, T.K. Gross primary production and respiration differences among littoral and pelagic habitats in northern Wisconsin lakes. Can. J. Fish. Aquat. Sci. 2006, 63, 1130–1141. [Google Scholar] [CrossRef]
- Binzer, T.; Sand-Jensen, K.; Middelboe, A.L. Community photosynthesis of aquatic macrophytes. Limnol. Oceanogr. 2006, 51, 2722–2733. [Google Scholar] [CrossRef]
- Barko, J.W.; Smart, R.M.; McFarland, D.G.; Chen, R.L. Interrelationships between the growth of Hydrilla verticillate (L.f.) Royle and sediment nutrient availability. Aquat. Bot. 1988, 32, 205–216. [Google Scholar] [CrossRef]
- Cattaneo, A.; Kalff, J. The relative contribution of aquatic macrophytes and their epiphytes to the production of macrophyte beds. Limnol. Oceanogr. 1980, 25, 280–289. [Google Scholar] [CrossRef]
- Barko, J.W.; Smart, R.M. Sediment-based nutrition of submersed macrophytes. Aquat. Bot. 1981, 10, 339–352. [Google Scholar] [CrossRef]
- Reuter, J.E.; Axler, R.P. Physiological characteristics of inorganic nitrogen uptake by spatially separate algal communities in a nitrogen deficient lake. Freshw. Biol. 1992, 27, 227–236. [Google Scholar] [CrossRef]
- Vadeboncoeur, Y.; Steinman, A.D. Periphyton function in lake ecosystems. Sci. World J. 2002, 2, 1449–1468. [Google Scholar] [CrossRef] [Green Version]
- Carignan, R.; Kalff, J. Phosphorus release by submerged macrophytes: Significance to epiphyton and phytoplankton. Limnol. Oceanogr. 1982, 27, 419–427. [Google Scholar] [CrossRef]
- Vadeboncoeur, Y.; Kalff, J.; Christofferson, K.; Jeppesen, E. Substratum as a driver of variation in periphyton chlorophyll and productivity in lakes. J. N. Am. Benthol. Soc. 2006, 25, 379–392. [Google Scholar] [CrossRef] [Green Version]
- Vadeboncoeur, Y.; Lodge, D.M.; Carpenter, S.R. Whole-lake fertilization effects on distribution of primary production between benthic and pelagic habitats. Ecology 2001, 82, 1065–1077. [Google Scholar] [CrossRef]
- Burkholder, J.M.; Wetzel, R.G. Epiphytic alkaline phosphatase on natural and artificial plants in an oligotrophic lake: Re-evaluation of the role of macrophytes as a phosphorus source for epiphytes. Limnol. Oceanogr. 1990, 35, 736–747. [Google Scholar] [CrossRef]
- Muthukrishnan, R.; Hansel-Welch, N.; Larkin, D.J. Environmental filtering and competitive exclusion drive biodiversity-invasibility relationships in shallow lake plant communities. J. Ecol. 2018, 106, 2058–2070. [Google Scholar] [CrossRef]
- Sher-Kaul, S.; Oertli, B.; Castella, E.; Lachavanne, J.B. Relationship between biomass and surface area of six submerged aquatic plant species. Aquat. Bot. 1995, 51, 147–154. [Google Scholar] [CrossRef]
- Dibble, E.D.; Killgore, K.J.; Dick, G.O. Measurement of plant architecture in seven aquatic plants. J. Freshw. Ecol. 1996, 11, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Grutters, B.M.C.; Gross, E.M.; van Donk, E.; Bakker, E.S. Periphyton density is similar on native and non-native plant species. Freshw. Biol. 2017, 62, 906–915. [Google Scholar] [CrossRef] [Green Version]
- Lassen, C.; Revsbech, N.P.; Pederson, O. Macrophyte development and resuspension regulate the photosynthesis and production of benthic microalgae. Hydrobiologia 1997, 350, 1–11. [Google Scholar] [CrossRef]
- Vis, C.; Hudon, C.; Carignan, R. Influence of the vertical structure of macrophyte stands on epiphyte community metabolism. Can. J. Fish. Aquat. Sci. 2006, 63, 1014–1026. [Google Scholar] [CrossRef]
- Midwest Invasive Species Information Network (MISIN). Available online: https://www.misin.msu.edu/ (accessed on 1 February 2017).
- MiWaters. Available online: https://miwaters.deq.state.mi.us/miwaters/external/home (accessed on 1 February 2017).
- Navionics Chart Viewer. Available online: https://webapp.navionics.com (accessed on 18 October 2018).
- Inland Lake Maps. Available online: https://www.michigan.gov/dnr/0,4570,7-350-79119_79146_81198_85509---,00.html (accessed on 30 January 2017).
- Kerfoot, W.C.; Urban, N.R.; McDonald, C.P.; Rossman, R.; Zhang, H. Legacy mercury releases during copper mining near Lake Superior. J. Great Lakes Res. 2016, 42, 50–61. [Google Scholar] [CrossRef] [Green Version]
- O’Dell, J. Method 365.1, Revision 2.0: Determination of Phosphorus by Semi-Automated Colorimetry; U.S. Environmental Protection Agency, Office of Research and Development: Cincinnati, OH, USA, 1993.
- Eaton, A.D.; Clesceri, L.S.; Rice, E.W.; Greenberg, A.E.; American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association (APHA): Washington, DC, USA, 2005. [Google Scholar]
- O’Dell, J. Method 353.2, Revision 2.0: Determination of Nitrate-Nitrite Nitrogen by Automated Colorimetry; U.S. Environmental Protection Agency, Office of Research and Development: Cincinnati, OH, USA, 1993.
- Holmes, R.M.; Aminot, A.; Kérouel, R.; Hooker, B.A.; Peterson, B.J. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can. J. Fish. Aquat. Sci. 1999, 56, 1801–1808. [Google Scholar] [CrossRef]
- Taylor, B.W.; Keep, C.F.; Hall, R.O., Jr.; Koch, B.J.; Tronstad, L.M.; Flecker, A.S.; Ulseth, A.J. Improving the fluorometric ammonium method: Matrix effects, background fluorescence, and standard additions. J. N. Am. Benthol. Soc. 2007, 26, 167–177. [Google Scholar] [CrossRef]
- Johnson, J.A.; Newman, R.M. A comparison of two methods for sampling biomass of aquatic plants. J. Aquat. Plant Manag. 2011, 49, 1–8. [Google Scholar]
- Fasset, N.C. A Manual of Aquatic Plants, 2nd ed.; University of Wisconsin Press: Madison, WI, USA, 2006. [Google Scholar]
- Skawinksi, P.M. Aquatic Plants of the Upper Midwest: A Photographic Guide to our Underwater Forests, 2nd ed.; Paul M. Skawinski: Madison, WI, USA, 2014. [Google Scholar]
- Marcarelli, A.M.; Wurtsbaugh, W.A. Nitrogen fixation varies spatially and seasonally in linked stream-lake ecosystems. Biogeochemistry 2009, 94, 95–110. [Google Scholar] [CrossRef]
- Gardner, W.S.; McCarthy, M.J.; Carini, S.A.; Souza, A.C.; Lijun, H.; McNeal, K.S.; Puckett, M.K.; Pennington, J. Collection of intact sediment cores with overlying water to study nitrogen- and oxygen-dynamics in regions with seasonal hypoxia. Cont. Shelf Res. 2009, 29, 2207–2213. [Google Scholar] [CrossRef]
- Wetzel, R.G.; Likens, G.E. Primary productivity of phytoplankton. In Limnological Analyses, 3rd ed.; Wetzel, R.G., Likens, G.E., Eds.; Springer: New York, NY, USA, 2000; pp. 219–239. [Google Scholar]
- Vollenweider, R.A.; Talling, J.F.; Westlake, D.F. A Manual on Methods for Measuring Primary Production in Aquatic Environments; Blackwell Scientific Publications: Oxford, UK, 1974. [Google Scholar]
- Kana, T.M.; Darkangelo, C.; Hunt, M.D.; Oldham, J.B.; Bennett, G.E.; Cornwell, J.C. Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Anal. Chem. 1994, 66, 4166–4170. [Google Scholar] [CrossRef]
- Hamme, R.C.; Emerson, S.R. The solubility of neon, nitrogen and argon in distilled water and seawater. Deep-Sea Res. Part I Oceanogr. Res. Pap. 2004, 51, 1517–1528. [Google Scholar] [CrossRef]
- Taylor, J.R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd ed.; University Science Books: Sausalito, CA, USA, 1982. [Google Scholar]
- Carignan, R.; Blais, A.-M.; Vis, C. Measurement of primary production and community respiration in oligotrophic lakes using the Winkler method. Can. J. Fish. Aquat. 1998, 55, 1078–1084. [Google Scholar] [CrossRef]
- Van de Bogert, M.C.; Carpenter, S.R.; Cole, J.J.; Pace, M.L. Assessing pelagic and benthic metabolism using free water measurements. Limnol. Oceanogr. Methods 2007, 5, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Hotchkiss, E.R.; Hall, R.O., Jr. Whole-stream 13C tracer addition reveals distinct fates of newly fixed carbon. Ecology 2015, 96, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Appling, A.P.; Hall, R.O., Jr.; Yackulic, C.B.; Arroita, M. Overcoming equifinality: Leveraging long time series for stream metabolism estimation. J. Geophys. Res. Biogeosci. 2018, 123, 624–645. [Google Scholar] [CrossRef] [Green Version]
- Winslow, L.A.; Zwart, J.A.; Bart, R.D.; Dugan, H.A.; Woolway, R.I.; Corman, J.R.; Hanson, P.C.; Read, J.S. LakeMetabolizer: An R package for estimating lake metabolism from free-water oxygen using diverse statistical models. Inland Waters 2016, 6, 622–636. [Google Scholar] [CrossRef]
- NOAA Solar Calculator. Available online: https://www.esrl.noaa.gov/gmd/grad/solcalc/ (accessed on 8 May 2018).
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2003. [Google Scholar]
- Grace, J.B.; Wetzel, R.G. The production biology of Eurasian watermilfoil (Myriophyllum spicatum L.): A review. J. Aquat. Plant Manag. 1978, 16, 1–11. [Google Scholar]
- Madsen, J.D. Predicting the Invasion of Eurasian Watermilfoil into Northern Lakes; U.S. Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, 1999. [Google Scholar]
- Hansen, G.J.; Vander Zanden, M.J.; Blum, M.J.; Clayton, M.K.; Hain, E.F.; Hauxwell, J.; Izzo, M.; Kornis, M.S.; McIntyre, P.B.; Mikulyuk, A.; et al. Commonly rare and rarely common: Comparing population abundance of invasive and native aquatic species. PLoS ONE 2013, 8, e77415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trebitz, A.S.; Taylor, D.I. Exotic and invasive aquatic plants in Great Lakes coastal wetlands: Distribution and relation to watershed land use and plant richness and cover. J. Great Lakes Res. 2007, 33, 705–721. [Google Scholar] [CrossRef]
- Sand-Jensen, K.; Borum, J. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquat. Bot. 1991, 41, 137–175. [Google Scholar] [CrossRef]
- Kelly, D.J.; Hawes, I. Effects of invasive macrophytes on littoral-zone productivity and foodweb dynamics in a New Zealand high-country lake. J. N. Am. Benthol. Soc. 2005, 24, 300–320. [Google Scholar] [CrossRef]
- Ortiz, J.E.; Marcarelli, A.M.; Juneau, K.J.; Huckins, C.J. Invasive Myriophyllum spicatum and nutrients interact to influence algal assemblages. Aquat. Bot. 2019, 156, 1–9. [Google Scholar] [CrossRef]
- Keast, A. The introduced aquatic macrophyte, Myriophyllum spicatum, as habitat for fish and their invertebrate prey. Can. J. Zool. 1984, 62, 1289–1303. [Google Scholar] [CrossRef]
- Jeppsen, E.; Søndergaard, M.; Søndergaard, M.; Christoffersen, K. The Structuring Role of Submerged Macrophytes in Lakes, 1st ed.; Springer: New York, NY, USA, 1998. [Google Scholar]
- Scheffer, M. Ecology of Shallow Lakes, 1st ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Schultz, R.; Dibble, E. Effects of invasive macrophytes on freshwater fish and macroinvertebrate communities: The role of invasive plant traits. Hydrobiologia 2012, 684, 1–14. [Google Scholar] [CrossRef]
Waterbody | Area (km2) 1 | Maximum Depth (m) 1 | Mean Depth (m) 1 | Plot Type 2 | Coordinates (Latitude, Longitude) | Plot Depth (m) |
---|---|---|---|---|---|---|
Horseshoe Lake | 0.15 | 11 | 3 | −IWM | 44.415065, −84.277678 | 1.6 |
+IWM | 44.417395, −84.281130 | 2.1 | ||||
Lake St. Helen | 9.70 | 8 | 2 | −IWM | 44.370373, −84.497893 | 1.4 |
+IWM | 44.369626, −84.499011 | 1.7 | ||||
Islington Bay of Lake Huron 3 | 1.61 | 4 | 2 | −IWM | 45.977832, −84.358537 | 2.5 |
+IWM | 45.973228, −84.353715 | 2.6 | ||||
Sturgeon Sloughs of Portage Lake 3 | 0.96 | 9 | 2 | −IWM | 47.032063, −88.485310 | 1.3 |
+IWM | 47.031971, −88.485941 | 1.2 | ||||
Iron Lake | 1.60 | 17 | 6 | −IWM | 46.149005, −88.641917 | 1.5 |
+IWM | 46.151059, −88.644730 | 2.4 | ||||
Torch Lake | 11.00 | 37 | 15 | −IWM | 47.133131, −88.457900 | 2.2 |
+IWM | 47.133346, −88.458414 | 2.3 |
Parameter | t-Value | Degrees of Freedom | p-Value |
---|---|---|---|
Depth | 2.05 | 5 | 0.10 |
Light extinction coefficient | −2.01 | 5 | 0.10 |
Water temperature | −0.01 | 5 | 0.99 |
Dissolved Oxygen | 0.89 | 5 | 0.45 |
Conductivity | −1.46 | 5 | 0.20 |
NH4+ | −0.07 | 5 | 0.95 |
SRP | 0.02 | 5 | 0.98 |
TDN | −0.23 | 5 | 0.83 |
DOC | −1.61 | 5 | 0.17 |
Macrophyte species richness | 0.88 | 5 | 0.42 |
Macrophyte species evenness | 1.58 | 5 | 0.17 |
Macrophyte Shannon’s diversity | 1.40 | 5 | 0.22 |
Macrophyte Simpson’s diversity | 1.21 | 5 | 0.28 |
Waterbody | Plot Type | IWM Canopy Description 1 | Abundance of IWM (%) | Standardized Abundance of IWM (%) 2 |
---|---|---|---|---|
Horseshoe Lake | −IWM | None | 4 | 2 |
+IWM | Sparse | 84 | 7 | |
Lake St. Helen | −IWM | None | 0 | 0 |
+IWM | Sparse | 35 | 23 | |
Islington Bay of Lake Huron | −IWM | None | 0 | 0 |
+IWM | Dense | 65 | 30 | |
Sturgeon Sloughs of Portage Lake | −IWM | None | 0 | 0 |
+IWM | Sparse | 27 | 15 | |
Iron Lake | −IWM | None | 5 | 2 |
+IWM | Dense | 68 | 56 | |
Torch Lake | −IWM | None | 0 | 0 |
+IWM | Dense | 89 | 52 |
Response | Coefficient of Predictors | Intercept | Adjusted R2 | F | df | p | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Light Extinction | Water Temperature | TDN | Macrophyte Standing Crop | Epiphyte Chla 1 | Phytoplankton AFDM | ||||||
Benthic Periphyton GPP | ꟷ | 23.056 | ꟷ | −0.64 | * | * | −342.15 | 0.50 | 6.54 | 2.9 | 0.02 |
Epiphyte GPP | ꟷ | ꟷ | −181.86 | 0.21 | * | * | 111.17 | 0.21 | 2.48 | 2.9 | 0.14 |
Phytoplankton GPP | ꟷ | 13.86 | ꟷ | ꟷ | * | * | −251.35 | 0.46 | 10.34 | 1.10 | 0.009 |
Benthic Periphyton Chla 1 | ꟷ | 0.11 | ꟷ | −0.003 | * | * | −0.12 | 0.49 | 6.25 | 2.9 | 0.02 |
Epiphyte Chla 1 | ꟷ | ꟷ | −1.48 | 0.002 | * | * | 1.20 | 0.20 | 2.41 | 2.9 | 0.15 |
Phytoplankton Chla 1 | ꟷ | ꟷ | 1.40 | 0.001 | * | * | −0.24 | 0.65 | 11.06 | 2.9 | 0.004 |
Benthic Periphyton AFDM 1 | −0.21 | ꟷ | ꟷ | 0.001 | * | * | 2.39 | 0.47 | 5.89 | 2.9 | 0.02 |
Epiphyte AFDM | ꟷ | ꟷ | −16.89 | 0.02 | * | * | 10.44 | 0.20 | 2.39 | 2.9 | 0.15 |
Phytoplankton AFDM | ꟷ | 0.95 | ꟷ | ꟷ | * | * | −15.33 | 0.30 | 5.70 | 1.10 | 0.04 |
Plot GPP 1 | ꟷ | ꟷ | ꟷ | ꟷ | ꟷ | * | NA | NA | NA | NA | NA |
Plot ER 1,2 | ꟷ | −0.08 | ꟷ | ꟷ | * | ꟷ | 2.51 | 0.25 | 4.66 | 1.10 | 0.06 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Goethem, R.R.; Huckins, C.J.; Marcarelli, A.M. Effects of Invasive Watermilfoil on Primary Production in Littoral Zones of North-Temperate Lakes. Diversity 2020, 12, 82. https://doi.org/10.3390/d12020082
Van Goethem RR, Huckins CJ, Marcarelli AM. Effects of Invasive Watermilfoil on Primary Production in Littoral Zones of North-Temperate Lakes. Diversity. 2020; 12(2):82. https://doi.org/10.3390/d12020082
Chicago/Turabian StyleVan Goethem, Ryan R., Casey J Huckins, and Amy M. Marcarelli. 2020. "Effects of Invasive Watermilfoil on Primary Production in Littoral Zones of North-Temperate Lakes" Diversity 12, no. 2: 82. https://doi.org/10.3390/d12020082
APA StyleVan Goethem, R. R., Huckins, C. J., & Marcarelli, A. M. (2020). Effects of Invasive Watermilfoil on Primary Production in Littoral Zones of North-Temperate Lakes. Diversity, 12(2), 82. https://doi.org/10.3390/d12020082