Marine Fungi: Biotechnological Perspectives from Deep-Hypersaline Anoxic Basins
Abstract
:1. Introduction
2. Fungi in DHABs
3. Biotechnological Potential of Fungi Inhabiting DHABs
3.1. DHABs as Reservoirs of Fungal Amylases, Lipases and Esterases
3.2. Fungi in DHABs as Potential Producers of Biomolecules for Pharmaceutical and Clinical Applications
3.3. Can DHABs Fungi Be Exploited for the Bioremediation of Polluted Environments?
4. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Danovaro, R.; Snelgrove, P.V.R.; Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 2014, 29, 465–475. [Google Scholar] [CrossRef]
- Van Dover, C. The Ecology of Deep-Sea Hydrothermal Vents; Princeton University Press: Princeton, NJ, USA, 2000. [Google Scholar]
- Danovaro, R.; Corinaldesi, C.; Dell’Anno, A.; Snelgrove, P.V.R. The deep-sea under global change. Curr. Biol. 2017, 27, R461–R465. [Google Scholar] [CrossRef] [Green Version]
- Charnock, H. Anomalous bottom water in the Red Sea. Nature 1964, 203, 591. [Google Scholar] [CrossRef]
- Backer, H.; Schoell, M. New Deeps with Brines and Metalliferous Sediments in the Red Sea. Nat. Phys. Sci. 1972, 240, 153–158. [Google Scholar] [CrossRef]
- Merlino, G.; Barozzi, A.; Michoud, G.; Ngugi, D.K.; Daffonchio, D. Microbial ecology of deep-sea hypersaline anoxic basins. FEMS Microbiol. Ecol. 2018, 94. [Google Scholar] [CrossRef]
- Cita, M.B. Exhumation of Messinian evaporites in the deep-sea and creation of deep anoxic brine-filled collapsed basins. Sediment. Geol. 2006, 188–189, 357–378. [Google Scholar] [CrossRef]
- Edgcomb, V.P.; Orsi, W.; Breiner, H.W.; Stock, A.; Filker, S.; Yakimov, M.M.; Stoeck, T. Novel active kinetoplastids associated with hypersaline anoxic basins in the Eastern Mediterranean deep-sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2011, 58, 1040–1048. [Google Scholar] [CrossRef]
- La Cono, V.; Smedile, F.; Bortoluzzi, G.; Arcadi, E.; Maimone, G.; Messina, E.; Borghini, M.; Oliveri, E.; Mazzola, S.; L’Haridon, S.; et al. Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: Prokaryotes and environmental settings. Environ. Microbiol. 2011, 13, 2250–2268. [Google Scholar] [CrossRef]
- van der Wielen, P.W.J.J.; Bolhuis, H.; Borin, S.; Daffonchio, D.; Corselli, C.; Giuliano, L.; D’Auria, G.; de Lange, G.J.; Huebner, A.; Varnavas, S.P.; et al. The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 2005, 307, 121–123. [Google Scholar] [CrossRef]
- Wallmann, K.; Suess, E.; Westbrook, G.H.; Winckler, G.; Cita, M.B. Salty brines on the Mediterranean sea floor. Nature 1997, 387, 31–32. [Google Scholar] [CrossRef]
- Alexander, E.; Stock, A.; Breiner, H.W.; Behnke, A.; Bunge, J.; Yakimov, M.M.; Stoeck, T. Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ. Microbiol. 2009, 11, 360–381. [Google Scholar] [CrossRef]
- Danovaro, R.; Dell’Anno, A.; Pusceddu, A.; Gambi, C.; Heiner, I.; Kristensen, R.M. The first metazoa living in permanently anoxic conditions. BMC Biol. 2010, 8, 30. [Google Scholar] [CrossRef]
- Eder, W.; Ludwig, W.; Huber, R. Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea. Arch. Microbiol. 1999, 172, 213–218. [Google Scholar] [CrossRef]
- Eder, W.; Jahnke, L.L.; Schmidt, M.; Huber, R. Microbial Diversity of the Brine-Seawater Interface of the Kebrit Deep, Red Sea, Studied via 16S rRNA Gene Sequences and Cultivation Methods. Appl. Environ. Microbiol. 2001, 67, 3077–3085. [Google Scholar] [CrossRef] [Green Version]
- Eder, W.; Schmidt, M.; Koch, M.; Garbe-Schönberg, D.; Huber, R. Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea. Environ. Microbiol. 2002, 4, 758–763. [Google Scholar] [CrossRef]
- Sass, A.M.; Sass, H.; Coolen, M.J.L.; Cypionka, H.; Overmann, J. Microbial Communities in the Chemocline of a Hypersaline Deep-Sea Basin (Urania Basin, Mediterranean Sea). Appl. Environ. Microbiol. 2001, 67, 5392–5402. [Google Scholar] [CrossRef] [Green Version]
- van der Wielen, P.W.J.J.; Heijs, S.K. Sulfate-reducing prokaryotic communities in two deep hypersaline anoxic basins in the Eastern Mediterranean deep sea. Environ. Microbiol. 2007, 9, 1335–1340. [Google Scholar] [CrossRef]
- Yakimov, M.M.; Giuliano, L.; Cappello, S.; Denaro, R.; Golyshin, P.N. Microbial community of a hydrothermal mud vent underneath the deep-sea anoxic brine Lake Urania (eastern Mediterranean). Orig. LIFE Evol. Biosph. 2007, 37, 177–188. [Google Scholar] [CrossRef]
- Edgcomb, V.; Orsi, W.; Leslin, C.; Epstein, S.S.; Bunge, J.; Jeon, S.; Yakimov, M.M.; Behnke, A.; Stoeck, T. Protistan community patterns within the brine and halocline of deep hypersaline anoxic basins in the eastern Mediterranean Sea. Extremophiles 2009, 13, 151–167. [Google Scholar] [CrossRef]
- Hallsworth, J.E.; Yakimov, M.M.; Golyshin, P.N.; Gillion, J.L.M.; D’Auria, G.; De Lima Alves, F.; La Cono, V.; Genovese, M.; McKew, B.A.; Hayes, S.L.; et al. Limits of life in MgCl2-containing environments: Chaotropicity defines the window. Environ. Microbiol. 2007, 9, 801–813. [Google Scholar] [CrossRef]
- Steinle, L.; Knittel, K.; Felber, N.; Casalino, C.; de Lange, G.; Tessarolo, C.; Stadnitskaia, A.; Sinninghe Damsté, J.S.; Zopfi, J.; Lehmann, M.F.; et al. Life on the edge: Active microbial communities in the Kryos MgCl2-brine basin at very low water activity. ISME J. 2018, 12, 1414–1426. [Google Scholar] [CrossRef]
- Yakimov, M.M.; La Cono, V.; Denaro, R.; D’Auria, G.; Decembrini, F.; Timmis, K.N.; Golyshin, P.N.; Giuliano, L. Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L’Atalante, Eastern Mediterranean Sea. ISME J. 2007, 1, 743–755. [Google Scholar] [CrossRef]
- Ngugi, D.K.; Blom, J.; Alam, I.; Rashid, M.; Ba-Alawi, W.; Zhang, G.; Hikmawan, T.; Guan, Y.; Antunes, A.; Siam, R.; et al. Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea. ISME J. 2015, 9, 396–411. [Google Scholar] [CrossRef]
- Antunes, A.; Ngugi, D.K.; Stingl, U. Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ. Microbiol. Rep. 2011, 3, 416–433. [Google Scholar] [CrossRef]
- Bernhard, J.M.; Kormas, K.; Pachiadaki, M.G.; Rocke, E.; Beaudoin, D.J.; Morrison, C.; Visscher, P.T.; Cobban, A.; Starczak, V.R.; Edgcomb, V.P. Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments. Front. Microbiol. 2014, 5, 1–13. [Google Scholar] [CrossRef]
- Stock, A.; Breiner, H.W.; Pachiadaki, M.; Edgcomb, V.; Filker, S.; La Cono, V.; Yakimov, M.M.; Stoeck, T. Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles 2012, 16, 21–34. [Google Scholar] [CrossRef]
- Valiela, I. Marine Ecological Processes; Springer: Berlin, Germany, 2016. [Google Scholar]
- Grossart, H.P.; Van den Wyngaert, S.; Kagami, M.; Wurzbacher, C.; Cunliffe, M.; Rojas-Jimenez, K. Fungi in aquatic ecosystems. Nat. Rev. Microbiol. 2019, 1–16. [Google Scholar] [CrossRef]
- Fungi in Biogeochemical Cycles; Gadd, G.M. (Ed.) Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Pachiadaki, M.G.; Yakimov, M.M.; Lacono, V.; Leadbetter, E.; Edgcomb, V. Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin. ISME J. 2014, 8, 2478–2489. [Google Scholar] [CrossRef]
- Cantrell, S.A.; Casillas-Martínez, L.; Molina, M. Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol. Res. 2006, 110, 962–970. [Google Scholar] [CrossRef]
- Corinaldesi, C.; Barone, G.; Marcellini, F.; Dell’Anno, A.; Danovaro, R. Marine microbial-derived molecules and their potential use in cosmeceutical and cosmetic products. Mar. Drugs 2017, 15, 118. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.P.; Cao, H.L.; Shek, C.S.; Tian, R.M.; Wong, Y.H.; Batang, Z.; Al-Suwailem, A.; Qian, P.Y.Y. Diversity and distribution of eukaryotic microbes in and around a brine pool adjacent to the Thuwal cold seeps in the Red Sea. Front. Microbiol. 2014, 5, 1–10. [Google Scholar] [CrossRef]
- Edgcomb, V.P.; Pachiadaki, M.G.; Mara, P.; Kormas, K.A.; Leadbetter, E.R.; Bernhard, J.M. Gene expression profiling of microbial activities and interactions in sediments under haloclines of E. Mediterranean deep hypersaline anoxic basins. ISME J. 2016, 10, 2643–2657. [Google Scholar] [CrossRef] [Green Version]
- Reich, M.; Labes, A. How to boost marine fungal research: A first step towards a multidisciplinary approach by combining molecular fungal ecology and natural products chemistry. Mar. Genom. 2017, 36, 57–75. [Google Scholar] [CrossRef]
- Orsi, W.; Song, Y.C.; Hallam, S.; Edgcomb, V. Effect of oxygen minimum zone formation on communities of marine protists. ISME J. 2012, 6, 1586–1601. [Google Scholar] [CrossRef]
- Edgcomb, V.P.; Beaudoin, D.; Gast, R.; Biddle, J.F.; Teske, A. Marine subsurface eukaryotes: the fungal majority. Environ. Microbiol. 2011, 13, 172–183. [Google Scholar] [CrossRef]
- Amend, A. From Dandruff to Deep-Sea Vents: Malassezia-like Fungi Are Ecologically Hyper-diverse. PLoS Pathog. 2014, 10, e1004277. [Google Scholar] [CrossRef]
- Sergeeva, N.G.; Kopytina, N.I. The first marine filamentous fungi discovered in the bottom sediments of the oxic/anoxic interface and in the bathyal zone of the black sea. Turk. J. Fish. Aquat. Sci. 2014, 14, 497–505. [Google Scholar] [CrossRef]
- Gunde-Cimerman, N.; Zalar, P.; De Hoog, S.; Plemenitaš, A. Hypersaline waters in salterns—Natural ecological niches for halophilic black yeasts. FEMS Microbiol. Ecol. 2000, 32, 235–240. [Google Scholar]
- Gunde-Cimerman, N.; Plemenitaš, A.; Oren, A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev. 2018, 42, 353–375. [Google Scholar] [CrossRef]
- Gunde-Cimerman, N.; Oren, A.; Plemenitaš, A. Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya. In Cellular Origin, Life in Extreme Habitats and Astrobiology; Gunde-Cimerman, N., Oren, A., Plemenitaš, A., Eds.; Springer: Dordrecht, The Netherlands, 2005; Volume 9. [Google Scholar]
- Gostinčar, C.; Lenassi, M.; Gunde-Cimerman, N.; Plemenitaš, A. Fungal Adaptation to Extremely High Salt Concentrations. Adv. Appl. Microbiol. 2011, 77, 71–96. [Google Scholar]
- Zajc, J.; Džeroski, S.; Kocev, D.; Oren, A.; Sonjak, S.; Tkavc, R.; Gunde-Cimerman, N. Chaophilic or chaotolerant fungi: A new category of extremophiles? Front. Microbiol. 2014, 5, 1–15. [Google Scholar] [CrossRef]
- Jiang, Y.; Xiong, X.; Danska, J.; Parkinson, J. Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality. Microbiome 2016, 4, 2. [Google Scholar] [CrossRef]
- Pachiadaki, M.G.; Taylor, C.; Oikonomou, A.; Yakimov, M.M.; Stoeck, T.; Edgcomb, V. In situ grazing experiments apply new technology to gain insights into deep-sea microbial food webs. Deep Sea Res. Part II Top. Stud. Oceanogr. 2016, 129, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Fernandez, M.; Simone, D.; Wu, X.; Soler, L.; Nilsson, E.; Holmfeldt, K.; Lantz, H.; Bertilsson, S.; Dopson, M. Metatranscriptomes Reveal That All Three Domains of Life Are Active but Are Dominated by Bacteria in the Fennoscandian Crystalline Granitic Continental Deep Biosphere. MBio 2018, 9, e01792-18. [Google Scholar] [CrossRef] [Green Version]
- Orsi, W.; Biddle, J.F.; Edgcomb, V. Deep Sequencing of Subseafloor Eukaryotic rRNA Reveals Active Fungi across Marine Subsurface Provinces. PLoS ONE 2013, 8, e56335. [Google Scholar] [CrossRef]
- Orsi, W.D.; Barker Jørgensen, B.; Biddle, J.F. Transcriptional analysis of sulfate reducing and chemolithoautotrophic sulfur oxidizing bacteria in the deep subseafloor. Environ. Microbiol. Rep. 2016, 8, 452–460. [Google Scholar] [CrossRef]
- Glaeser, S.P.; Kämpfer, P. The Family Sphingomonadaceae. In The Prokaryotes; Springer: Berlin, Heidelberg, Germany, 2014; pp. 641–707. ISBN 9783642301. [Google Scholar]
- Lau, M.C.Y.; Harris, R.L.; Oh, Y.; Yi, M.J.; Behmard, A.; Onstott, T.C. Taxonomic and functional compositions impacted by the quality of metatranscriptomic assemblies. Front. Microbiol. 2018, 9, 1–17. [Google Scholar] [CrossRef]
- Celaj, A.; Markle, J.; Danska, J.; Parkinson, J. Comparison of assembly algorithms for improving rate of metatranscriptomic functional annotation. Microbiome 2014, 2, 39. [Google Scholar] [CrossRef]
- Loeffler, C.; Karlsberg, A.; Eskin, E.; Koslicki, D.; Mangul, S. Analysis of multiple fungal sequence repositories highlights shortcomings in microbial databases. BioRxiv 2019. [Google Scholar] [CrossRef]
- Moreton, J.; Izquierdo, A.; Emes, R.D. Assembly, assessment, and availability of De novo generated eukaryotic transcriptomes. Front. Genet. 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Barone, G.; Rastelli, E.; Corinaldesi, C.; Tangherlini, M.; Danovaro, R.; Dell’Anno, A. Benthic deep-sea fungi in submarine canyons of the Mediterranean Sea. Prog. Oceanogr. 2018, 168, 57–64. [Google Scholar] [CrossRef]
- Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 2005, 4, 206–220. [Google Scholar] [CrossRef]
- Rahman, T.; Yarnall, B.; Doyle, D.A. Efflux drug transporters at the forefront of antimicrobial resistance. Eur. Biophys. J. 2017, 46, 647–653. [Google Scholar] [CrossRef]
- Ivarsson, M.; Schnürer, A.; Bengtson, S.; Neubeck, A. Anaerobic fungi: A potential source of biological H2 in the oceanic crust. Front. Microbiol. 2016, 7, 674. [Google Scholar] [CrossRef]
- Kruse, S.; Goris, T.; Westermann, M.; Adrian, L.; Diekert, G. Hydrogen production by Sulfurospirillum species enables syntrophic interactions of Epsilonproteobacteria. Nat. Commun. 2018, 9, 4872. [Google Scholar] [CrossRef]
- Bengtson, S.; Ivarsson, M.; Astolfo, A.; Belivanova, V.; Broman, C.; Marone, F.; Stampanoni, M. Deep-biosphere consortium of fungi and prokaryotes in Eocene subseafloor basalts. Geobiology 2014, 12, 489–496. [Google Scholar] [CrossRef]
- Danovaro, R.; Corinaldesi, C.; Dell’Anno, A.; Fabiano, M.; Corselli, C. Viruses, prokaryotes and DNA in the sediments of a deep-hypersaline anoxic basin (DHAB) of the Mediterranean Sea. Environ. Microbiol. 2005, 7, 586–592. [Google Scholar] [CrossRef]
- Corinaldesi, C. New perspectives in benthic deep-sea microbial ecology. Front. Mar. Sci. 2015, 2, 1–12. [Google Scholar] [CrossRef]
- Chambergo, F.S.; Valencia, E.Y. Fungal biodiversity to biotechnology. Appl. Microbiol. Biotechnol. 2016, 100, 2567–2577. [Google Scholar] [CrossRef]
- Deshmukh, S.K.; Prakash, V.; Ranjan, N. Marine Fungi: A Source of Potential Anticancer Compounds. Potential Anticancer Compd. Front. Microbiol. 2018, 8, 2536. [Google Scholar] [CrossRef]
- Coker, J.A. Extremophiles and biotechnology: Current uses and prospects. F1000Research 2016, 5, 396–403. [Google Scholar] [CrossRef]
- Gunde-Cimerman, N.; Zalar, P. Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Technol. Biotechnol. 2014, 52, 170–179. [Google Scholar]
- Nicoletti, R.A.A. The Marine-Derived Filamentous Fungi in Biotechnology. In Grand Challenges in Biology and Biotechnology; Rampelotto Pabulo, H., Ed.; Springer Nature: Basingstoke, UK, 2018; pp. 157–189. [Google Scholar]
- Plemenitaš, A.; Lenassi, M.; Konte, T.; Kejžar, A.; Zajc, J.; Gostinčar, C.; Gunde-Cimerman, N. Adaptation to high salt concentrations in halotolerant/halophilic fungi: A molecular perspective. Front. Microbiol. 2014, 5, 1–12. [Google Scholar] [CrossRef]
- Di Donato, P.; Buono, A.; Poli, A.; Finore, I.; Abbamondi, G.; Nicolaus, B.; Lama, L. Exploring Marine Environments for the Identification of Extremophiles and Their Enzymes for Sustainable and Green Bioprocesses. Sustainability 2019, 11, 149. [Google Scholar] [CrossRef]
- Frazzetto, G. White biotechnology. EMBO Rep. 2003, 4, 835–837. [Google Scholar]
- Chapman, J.; Ismail, A.; Dinu, C. Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks. Catalysts 2018, 8, 238. [Google Scholar] [CrossRef]
- Bommarius, A.S.; Paye, M.F. Stabilizing biocatalysts. Chem. Soc. Rev. 2013, 42, 6534–6565. [Google Scholar] [CrossRef]
- Madhavan, A.; Sindhu, R.; Binod, P.; Sukumaran, R.K.; Pandey, A. Strategies for design of improved biocatalysts for industrial applications. Bioresour. Technol. 2017, 245, 1304–1313. [Google Scholar] [CrossRef]
- Prasad, S.; Roy, I. Converting Enzymes into Tools of Industrial Importance. Recent Pat. Biotechnol. 2018, 12, 33–56. [Google Scholar] [CrossRef]
- Choi, J.M.; Han, S.S.; Kim, H.S. Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnol. Adv. 2015, 33, 1443–1454. [Google Scholar] [CrossRef]
- Zhang, X.; Li, S.J.; Li, J.J.; Liang, Z.Z.; Zhao, C.Q. Novel natural products from extremophilic fungi. Mar. Drugs 2018, 16, 194. [Google Scholar] [CrossRef]
- Adams, M.W.W.; Perler, F.B.; Kelly, R.M. Extremozymes: Expanding the Limits of Biocatalysis. Nat. Biotechnol. 1995, 13, 662–668. [Google Scholar] [CrossRef]
- Dumorné, K.; Córdova, D.C.; Astorga-Eló, M.; Renganathan, P. Extremozymes: A potential source for industrial applications. J. Microbiol. Biotechnol. 2017, 27, 649–659. [Google Scholar] [CrossRef]
- Dalmaso, G.; Ferreira, D.; Vermelho, A. Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications. Mar. Drugs 2015, 13, 1925–1965. [Google Scholar] [CrossRef] [Green Version]
- Suriya, J.; Bharathiraja, S.; Krishnan, S.; Manivasagan, P. Extremozyme from Marine Actinobacteria. In Marine Enzymes Biotechnology: Production and Industrial Applications, Part II—Marine Organisms Producing Enzymes; Elsevier: Amsterdam, The Netherlands, 2016; pp. 43–66. [Google Scholar]
- Sarmiento, F.; Peralta, R.; Blamey, J.M. Cold and Hot Extremozymes: Industrial Relevance and Current Trends. Front. Bioeng. Biotechnol. 2015, 3. [Google Scholar] [CrossRef]
- Stigter, D.; Alonso, D.O.V.; Dill, K.A. Protein stability: Electrostatics and compact denatured states. Proc. Natl. Acad. Sci. USA 1991, 88, 4176–4180. [Google Scholar] [CrossRef]
- Bonugli-Santos, R.C.; Vasconcelos, M.R.; dos, S.; Passarini, M.R.Z.; Vieira, G.A.L.; Lopes, V.C.P.; Mainardi, P.H.; Duarte, L.; Otero, I.V.R.; Yoshida, A.M.; et al. Marine-derived fungi: Diversity of enzymes and biotechnological applications. Front. Microbiol. 2015, 6, 1–15. [Google Scholar]
- Gupta, R.; Gigras, P.; Mohapatra, H.; Goswami, V.K.; Chauhan, B. Microbial α-amylases: A biotechnological perspective. Process Biochem. 2003, 38, 1599–1616. [Google Scholar] [CrossRef]
- Sivaramakrishnan, S.; Gangadharan, D.; Nampoothiri, K.M.; Soccol, C.R.; Pandey, A. α-Amylases from microbial sources—An overview on recent developments. Food Technol. Biotechnol. 2006, 44, 173–184. [Google Scholar]
- De Souza, P.M.; de Oliveira Magalhães, P. Application of microbial α-amylase in industry—A review. Braz. J. Microbiol. 2010, 41, 850–861. [Google Scholar] [CrossRef]
- Suriya, J.; Bharathiraja, S.; Krishnan, M.; Manivasagan, P.; Kim, S.K. Marine Microbial Amylases. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2016; Volume 79, pp. 161–177. [Google Scholar]
- Gopinath, S.C.B.; Anbu, P.; Arshad, M.K.M.; Lakshmipriya, T.; Voon, C.H.; Hashim, U.; Chinni, S. V Biotechnological Processes in Microbial Amylase Production. BioMed Res. Int. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Ali, I.; Akbar, A.; Anwar, M.; Prasongsuk, S.; Lotrakul, P.; Punnapayak, H. Purification and characterization of a polyextremophilic α-Amylase from an obligate halophilic Aspergillus penicillioides isolate and its potential for souse with detergents. BioMed Res. Int. 2015, 2015, 1–8. [Google Scholar]
- Abe, F.; Horikoshi, K. The biotechnological potential of piezophiles. Trends Biotechnol. 2001, 19, 102–108. [Google Scholar] [CrossRef]
- Ali, I.; Akbar, A.; Yanwisetpakdee, B.; Prasongsuk, S.; Lotrakul, P.; Punnapayak, H. Purification, characterization, and potential of saline waste water remediation of a polyextremophilic α-amylase from an obligate halophilic Aspergillus gracilis. BioMed Res. Int. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Carlsen, M.; Nielsen, J. Influence of carbon source on α-amylase production by Aspergillus oryzae. Appl. Microbiol. Biotechnol. 2001, 57, 346–349. [Google Scholar] [CrossRef]
- Bansal, N.; Tewari, R.; Soni, R.; Soni, S.K. Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manag. 2012, 32, 1341–1346. [Google Scholar] [CrossRef]
- Padmavathi, T.; Nandy, V.; Agarwal, P. Optimization of the medium for the production of cellulases by Aspergillus terreus and Mucor plumbeus. Eur. J. Exp. Biol. 2012, 2, 1161–1170. [Google Scholar]
- Liu, J.; Xue, D.; He, K.; Yao, S. Cellulase production in solid-state fermentation by marine Aspergillus ZJUBE-1 and Its enzymological properties. Adv. Sci. Lett. 2012, 16, 381–386. [Google Scholar] [CrossRef]
- Farag, A.M.; Abd-Elnabey, H.M.; Ibrahim, H.A.H.; El-Shenawy, M. Purification, characterization and antimicrobial activity of chitinase from marine-derived Aspergillus terreus. Egypt. J. Aquat. Res. 2016, 42, 185–192. [Google Scholar] [CrossRef]
- Bradner, J.R.; Gillings, M.; Nevalainen, K.M.H. Qualitative assessment of hydrolytic activities in antarctic microfungi grown at different temperatures on solid media. J. Microbiol. 1999, 15, 131–132. [Google Scholar]
- Baba, Y.; Sumitani, J.; Tani, S.; Kawaguchi, T. Characterization of Aspergillus aculeatus β-glucosidase 1 accelerating cellulose hydrolysis with Trichoderma cellulase system. AMB Express 2015, 5, 1–9. [Google Scholar] [CrossRef]
- Das, A.; Paul, T.; Ghosh, P.; Halder, S.K.; Das Mohapatra, P.K.; Pati, B.R.; Mondal, K.C. Kinetic Study of a Glucose Tolerant β-Glucosidase from Aspergillus fumigatus ABK9 Entrapped into Alginate Beads. Waste Biomass Valoriz. 2015, 6, 53–61. [Google Scholar] [CrossRef]
- Xue, D.S.; Chen, H.Y.; Ren, Y.R.; Yao, S.J. Enhancing the activity and thermostability of thermostable β-glucosidase from a marine Aspergillus niger at high salinity. Process Biochem. 2012, 47, 606–611. [Google Scholar] [CrossRef]
- Giraldo, M.A.; Gonçalves, H.B.; Furriel, R.; dos, P.M.; Jorge, J.A.; Guimarães, L.H.S. Characterization of the co-purified invertase and β-glucosidase of a multifunctional extract from Aspergillus terreus. World J. Microbiol. Biotechnol. 2014, 30, 1501–1510. [Google Scholar] [CrossRef]
- Dubrovskaya, Y.V.; Sova, V.V.; Slinkina, N.N.; Anastyuk, S.D.; Pivkin, M.V.; Zvyagintseva, T.N. Extracellular β-d-glucosidase of the Penicillium canescens marine fungus. Appl. Biochem. Microbiol. 2012, 48, 401–408. [Google Scholar] [CrossRef]
- Bonugli-Santos, R.C.; Durrant, L.R.; da Silva, M.; Sette, L.D. Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme Microb. Technol. 2010, 46, 32–37. [Google Scholar] [CrossRef]
- Panno, L.; Bruno, M.; Voyron, S.; Anastasi, A.; Gnavi, G.; Miserere, L.; Varese, G.C. Diversity, ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanica. New Biotechnol. 2013, 30, 685–694. [Google Scholar] [CrossRef]
- Duarte, A.W.F.; Dayo-Owoyemi, I.; Nobre, F.S.; Pagnocca, F.C.; Chaud, L.C.S.; Pessoa, A.; Felipe, M.G.A.; Sette, L.D. Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 2013, 17, 1023–1035. [Google Scholar] [CrossRef]
- Basheer, S.M.; Chellappan, S.; Beena, P.S.S.; Sukumaran, R.K.; Elyas, K.K.K.; Chandrasekaran, M. Lipase from marine Aspergillus awamori BTMFW032: Production, partial purification and application in oil effluent treatment. New Biotechnol. 2011, 28, 627–638. [Google Scholar] [CrossRef]
- Wang, L.; Chi, Z.; Wang, X.; Liu, Z.; Li, J. Diversity of lipase-producing yeasts from marine environments and oil hydrolysis by their crude enzymes. Ann. Microbiol. 2009, 57, 495–501. [Google Scholar] [CrossRef]
- Damare, S.; Raghukumar, C.; Muraleedharan, U.D.; Raghukumar, S. Deep-sea fungi as a source of alkaline and cold-tolerant proteases. Enzyme Microb. Technol. 2006, 39, 172–181. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Tian, Y.; Hou, Y.H.; Wang, T.H. Purification and characterization of the cold-active alkaline protease from marine cold-adaptive Penicillium chrysogenum FS010. Mol. Biol. Rep. 2009, 36, 2169–2174. [Google Scholar] [CrossRef]
- Chaud, L.C.; Lario, L.D.; Bonugli-Santos, R.C.; Sette, L.D.; Pessoa Junior, A. Improvement in extracellular protease production by the marine antarctic yeast Rhodotorula mucilaginosa L7. New Biotechnol. 2016, 33, 807–814. [Google Scholar] [CrossRef]
- Cavalcanti, R.M.F.; Jorge, J.A.; Guimarães, L.H.S. Characterization of Aspergillus fumigatus CAS-21 tannase with potential for propyl gallate synthesis and treatment of tannery effluent from leather industry. 3 Biotech 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Murugan, K.; Al-Sohaiba, S.A. Biocompatible Removal of Tannin and Associated Color from Tannery Effluent using the Biomass and Tannin Acyl Hydrolase (E.C.3.1.1.20) Enzymes of Mango Industry Solid Waste Isolate Aspergillus candidus MTTC 9628. Res. J. Microbiol. 2010, 5, 262–271. [Google Scholar] [CrossRef] [Green Version]
- Beena, P.S.; Basheer, S.M.; Bhat, S.G.; Bahkali, A.H.; Chandrasekaran, M. Propyl Gallate Synthesis Using Acidophilic Tannase and Simultaneous Production of Tannase and Gallic Acid by Marine Aspergillus awamori BTMFW032. Appl. Biochem. Biotechnol. 2011, 164, 612–628. [Google Scholar] [CrossRef]
- Beena, P.S.; Soorej, M.B.; Elyas, K.K.; Sarita, G.B.; Chandrasekaran, M. Acidophilic tannase from marine Aspergillus awamori BTMFW032. J. Microbiol. Biotechnol. 2010, 20, 1403–1414. [Google Scholar] [CrossRef]
- Raghukumar, C.; Muraleedharan, U.; Gaud, V.R.; Mishra, R. Xylanases of marine fungi of potential use for biobleaching of paper pulp. J. Ind. Microbiol. Biotechnol. 2004, 31, 433–441. [Google Scholar] [CrossRef]
- Sridevi, A.; Sandhya, A.; Ramanjaneyulu, G.; Narasimha, G.; Devi, P.S. Biocatalytic activity of Aspergillus niger xylanase in paper pulp biobleaching. 3 Biotech 2016, 6, 165. [Google Scholar] [CrossRef]
- Gayen, S.; Ghosh, U. Purification and characterization of tannin acyl hydrolase produced by mixed solid state fermentation of wheat bran and marigold flower by Penicillium notatum NCIM 923. BioMed Res. Int. 2013, 2013, 1–6. [Google Scholar] [CrossRef]
- Manzanares, P.; Van Den Broeck, H.C.; De Graaff, L.H.; Visser, J. Purification and Characterization of Two Different α-L-Rhamnosidases, RhaA and RhaB, from Aspergillus aculeatus. Appl. Environ. Microbiol. 2001, 67, 2230–2234. [Google Scholar] [CrossRef]
- Li, L.; Yu, Y.; Zhang, X.; Jiang, Z.; Zhu, Y.; Xiao, A.; Ni, H.; Chen, F. Expression and biochemical characterization of recombinant α-l-rhamnosidase r-Rha1 from Aspergillus niger JMU-TS528. Int. J. Biol. Macromol. 2016, 85, 391–399. [Google Scholar] [CrossRef]
- Young, N.M.; Johnston, R.A.Z.; Richards, J.C. Purification of the α-l-rhamnosidase of Penicillium decumbens and characterisation of two glycopeptide components. Carbohydr. Res. 1989, 191, 53–62. [Google Scholar] [CrossRef]
- Bernardi, A.V.; de Gouvêa, P.F.; Gerolamo, L.E.; Yonamine, D.K.; de Lourdes de Lima Balico, L.; Uyemura, S.A.; Dinamarco, T.M. Functional characterization of GH7 endo-1,4-β-glucanase from Aspergillus fumigatus and its potential industrial application. Protein Expr. Purif. 2018, 150, 1–11. [Google Scholar] [CrossRef]
- Elshafei, A.M.; Hassan, M.M.; Haroun, B.M.; Abdel-Fatah, O.M.; Atta, H.M.; Othman, A.M. Purification and properties of an endoglucanase of Aspergillus terreus DSM 826. J. Basic Microbiol. 2009, 49, 426–432. [Google Scholar] [CrossRef]
- Narra, M.; Dixit, G.; Divecha, J.; Kumar, K.; Madamwar, D.; Shah, A.R. Production, purification and characterization of a novel GH 12 family endoglucanase from Aspergillus terreus and its application in enzymatic degradation of delignified rice straw. Int. Biodeterior. Biodegrad. 2014, 88, 150–161. [Google Scholar] [CrossRef]
- Segato, F.; Berto, G.L.; Ares de Araújo, E.; Muniz, J.R.; Polikarpov, I. IUCr Expression, purification, crystallization and preliminary X-ray diffraction analysis of Aspergillus terreus endo-β-1,4-glucanase from glycoside hydrolase family 12. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2014, 70, 267–270. [Google Scholar] [CrossRef]
- Del-Cid, A.; Ubilla, P.; Ravanal, M.C.; Medina, E.; Vaca, I.; Levicán, G.; Eyzaguirre, J.; Chávez, R. Cold-Active Xylanase Produced by Fungi Associated with Antarctic Marine Sponges. Appl. Biochem. Biotechnol. 2014, 172, 524–532. [Google Scholar] [CrossRef]
- Zhang, L.L.; Tan, M.J.; Liu, G.L.; Chi, Z.; Wang, G.Y.; Chi, Z.M. Cloning and Characterization of an Inulinase Gene From the Marine Yeast Candida membranifaciens subsp. flavinogenie W14-3 and Its Expression in Saccharomyces sp. W0 for Ethanol Production Lin-Lin. Mol. Biotechnol. 2015, 57, 337–347. [Google Scholar] [CrossRef]
- Doi, S.A.; Pinto, A.B.; Canali, M.C.; Polezel, D.R.; Merguizo Chinellato, R.A.; de Oliveira, A.J. Density and diversity of filamentous fungi in the water and sediment of Araca bay in Sao Sebastiao, Sao Paulo, Brazil. BIOTA Neotrop. 2018, 18, e20170416. [Google Scholar] [CrossRef]
- Mäkelä, M.R.; Dilokpimol, A.; Koskela, S.M.; Kuuskeri, J.; de Vries, R.P.; Hildén, K. Characterization of a feruloyl esterase from Aspergillus terreus facilitates the division of fungal enzymes from Carbohydrate Esterase family 1 of the carbohydrate-active enzymes (CAZy) database. Microb. Biotechnol. 2018, 11, 869–880. [Google Scholar] [CrossRef]
- Souza, P.M.; de Freitas, M.M.; Cardoso, S.L.; Pessoa, A.; Guerra, E.N.S.; Magalhães, P.O. Optimization and purification of L-asparaginase from fungi: A systematic review. Crit. Rev. Oncol. Hematol. 2017, 120, 194–202. [Google Scholar] [CrossRef]
- Kebeish, R.M.; El-Sayed, A.S. Morphological and molecular characterization of L-methioninase producing Aspergillus species. Afr. J. Biotechnol. 2012, 11, 15280–15290. [Google Scholar]
- Liu, Z.; Li, X.; Chi, Z.; Wang, L.; Li, J.; Wang, X. Cloning, characterization and expression of the extracellular lipase gene from Aureobasidium pullulans HN2-3 isolated from sea saltern. Antonie Van Leeuwenhoek 2008, 94, 245–255. [Google Scholar] [CrossRef]
- Schreck, S.D.; Grunden, A.M. Biotechnological applications of halophilic lipases and thioesterases. Appl. Microbiol. Biotechnol. 2014, 98, 1011–1021. [Google Scholar] [CrossRef]
- David, K. Factors influencing the activity of fungus lipase. J. Biol. Chem. 1935, 108, 421–430. [Google Scholar]
- de Almeida, A.F.; Tauk-Tornisielo, S.M.; Carmona, E.C. Acid lipase from Candida viswanathii: Production, biochemical properties, and potential application. BioMed Res. Int. 2013, 2013, 1–10. [Google Scholar]
- Verma, S.; Prasanna, R.; Saxena, J.; Sharma, V.; Nain, L. Deciphering the metabolic capabilities of a lipase producing Pseudomonas aeruginosa SL-72 strain. Folia Microbiol. (Praha) 2012, 57, 525–531. [Google Scholar] [CrossRef]
- Guerrand, D. Lipases industrial applications: focus on food and agroindustries. OCL 2017, 24, D403. [Google Scholar] [CrossRef]
- Ferrer, M.; Golyshina, O.V.; Chernikova, T.N.; Khachane, A.N.; Martins, V.A.P.; Santos, D.; Yakimov, M.M.; Timmis, K.N.; Golyshin, P.N. Microbial Enzymes Mined from the Urania Deep-Sea Hypersaline Anoxic Basin. Chem. Biol. 2005, 12, 895–904. [Google Scholar] [CrossRef] [Green Version]
- Kuddus, M. Cold-active enzymes in food biotechnology: An updated mini review. J. Appl. Biol. Biotechnol. 2018, 6, 58–63. [Google Scholar]
- Linnakoski, R.; Reshamwala, D.; Veteli, P.; Cortina-Escribano, M.; Vanhanen, H.; Marjomäki, V. Antiviral Agents From Fungi: Diversity, Mechanisms and Potential Applications. Front. Microbiol. 2018, 9, 1–18. [Google Scholar] [CrossRef]
- Gomes, N.; Lefranc, F.; Kijjoa, A.; Kiss, R. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents? Mar. Drugs 2015, 13, 3950–3991. [Google Scholar] [CrossRef]
- Silber, J.; Kramer, A.; Labes, A.; Tasdemir, D. From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics. Mar. Drugs 2016, 14, 137. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Carroll, A.R.; Munro, M.M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2018, 35, 8–53. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Wang, Y.; Liu, D.; Proksch, P.; Yu, S.; Lin, W. Antioxidative phenolic compounds from a marine-derived fungus Aspergillus versicolor. Tetrahedron 2016, 72, 50–57. [Google Scholar] [CrossRef]
- Ventola, C.L. The Antibiotic Resistance: Part 1: Causes and treats. P T 2015, 40, 277–283. [Google Scholar]
- Murugaiyan, K. Marine Fungal Diversity and Bioprospecting. In Springer Handbook of Marine Biotechnology; Kim, S.K., Ed.; Springer: Berlin, Germany, 2015; pp. 13–25. [Google Scholar]
- Imhoff, J.F.; Labes, A.; Wiese, J. Bio-mining the microbial treasures of the ocean: New natural products. Biotechnol. Adv. 2011, 29, 468–482. [Google Scholar] [CrossRef]
- Bhadury, P.; Mohammad, B.T.; Wright, P.C. The current status of natural products from marine fungi and their potential as anti-infective agents. J. Ind. Microbiol. Biotechnol. 2006, 33, 325–337. [Google Scholar] [CrossRef]
- Saleem, M.; Ali, M.S.; Hussain, S.; Jabbar, A.; Ashraf, M.; Lee, Y.S. Marine natural products of fungal origin. Nat. Prod. Rep. 2007, 24, 1142–1152. [Google Scholar] [CrossRef]
- Javed, F.; Qadir, M.I.; Janbaz, K.H.; Ali, M. Novel drugs from marine microorganisms. Crit. Rev. Microbiol. 2011, 37, 245–249. [Google Scholar] [CrossRef]
- Sithranga Boopathy, N.; Kathiresan, K. Anticancer drugs from marine flora: An overview. J. Oncol. 2010, 2010. [Google Scholar] [CrossRef]
- Demain, A.L.; Adrio, J.L. Contributions of Microorganisms to Industrial Biology. Mol. Biotechnol. 2008, 38, 41–55. [Google Scholar] [CrossRef]
- Li, X.; Li, X.M.; Li, X.D.; Xu, G.M.; Liu, Y.; Wang, B.G. 20-Nor-isopimarane cycloethers from the deep-sea sediment-derived fungus: Aspergillus wentii SD-310. RSC Adv. 2016, 6, 75981–75987. [Google Scholar] [CrossRef]
- Fredimoses, M.; Zhou, X.; Ai, W.; Tian, X.; Yang, B.; Lin, X.; Xian, J.Y.; Liu, Y. Westerdijkin A, a new hydroxyphenylacetic acid derivative from deep sea fungus Aspergillus westerdijkiae SCSIO 05233. Nat. Prod. Res. 2015, 29, 158–162. [Google Scholar] [CrossRef]
- Shang, Z.; Li, X.; Meng, L.; Li, C.; Gao, S.; Huang, C.; Wang, B. Chemical profile of the secondary metabolites produced by a deep-sea sediment-derived fungus Penicillium commune SD-118. Chin. J. Oceanol. Limnol. 2012, 30, 305–314. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, H.; Shang, Z.; Jiao, B.; Yuan, B.; Sun, W.; Wang, B.; Miao, M.; Huang, C. SD118-xanthocillin X (1), a novel marine agent extracted from Penicillium commune, induces autophagy through the inhibition of the MEK/ERK pathway. Mar. Drugs 2012, 10, 1345–1359. [Google Scholar] [CrossRef]
- Xu, R.; Xu, G.M.; Li, X.M.; Li, C.S.; Wang, B.G. Characterization of a newly isolated marine fungus Aspergillus dimorphicus for optimized production of the anti-tumor agent wentilactones. Mar. Drugs 2015, 13, 7040–7054. [Google Scholar] [CrossRef]
- Lv, C.; Hong, Y.; Miao, L.; Li, C.; Xu, G.; Wei, S.; Wang, B.; Huang, C.; Jiao, B. Wentilactone A as a novel potential antitumor agent induces apoptosis and G2/M arrest of human lung carcinoma cells, and is mediated by HRas-GTP accumulation to excessively activate the Ras/Raf/ERK/p53-p21 pathway. Cell Death Dis. 2013, 4, e952–e963. [Google Scholar] [CrossRef]
- Zhang, Z.; Miao, L.; Lv, C.; Sun, H.; Wei, S.; Wang, B.; Huang, C.; Jiao, B. Wentilactone B induces G2/M phase arrest and apoptosis via the Ras/Raf/MAPK signaling pathway in human hepatoma SMMC-7721 cells. Cell Death Dis. 2013, 4, e657–e669. [Google Scholar] [CrossRef]
- Renneberg, R. Biotech History: Yew trees, paclitaxel synthesis and fungi. Biotechnol. J. 2007, 2, 1207–1209. [Google Scholar] [CrossRef]
- Stierle, A.; Strobel, G.; Stierle, D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 1993, 260, 214–216. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, H.; Liu, L.; Lin, J.; Tang, K. A review: Recent advances and future prospects of taxol-producing endophytic fungi. Appl. Microbiol. Biotechnol. 2010, 86, 1707–1717. [Google Scholar] [CrossRef]
- Kusari, S.; Singh, S.; Jayabaskaran, C. Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology. Trends Biotechnol. 2014, 32, 304–311. [Google Scholar] [CrossRef]
- Qiao, W.; Ling, F.; Yu, L.; Huang, Y.; Wang, T. Enhancing taxol production in a novel endophytic fungus, Aspergillus aculeatinus Tax-6, isolated from Taxus chinensis var. mairei. Fungal Biol. 2017, 121, 1037–1044. [Google Scholar] [CrossRef]
- Mulder, K.C.L.; Mulinari, F.; Franco, O.L.; Soares, M.S.F.; Magalhães, B.S.; Parachin, N.S. Lovastatin production: From molecular basis to industrial process optimization. Biotechnol. Adv. 2015, 33, 648–665. [Google Scholar] [CrossRef]
- Tobert, J.A. Lovastatin and beyond: The history of the HMG-COA reductase inhibitors. Nat. Rev. Drug Discov. 2003, 2, 517–526. [Google Scholar] [CrossRef]
- Xiao, Z.; Lin, S.O.E.; Tan, C.; Lu, Y.; He, L.; Huang, X.; She, Z.; Xiao, Z.; Lin, S.O.E.; Tan, C.; et al. Asperlones A and B, dinaphthalenone derivatives from a mangrove endophytic fungus Aspergillus sp. 16-5C. Mar. Drugs 2015, 13, 366–378. [Google Scholar] [CrossRef]
- Navarri, M.; Jégou, C.; Meslet-Cladière, L.; Brillet, B.; Barbier, G.; Burgaud, G.; Fleury, Y. Deep Subseafloor Fungi as an Untapped Reservoir of Amphipathic Antimicrobial Compounds. Mar. Drugs 2016, 14, 50. [Google Scholar] [CrossRef]
- Zhao, H.G.; Wang, M.; Lin, Y.Y.; Zhou, S.L. Optimization of culture conditions for penicilazaphilone C production by a marine-derived fungus Penicillium sclerotiorum M-22. Lett. Appl. Microbiol. 2018, 66, 222–230. [Google Scholar] [CrossRef]
- Zhou, S.L.; Wang, M.; Zhao, H.; Huang, Y.; Lin, Y.; Tan, G.; Chen, S. Penicilazaphilone C, a new antineoplastic and antibacterial azaphilone from the Marine Fungus Penicillium Sclerotiorum. Arch. Pharm. Res. 2016, 39, 1621–1627. [Google Scholar] [CrossRef]
- Bigelis, R.; He, H.; Yang, H.Y.; Chang, L.P.; Greenstein, M. Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation. J. Ind. Microbiol. Biotechnol. 2006, 33, 815–826. [Google Scholar] [CrossRef]
- Heinig, U.; Scholz, S.; Jennewein, S. Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers. 2013, 60, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Borthwick, A.D. 2,5-Diketopiperazines: Synthesis, Reactions, Medicinal Chemistry, and Bioactive Natural Products. Chem. Rev. 2012, 112, 3641–3716. [Google Scholar] [CrossRef]
- Renshaw, J.C.; Robson, G.D.; Trinci, A.P.J.; Wiebe, M.G.; Livens, F.R.; Collison, D.; Taylor, R.J. Fungal siderophores: Structures, functions and applications. Mycol. Res. 2002, 106, 1123–1142. [Google Scholar] [CrossRef]
- Uchida, R.; Nakajyo, K.; Kobayashi, K.; Ohshiro, T.; Terahara, T.; Imada, C.; Tomoda, H. 7-Chlorofolipastatin, an inhibitor of sterol O-acyltransferase, produced by marine-derived Aspergillus ungui NKH-007. J. Antibiot. (Tokyo) 2016, 69, 647–651. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhang, Y.; Xu, X.Y.; Qi, S.H. Diverse deep-sea fungi from the south china sea and their antimicrobial activity. Curr. Microbiol. 2013, 67, 525–530. [Google Scholar] [CrossRef]
- Rodríguez-Martín, A.; Acosta, R.; Liddell, S.; Núñez, F.; Benito, M.J.; Asensio, M.A. Characterization of the novel antifungal protein PgAFP and the encoding gene of Penicillium chrysogenum. Peptides 2010, 31, 541–547. [Google Scholar] [CrossRef]
- Visamsetti, A.; Ramachandran, S.S.; Kandasamy, D. Penicillium chrysogenum DSOA associated with marine sponge (Tedania anhelans) exhibit antimycobacterial activity. Microbiol. Res. 2016, 185, 55–60. [Google Scholar] [CrossRef]
- De la Torre, P.; Meyer, D.K.; Reboli, A.C. Anidulafungin: A novel echinocandin for candida infections. Future Microbiol. 2008, 3, 593–601. [Google Scholar] [CrossRef]
- Lee, C.; Sohn, J.H.; Jang, J.-H.; Ahn, J.S.; Oh, H.; Baltrusaitis, J.; Hwang, I.H.; Gloer, J.B. Cycloexpansamines A and B: Spiroindolinone alkaloids from a marine isolate of Penicillium sp. (SF-5292). J. Antibiot. (Tokyo) 2015, 68, 715–718. [Google Scholar] [CrossRef]
- Bringmann, G.; Gulder, T.A.M.; Lang, G.; Schmitt, S.; Stöhr, R.; Wiese, J.; Nagel, K.; Imhoff, J.F. Large-scale biotechnological production of the antileukemic marine natural product sorbicillactone A. Mar. Drugs 2007, 5, 23–30. [Google Scholar] [CrossRef]
- Guzmán-Chávez, F.; Salo, O.; Nygård, Y.; Lankhorst, P.P.; Bovenberg, R.A.L.; Driessen, A.J.M. Mechanism and regulation of sorbicillin biosynthesis by Penicillium chrysogenum. Microb. Biotechnol. 2017, 10, 958–968. [Google Scholar] [CrossRef]
- Bu, Y.Y.; Yamazaki, H.; Takahashi, O.; Kirikoshi, R.; Ukai, K.; Namikoshi, M. Penicyrones A and B, an epimeric pair of α-pyrone-type polyketides produced by the marine-derived Penicillium sp. J. Antibiot. (Tokyo) 2016, 69, 57–61. [Google Scholar] [CrossRef]
- Wu, Z.H.; Liu, D.; Xu, Y.; Chen, J.L.; Lin, W.H. Antioxidant xanthones and anthraquinones isolated from a marine-derived fungus Aspergillus versicolor. Chin. J. Nat. Med. 2018, 16, 219–224. [Google Scholar] [CrossRef]
- Kawahara, T.; Takagi, M.; Shin-ya, K. Three new depsipeptides, JBIR-113, JBIR-114 and JBIR-115, isolated from a marine sponge-derived Penicillium sp. fS36. J. Antibiot. (Tokyo) 2012, 65, 147–150. [Google Scholar] [CrossRef]
- Fenical, W.; Jensen, P.R.; Cheng, X.C. Avrainvillamide, a Cytotoxic Marine Natural Product, and the Derivatives Thereof. U.S. Patent US6066635, 23 May 2000. [Google Scholar]
- Kanoh, K.; Kohno, S.; Asari, T.; Harada, T.; Katada, J.; Muramatsu, M.; Kawashima, H.; Sekiya, H.; Uno, I. (−)-Phenylahistin: A new mammalian cell cycle inhibitor produced by Aspergillus ustus. Bioorganic Med. Chem. Lett. 1997, 7, 2847–2852. [Google Scholar] [CrossRef]
- Li, Y.; Ye, D.; Shao, Z.; Cui, C.; Che, Y. A sterol and spiroditerpenoids from a Penicillium sp. isolated from a deep sea sediment sample. Mar. Drugs 2012, 10, 497–508. [Google Scholar] [CrossRef]
- Dong, Y.; Cui, C.B.; Li, C.W.; Hua, W.; Wu, C.J.; Zhu, T.J.; Gu, Q.Q. Activation of dormant secondary metabolite production by introducing neomycin resistance into the deep-sea fungus, Aspergillus versicolor ZBY-3. Mar. Drugs 2014, 12, 4326–4352. [Google Scholar] [CrossRef]
- Saraiva, N.N.; Rodrigues, B.S.F.; Jimenez, P.C.; Guimarães, L.A.; Torres, M.C.M.; Rodrigues-Filho, E.; Pfenning, L.H.; Abreu, L.M.; Mafezoli, J.; De Mattos, M.C.; et al. Cytotoxic compounds from the marine-derived fungus Aspergillus sp. recovered from the sediments of the Brazilian coast. Nat. Prod. Res. 2015, 29, 1545–1550. [Google Scholar] [CrossRef]
- Li, C.S.; Li, X.M.; Gao, S.S.; Lu, Y.H.; Wang, B.G. Cytotoxic anthranilic acid derivatives from deep sea sediment-derived fungus Penicillium paneum SD-44. Mar. Drugs 2013, 11, 3068–3076. [Google Scholar] [CrossRef] [PubMed]
- Zhuravleva, O.I.; Afiyatullov, S.S.; Vishchuk, O.S.; Denisenko, V.A.; Slinkina, N.N.; Smetanina, O.F. Decumbenone C, a new cytotoxic decaline derivative from the marine fungus Aspergillus sulphureus KMM 4640. Arch. Pharm. Res. 2012, 35, 1757–1762. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Yang, J.; Cai, X.; She, Z.; Lin, Y. A new furanocoumarin from the mangrove endophytic fungus Penicillium sp. (ZH16). Nat. Prod. Res. 2012, 26, 1291–1295. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Q.L.; Nong, X.H.; Zhang, X.Y.; Xu, X.Y.; Qi, S.H.; Wang, Y.F. Oxalicumone A, a new dihydrothiophene-condensed sulfur chromone induces apoptosis in leukemia cells through endoplasmic reticulum stress pathway. Eur. J. Pharmacol. 2016, 783, 47–55. [Google Scholar] [CrossRef]
- Wu, G.; Lin, A.; Gu, Q.; Zhu, T.; Li, D. Four new chloro-eremophilane sesquiterpenes from an antarctic deep-sea derived fungus, Penicillium sp. PR19N-1. Mar. Drugs 2013, 11, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.C.; Chiang, Y.M.; Praseuth, M.B.; Kuo, P.L.; Liang, H.L.; Hsu, Y.L. Asperfuranone from Aspergillus nidulans inhibits proliferation of human non-small cell lung cancer A549 cells via blocking cell cycle progression and inducing apoptosis. Basic Clin. Pharmacol. Toxicol. 2010, 107, 583–589. [Google Scholar] [CrossRef]
- Balibar, C.J.; Howard-Jones, A.R.; Walsh, C.T. Terrequinone A biosynthesis through L-tryptophan oxidation, dimerization and bisprenylation. Nat. Chem. Biol. 2007, 3, 584–592. [Google Scholar] [CrossRef]
- Gamal-Eldeen, A.M.; Abdel-Lateff, A.; Okino, T. Modulation of carcinogen metabolizing enzymes by chromanone A; a new chromone derivative from algicolous marine fungus Penicillium sp. Environ. Toxicol. Pharmacol. 2009, 28, 317–322. [Google Scholar] [CrossRef]
- Zhen, X.; Gong, T.; Wen, Y.-H.; Yan, D.-J.; Chen, J.-J.; Zhu, P. Chrysoxanthones A–C, three new Xanthone–Chromanone heterdimers from sponge-associated Penicillium chrysogenum HLS111 treated with histone deacetylase inhibitor. Mar. Drugs 2018, 16, 357. [Google Scholar] [CrossRef]
- Gerhards, N.; Neubauer, L.; Tudzynski, P.; Li, S.M. Biosynthetic pathways of ergot alkaloids. Toxins (Basel). 2014, 6, 3281–3295. [Google Scholar] [CrossRef]
- Pócsi, I.; Jeney, V.; Kertai, P.; Pócsi, I.; Emri, T.; Gyémánt, G.; Fésüs, L.; Balla, J.; Balla, G. Fungal siderophores function as protective agents of LDL oxidation and are promising anti-atherosclerotic metabolites in functional food. Mol. Nutr. Food Res. 2008, 52, 1434–1447. [Google Scholar] [CrossRef] [PubMed]
- Van Den Berg, M.A.; Albang, R.; Albermann, K.; Badger, J.H.; Daran, J.M.; Driessen, A.J.; Garcia-Estrada, C.; Fedorova, N.D.; Harris, D.M.; Heijne, W.H.M.; et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat. Biotechnol. 2008, 26, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Nutzmann, H.W.; Reyes-Dominguez, Y.; Scherlach, K.; Schroeckh, V.; Horn, F.; Gacek, A.; Schumann, J.; Hertweck, C.; Strauss, J.; Brakhage, A.A. Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc. Natl. Acad. Sci. USA 2011, 108, 14282–14287. [Google Scholar] [CrossRef] [PubMed]
- Garrigues, S.; Gandía, M.; Castillo, L.; Coca, M.; Marx, F.; Marcos, J.F.; Manzanares, P. Three antifungal proteins from Penicillium expansum: Different patterns of production and antifungal activity. Front. Microbiol. 2018, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; LI, X.-M.; Wang, B.-G. Anthraquinone Derivatives Produced by Marine-Derived Fungus Aspergillus versicolor EN-7. Biosci. Biotechnol. Biochem. 2012, 76, 1774–1776. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.N. Biocatalysis for synthesis for chiral pharmaceutical intermediates. In Biocatalysis in the Pharmaceutical and Biotechnology Industries; CRC Press: Boca Raton, FA, USA, 2006; pp. 105–151. [Google Scholar]
- Endo, A.; Kuroda, M.; Tsujita, Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogensis produced by Penicillium citrinum. J. Antibiot. (Tokyo) 1976, 29, 1346–1348. [Google Scholar] [CrossRef] [PubMed]
- Feingold, K.R.; Grunfeld, C. Cholesterol-Lowering Drugs; MDText.com, Inc.: South Dartmouth, MA, USA, 1999; Volume 8. [Google Scholar]
- Alberts, A.W.; Chen, J.; Kuron, G.; Hunt, V.; Huff, J.; Hoffman, C.; Rothrock, J.; Lopez, M.; Joshua, H.; Harris, E.; et al. Mevinolin: A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. USA 1980, 77, 3957–3961. [Google Scholar] [CrossRef] [PubMed]
- Pejin, B.; Karaman, M. Antitumor Natural Products of Marine-Derived Fungi. In Fungal Metabolites; Springer: Cham, Switzerland, 2017; pp. 1–28. [Google Scholar]
- Akcil, A.; Erust, C.; Ozdemiroglu, S.; Fonti, V.; Beolchini, F. A review of approaches and techniques used in aquatic contaminated sediments: Metal removal and stabilization by chemical and biotechnological processes. J. Clean. Prod. 2015, 86, 24–36. [Google Scholar] [CrossRef]
- Prasad, R. Mycoremediation and Environmental Sustainability; Springer: Berlin, Germany, 2018. [Google Scholar]
- Deshmukh, R.; Khardenavis, A.A.; Purohit, H.J. Diverse Metabolic Capacities of Fungi for Bioremediation. Indian J. Microbiol. 2016, 56, 247–264. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, I.M.M.; Philp, J.C. Bioremediation, an environmental remediation technology for the bioeconomy. Trends Biotechnol. 2013, 31, 329–332. [Google Scholar] [CrossRef]
- Mishra, A.; Malik, A. Recent Advances in Microbial Metal Bioaccumulation. Crit. Rev. Environ. Sci. Technol. 2013, 43, 1162–1222. [Google Scholar] [CrossRef]
- Cerniglia, C.E. Fungal metabolism of polycyclic aromatic hydrocarbons: Past, present and future applications in bioremediation. J. Ind. Microbiol. Biotechnol. 1997, 19, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Marco-Urrea, E.; García-Romera, I.; Aranda, E. Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnol. 2015, 32, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Harms, H.; Schlosser, D.; Wick, L.Y. Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nat. Rev. Microbiol. 2011, 9, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Passarini, M.R.Z.; Rodrigues, M.V.N.; da Silva, M.; Sette, L.D. Marine-derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Mar. Pollut. Bull. 2011, 62, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Haritash, A.K.; Kaushik, C.P. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. J. Hazard. Mater. 2009, 169, 1–15. [Google Scholar] [CrossRef]
- Ciullini, I.; Tilli, S.; Scozzafava, A.; Briganti, F. Fungal laccase, cellobiose dehydrogenase, and chemical mediators: Combined actions for the decolorization of different classes of textile dyes. Bioresour. Technol. 2008, 99, 7003–7010. [Google Scholar] [CrossRef]
- Wang, M.X.; Zhang, Q.L.; Yao, S.J. A novel biosorbent formed of marine-derived Penicillium janthinellum mycelial pellets for removing dyes from dye-containing wastewater. Chem. Eng. J. 2015, 259, 837–844. [Google Scholar] [CrossRef]
- Asses, N.; Ayed, L.; Hkiri, N.; Hamdi, M. Congo Red Decolorization and Detoxification by Aspergillus niger: Removal Mechanisms and Dye Degradation Pathway. BioMed Res. Int. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Garza, M.T.G.; Perez, D.B.; Rodriguez, A.V.; Garcia-Gutierrez, D.I.; Zarate, X.; Cardenas, M.E.C.; Urraca-Botello, L.I.; Lopez-Chuken, U.J.; Trevino-Torres, A.L.; De Cerino-Córdoba, F.J.; et al. Metal-induced production of a novel bioadsorbent exopolysaccharide in a native Rhodotorula mucilaginosa from the mexican northeastern region. PLoS ONE 2016, 11, e0148430. [Google Scholar]
- Arun, A.; Raja, P.P.; Arthi, R.; Ananthi, M.; Kumar, K.S.; Eyini, M. Polycyclic Aromatic Hydrocarbons (PAHs) Biodegradation by Basidiomycetes Fungi, Pseudomonas Isolate, and Their Cocultures: Comparative In Vivo and In Silico Approach. Appl. Biochem. Biotechnol. 2008, 151, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, C.G.; Lee, D.J. Enzyme technology and biological remediation. Enzyme Microb. Technol. 2006, 38, 291–316. [Google Scholar] [CrossRef]
- Karigar, C.S.; Rao, S.S. Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Res. 2011, 2011, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zehra, A.; Dubey, M.K.; Meena, M.; Aamir, M.; Patel, C.B.; Upadhyay, R.S. Role of Penicillium Species in Bioremediation Processes. In New and Future Developments in Microbial Biotechnology and Bioengineering; Gupta, V.K., Rodriguez Couto, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 247–260. [Google Scholar]
- Vieira, G.A.L.; Magrini, M.J.; Bonugli-Santos, R.C.; Rodrigues, M.V.N.; Sette, L.D. Polycyclic aromatic hydrocarbons degradation by marine-derived basidiomycetes: Optimization of the degradation process. Brazilian J. Microbiol. 2018, 49, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Walker, A. Microbial degradation of organophosphorus compounds. FEMS Microbiol. Rev. 2006, 30, 428–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeleye, A.O.; Nkereuwem, M.E.; Omokhudu, G.I.; Amoo, A.O.; Shiaka, G.P.; Yerima, M.B. Effect of microorganisms in the bioremediation of spent engine oil and petroleum related environmental pollution. J. Appl. Sci. Environ. Manag. 2018, 22, 157. [Google Scholar] [CrossRef] [Green Version]
- Boguslawska-Wąs, E.; Dąbrowski, W. The seasonal variability of yeasts and yeast-like organisms in water and bottom sediment of the Szczecin Lagoon. Int. J. Hyg. Environ. Health 2001, 203, 451–458. [Google Scholar] [CrossRef]
- Wu, Y.R.; He, T.T.; Lun, J.S.; Maskaoui, K.; Huang, T.W.; Hu, Z. Removal of Benzo[a]pyrene by a fungus Aspergillus sp. BAP14. World J. Microbiol. Biotechnol. 2009, 25, 1395–1401. [Google Scholar] [CrossRef]
- Vala, A.K. On the Extreme Tolerance and Removal of Arsenic by a Facultative Marine Fungus Aspergillus sydowii; Gautam, A., Pathak, C., Eds.; Daya Publishing House: New Delhi, India, 2017. [Google Scholar]
- Vala, A.K.; Sutariya, V. Trivalent arsenic tolerance and accumulation in two facultative marine fungi. Jundishapur J. Microbiol. 2012, 5, 542–545. [Google Scholar] [CrossRef]
- Vala, A.K.; Anand, N.; Bhatt, P.N.; Joshi, H.V. Tolerance and accumulation of hexavalent chromium by two seaweed associated aspergilli. Mar. Pollut. Bull. 2004, 48, 983–985. [Google Scholar] [CrossRef]
- Khambhaty, Y.; Mody, K.; Basha, S.; Jha, B. Biosorption of Cr(VI) onto marine Aspergillus niger: Experimental studies and pseudo-second order kinetics. World J. Microbiol. Biotechnol. 2009, 25, 1413–1421. [Google Scholar] [CrossRef]
- Coreno-Alonso, A.; Solé, A.; Diestra, E.; Esteve, I.; Gutiérrez-Corona, J.F.; Reyna Lopez, G.E.; Fernanández, F.J.; Tomasini, A. Mechanisms of interaction of chromium with Aspergillus niger var tubingensis strain Ed8. Bioresour. Technol. 2014, 158, 188–192. [Google Scholar] [CrossRef] [PubMed]
Fungal Taxon/Closest Relative | DHAB | Site | Depth | Area | Coordinates | Reference |
---|---|---|---|---|---|---|
Malasseziales (O) | Bannock | Halocline | 3330 | Mediterranean | 34°17.488’ N 20°00.692’ E | [20] |
Malasseziomycetes (C), Microbotryomycetes (C) and Dothideomycetes (C) | Discovery | Upper halocline | 3582 | Mediterranean | 35°17.150’ N 21°42.308’ E | [26] |
Aspergillus and Penicillium | Discovery | Upper halocline | 3583 | Mediterranean | 35°17.150’ N 21°42.308’ E | [35] |
Aspergillus and Penicillium | Discovery | Lower halocline | 3586 | Mediterranean | 35°17.150’ N 21°42.308’ E | [35] |
Aspergillus, Penicillium, Sordaria, Rhodothorula glutinis, R. mucillaginosa Ustilaginomycetes (C) | L’Atalante | Upper halocline | 3499 | Mediterranean | 35°18.865’ N 21°24.338’ E | [12] |
Ustilaginomycetes (C) | L’Atalante | Lower halocline | 3501 | Mediterranean | 35°18.865’ N 21°24.338’ E | [12] |
Malasseziomycetes (C), Microbotryomycetes (C) and Dothideomycetes (C) | L’Atalante | Upper halocline | 3430 | Mediterranean | 35°18.865’ N 21°24.338’ E | [26] |
Malasseziomycetes (C), Microbotryomycetes (C) and Dothideomycetes (C) | L’Atalante | Lower halocline | 3430 | Mediterranean | 35°18.865’ N 21°24.338’ E | [26] |
Aspergillus and several Ascomycota and Basidiomycota strains | L’Atalante | Lower halocline | 3501 | Mediterranean | 35°18.865’ N 21°24.338’ E | [35] |
Fungi | Thetis | Lower halocline | 3258 | Mediterranean | 34°40.158’ N 22°08.703’ E | [31] |
Rhodotorula mucillaginosa, Malasseziales (O) and Atheliaceae (F) | Thetis | Halocline | 3258 | Mediterranean | 34°40.189’ N 22°8.728’ E | [27] |
Rhodotorula mucilaginosa, Rhodosporidium, Cladosporium, Aspergillus, Candida, Pucciniomycotina (SD) and Atheliaceae (F) | Thetis | Brine | 3415 | Mediterranean | 34°40.189’ N 22°8.728’ E | [27] |
Acremonium | Thuwal brine pool sediments | Brine sediments | 850 | Red sea | 22°16’ N 38°53’ E | [34] |
Malasseziomycetes (C), Microbotryomycetes (C) and Dothideomycetes (C) | Urania | Halocline | 3468 | Mediterranean | 35°13.784’ N 21°42.308’ E | [26] |
Aspergillus and Penicillium | Urania | Middle halocline | 3470 | Mediterranean | 35°13.784’ N 21°42.308’ E | [35] |
Producing Fungus | Enzyme | Industrial Applications | References |
---|---|---|---|
Aspergillus gracilis, A. penicillioides and A. oryzae | Amylase * | Foods, detergents, pharmaceuticals, and paper and textile | [90,92,93] |
Aspergillus niger, A. sydowii and A. terreus | Cellulase * | Biofuel production, food and feed industry, brewing, pulp and paper, textile, laundry and agriculture | [94,95,96] |
Aspergillus terreus and Penicillium sp. | Chitinase * | Pharmaceutical and food | [97,98] |
Aspergillus aculeatus, A. fumigatus, A. niger, A. terreus and Penicillium canescens | β-Glucosidase * | Biofuel production, pharmaceutical and food industry | [99,100,101,102,103] |
Aspergillus sclerotiorum, Cladosporium cladosporioides and several strains | Laccase, Li/Mn-peroxidase | Bioremediation, pulp biobleaching, pollutant degradation, biosensors, textiles, production of bioethanol and animal feed | [104,105] |
Candida intermedia, C. parapsilosis, C. quercitrusa, Rhodotorula mucilaginosa, Aspergillus pullulans, A. awamori and several strains from Antarctica | Lipase * | Food, beverages, detergents, biofuel productions, animal feed, textiles, leather, paper processing and cosmetics | [106,107,108] |
Aspergillus ustus, Penicillium chrysogenum, Rhodotorula mucilaginosa and several strains from Antarctica | Protease * | Bioremediation, laundry detergents, degumming of silk and leather | [106,109,110,111] |
Aspergillus awamori, A. candidus, A. fumigatus and several strains from Posidonia oceanica | Tannase | Food, feed, pharmaceutical, beverage, brewing and chemical | [105,112,113,114,115] |
Aspergillus niger, A. fumigatus, A. ochraceus, A. niveus and several strains from Antarctica | Xylanase * | Paper and pulp and the feed and food | [106,116,117] |
Penicillium notatum | Tannin acyl hydrolase | Bioremediation, leather, food and beverage | [118] |
Aspergillus aculeatus, A. niger and Penicillium decumbens | α-rhamnosidase | Food and pharmaceutical | [119,120,121] |
Aspergillus fumigatus and A. terreus | β-glucanase | Textile industry, paper recycling, detergents, beverage, animal feed additives and renewable energy | [122,123,124,125] |
Several strains of Aspergillus and Penicillium, Candida membranifaciens and Cladosporium sp. | Inulinase | Food and pharmaceutical | [126,127,128] |
Aspergillus terreus | Feruloyl esterase | Food, pharmaceutical, pulp and paper, and biofuel | [112,129] |
Several strains | l-asparaginase | Food and pharmaceutical | [130] |
Several strains of Aspergillus | l-methioninase | Food and pharmaceutical | [131] |
Fungi | Product | Bioactivity | Source | Reference |
---|---|---|---|---|
Aspergillus terreus, Penicillum citrinum and P. purpurogenum | Lovastatin | Cholesterol-lowering agent | Marine sediments | [165,166] |
Aspergillus sp. 16-5C | Asperlones A and B | Anti-tuberculosis drugs | Mangrove | [167] |
Aspergillus versicolor, A. ochraceus, A. ostianus, Cladosporium herbarum and Penicillium sp. | Various | Antibacterial | Marine sponges, coastal water | [148] |
Several strains | Various | Antibiotic | Deep subseafloor fungal | [168] |
Penicillium sclerotiorum | Penicilazaphilone C | Antibiotic, cytotoxic, anti-inflammatory and antioxidant | Rotted leaves in coastal water | [169,170] |
Acremonium sp. LL-Cyan416 and Penicillium sp. LL-WF159 | Anthraquinones and flavomannin | Antibiotic | n.a. | [171] |
Aspergillus, Cladosporium and Penicillium species | Taxol (paclitaxel) | Antitumoural | Plants | [162,172] |
Aspergillus fumigatus, A. ustus and Penicillium citrinum | Tryprostatins A and B, phenylahistin | Antitumoural and anti-inflammatory inhibitor | Stichopus japonicus (Sea cucumber) salt water | [173] |
Aspergillus quadricinctus, and Rhodotorula pilimanae | Siderophores | Anticancer and antimicrobial | n.a. | [174] |
Aspergillus ungui NHK-007 | 7-Chlorofolipastatin | Anticholesterolemic | Deep-sea sediments | [175] |
Several strains | n.a. | Antimicrobial and antifungal | Deep-sea sediments | [176] |
Penicillium chrysogenum | PgAFP | Antifungal | Tedania anhelans (marine sponge) | [177,178] |
Aspergillus nidulans | Anidulafungin | Antifungal | n.a. | [179] |
Penicillium sp. | Cycloexpansamines A and B | Anti-inflammatory | Bryozoa | [180] |
Penicillium chrysogenum | Sorbicillactone A | Antileukemic and antiviral | Ircinia fasciculata (marine sponge) | [181,182] |
Penicillium sp. | Penicyrones A and B | Antifungal | Marine | [183] |
Aspergillus versicolor | phenolic compounds | Antioxidant | Marine sediments | [144] |
Aspergillus versicolor | Anthraquinone | Antioxidant | Deep-sea sediments | [184] |
Penicillium citrinum | Sorbicillinoid derivative | Antioxidant | Marine sponge | [185] |
Aspergillus westerdijkiae | Circumdatin G | Antiproliferative | Deep sea | [154] |
Aspergillus sp. | Avrainvillamide | Antitumoural | n. a. | [186] |
Aspergillus ustus | Phenylahistin | Antitumoural | Mangrove | [187] |
Aspergillus wentii | 20-Nor-isopimarane diterpenoids | Antitumoural | Deep-sea sediments | [153] |
Penicillium sp. | Breviones I | Antitumoural | Deep-sea sediments | [188] |
Aspergillus versicolor ZBY-3 | various | Antitumoural | Deep-sea sediments | [189] |
Aspergillus sp. | Dihydroxy-fumitremorgin C | Antitumoural | Coastal sediments | [190] |
Penicillium paneum | Penipacids A and Penipacids E | Antitumoural | Deep-sea sediments | [191] |
Aspergillus sulphureus KMM 4640 | Decumbenone C | Antitumoural | Marine sediments | [192] |
Aspergillus sp. | Furanocoumarin | Antitumoural | Mangrove | [193] |
Penicillium oxalicum | Oxalicumone A | Antitumoural | Marine | [194] |
Aspergillus wentii SD-310 | Asperolides A-E | Antitumoural | Marine derived endophyte | [158] |
Penicillium commune SD-118 | Xanthocillin X, Meleagrin | Antitumoural | Deep-sea sediments | [155] |
Penicillium sp. PR19N-1 | Sesquiterpene, Eremofortine C | Antitumoural | Antarctic deep-sea | [195] |
Aspergillus nidulans | Asperfuranone | Antitumoural | Marine | [196] |
Aspergillus sp. | Terrequinone A | Antitumoural | n.a. | [197] |
Penicillium sp. | Chromanone A | Antitumoural and antioxidant | n.a. | [198,199] |
Penicillium and Aspergillus sp. | Ergot alkaloids | Precursors of drugs | Marine | [200] |
Penicillium chrysogenum | Hexadentate siderophores | Protective agents of LDL oxidation and anti-atherosclerotic metabolites | Tedania anhelans (marine sponge) | [201] |
Aspergillus nidulans and Penicillium chrysogenum | Penicillin | Antibiotic | Marine | [202,203] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barone, G.; Varrella, S.; Tangherlini, M.; Rastelli, E.; Dell’Anno, A.; Danovaro, R.; Corinaldesi, C. Marine Fungi: Biotechnological Perspectives from Deep-Hypersaline Anoxic Basins. Diversity 2019, 11, 113. https://doi.org/10.3390/d11070113
Barone G, Varrella S, Tangherlini M, Rastelli E, Dell’Anno A, Danovaro R, Corinaldesi C. Marine Fungi: Biotechnological Perspectives from Deep-Hypersaline Anoxic Basins. Diversity. 2019; 11(7):113. https://doi.org/10.3390/d11070113
Chicago/Turabian StyleBarone, Giulio, Stefano Varrella, Michael Tangherlini, Eugenio Rastelli, Antonio Dell’Anno, Roberto Danovaro, and Cinzia Corinaldesi. 2019. "Marine Fungi: Biotechnological Perspectives from Deep-Hypersaline Anoxic Basins" Diversity 11, no. 7: 113. https://doi.org/10.3390/d11070113
APA StyleBarone, G., Varrella, S., Tangherlini, M., Rastelli, E., Dell’Anno, A., Danovaro, R., & Corinaldesi, C. (2019). Marine Fungi: Biotechnological Perspectives from Deep-Hypersaline Anoxic Basins. Diversity, 11(7), 113. https://doi.org/10.3390/d11070113