4-(4-Formyl-3,5-dimethoxyphenoxy)butyric Acid (BAL)
Abstract
1. Introduction
2. Results and Discussion
X-ray Structure Characterization
CCDC number | 2434833 |
Empirical formula | C13H16O6 |
Formula weight | 268.26 |
Temperature [K] | 100 (2) |
Crystal system | monoclinic |
Space group (number) | (15) |
a [Å] | 26.8819 (15) |
b [Å] | 7.3124 (3) |
c [Å] | 16.6943 (9) |
α [°] | 90 |
β [°] | 127.737 (2) |
γ [°] | 90 |
Volume [Å3] | 2595.2 (2) |
Z | 8 |
ρcalc [gcm−3] | 1.373 |
μ [mm−1] | 0.109 |
F (000) | 1136 |
Crystal size [mm3] | 0.030 × 0.140 × 0.150 |
Crystal color, shape | Colorless, plate |
Radiation | MoKα (λ = 0.71073 Å) |
2θ range [°] | 4.88 to 52.70 (0.80 Å) |
Index ranges | −31 ≤ h ≤ 33; −7 ≤ k ≤ 9; −20 ≤ l ≤ 20 |
Reflections collected | 18907 |
Independent reflections | 2656, Rint = 0.0427, Rsigma = 0.0266 |
Completeness to θ = 25.242° | 99.9% |
Data/Restraints/Parameters | 2656/0/177 |
Absorption correction Tmin/Tmax (method) | 0.6801/0.7454 (multi-scan) |
Goodness-of-fit on F2 | 1.042 |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.0384, wR2 = 0.0935 |
Final R indexes [all data] | R1 = 0.0532, wR2 = 0.1029 |
Largest peak/hole [e Å−3] | 0.25/−0.21 |
3. Materials and Methods
3.1. General
3.2. Experimental
3.3. X-ray Data Collection
3.4. X-ray Structure Solution and Refinement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BAL | 4-(4-formyl-3,5-dimethoxyphenoxy)butyric acid or “Backbone Amide Linker,” depending on context |
Fmoc | 9-fluorenylmethyloxycarbonyl |
PG | protecting group (in Scheme 1) |
QTOF | quadrupole time-of-flight |
SPOS | solid-phase organic synthesis |
SPPS | solid-phase peptide synthesis |
Trt | triphenylmethyl ≡ trityl |
References
- Merrifield, R.B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149–2154. [Google Scholar] [CrossRef]
- Merrifield, R.B. Solid Phase Synthesis. Science 1986, 232, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Barany, G.; Merrifield, R.B. Solid-Phase Peptide Synthesis. In The Peptides; Gross, E., Meienhofer, J., Eds.; Academic Press: New York, NY, USA, 1979; Volume 2, pp. 1–284. [Google Scholar] [CrossRef]
- Songster, M.F.; Barany, G. [8] Handles for Solid-Phase Peptide Synthesis. Meth. Enzymol. 1997, 289, 126–174. [Google Scholar] [CrossRef]
- Guillier, F.; Orain, D.; Bradley, M. Linkers and Cleavage Strategies in Solid-Phase Organic Synthesis and Combinatorial Chemistry. Chem. Rev. 2000, 100, 3859. [Google Scholar] [CrossRef]
- Jensen, K.J.; Alsina, J.; Songster, M.F.; Vágner, J.; Albericio, F.; Barany, G. Backbone Amide Linker (BAL) Strategy for Solid-Phase Synthesis of C-Terminal-Modified and Cyclic Peptides. J. Am. Chem. Soc. 1998, 120, 5441–5452. [Google Scholar] [CrossRef]
- Alsina, J.; Yokum, T.S.; Albericio, F.; Barany, G. Backbone Amide Linker (BAL) Strategy for Na-9-Fluorenylmethoxycarbonyl (Fmoc) Solid-Phase Synthesis of Unprotected Peptide p-Nitroanilides and Thioesters. J. Org. Chem. 1999, 64, 8761–8769. [Google Scholar] [CrossRef]
- Alsina, J.; Jensen, K.J.; Albericio, F.; Barany, G. Solid-Phase Synthesis with Tris(alkoxy)benzyl Backbone Amide Linkage (BAL). Chem. A Eur. J. 1999, 5, 2787–2795. [Google Scholar] [CrossRef]
- Jin, J.; Graybill, T.L.; Wang, M.A.; Davis, L.D.; Moore, M.L. Convenient Preparation of 4-Formyl-3,5-Dimethoxyphenol and Its Incorporation into Linkers and Resins for Solid-Phase Synthesis. J. Comb. Chem. 2001, 3, 97–101. [Google Scholar] [CrossRef]
- Fisher, J.F. Convergence of the Orthogonal: A Tribute to the Imaginative Chemistry of George Barany. Int. J. Pept. Res. Ther. 2025, 31, 54. [Google Scholar] [CrossRef]
- Albericio, F.; Słomczyñska, U.; Barany, G. New Handles for the Synthesis of C-Terminal Peptide Amides. In Forum Peptides Le Cap d’Agde 1984; Castro, B., Martinez, J., Eds.; Les Impressions Dohr: Nancy, France, 1986; pp. 1–5. [Google Scholar]
- Albericio, F.; Barany, G. An acid-labile anchoring linkage for solid-phase synthesis of C-terminal peptide amides under mild conditions. Int. J. Pept. Protein Res. 1987, 30, 206–216. [Google Scholar] [CrossRef]
- Albericio, F.; Kneib-Cordonier, N.; Biancalana, S.; Gera, L.; Masada, R.I.; Hudson, D.; Barany, G. Preparation and Application of the 5-(4-(9-Fluorenylmethyloxycarbonyl)aminomethyl-3,5-dimethoxyphenoxy)valeric acid (PAL) Handle for the Solid-Phase Synthesis of C-Terminal Peptide Amides under Mild Conditions. J. Org. Chem. 1990, 55, 3730–3743. [Google Scholar] [CrossRef]
- Sharma, S.K.; Songster, M.F.; Colpitts, T.L.; Hegyes, P.; Barany, G.; Castellino, J. Reductive Amination with Tritylamine as an Ammonia Equivalent: Efficient Preparation of the 5-[4-[[(9-Fluorenylmethyloxycarbonyl)amino]methyl]-3,5-dimethoxyphenoxy]valeric Acid (PAL) Handle for Peptide Synthesis. J. Org. Chem. 1993, 58, 4993–4996. [Google Scholar] [CrossRef]
- Albericio, F.; Barany, G. Hypersensitive Acid-Labile (HAL) Tris(alkoxy)Benzyl Ester Anchoring for Solid-Phase Synthesis of Protected Peptide Segments. Tetrahedron Lett. 1991, 32, 1015–1018. [Google Scholar] [CrossRef]
- Alsina, J.; Yokum, T.S.; Albericio, F.; Barany, G. A modified Backbone Amide Linker (BAL) solid-phase peptide synthesis strategy accommodating prolyl, N-alkylamino acyl, or histidyl derivatives at the C-Terminus. Tetrahedron Lett. 2000, 41, 7277–7280. [Google Scholar] [CrossRef]
- Kappel, J.C.; Barany, G. Solid-Phase Synthesis of Peptide Aldehydes by a Backbone Amide Linker Strategy. J. Pept. Sci. 2005, 11, 525–535. [Google Scholar] [CrossRef]
- Virta, P.; Karskela, M.; Lönnberg, H. Orthogonally Protected Cyclo-β-Tetrapeptides as Solid-Supported Scaffolds for the Synthesis of Glycoclusters. J. Org. Chem. 2006, 71, 1989–1999. [Google Scholar] [CrossRef]
- Boas, U.; Brask, J.; Jensen, K.J. Backbone Amide Linker in Solid-Phase Synthesis. Chem. Rev. 2009, 109, 2092–2118. [Google Scholar] [CrossRef]
- Valverde, I.E.; Lecaille, F.; Lalmanach, G.; Aucagne, V.; Delmas, A.F. Synthesis of a Biologically Active Triazole-Containing Analogue of Cystatin A Through Successive Peptidomimetic Alkyne-Azide Ligations. Angew. Chem. Int. Ed. 2012, 51, 718–722. [Google Scholar] [CrossRef]
- Shelton, P.T.; Jensen, K.J. Backbone Amide Linker Strategy: Protocols for the Synthesis of C-Terminal Peptide Aldehydes. In Peptide Synthesis and Applications; Jensen, K.J., Shelton, P.T., Pedersen, S.L., Eds.; Humana Press: Totowa, NJ, USA, 2013; Volume 1047, pp. 131–139. [Google Scholar] [CrossRef]
- Jobin, S.; Beaumont, C.; Biron, E. Development of a solid-phase traceless-Ugi multicomponent reaction for backbone anchoring and cyclic peptide synthesis. Pept. Sci. 2019, 111, e24044. [Google Scholar] [CrossRef]
- Gray, N.S.; Kwon, S.; Schultz, P.G. Combinatorial Synthesis of 2,9-Substituted Purines. Tetrahedron Lett. 1997, 38, 1161–1164. [Google Scholar] [CrossRef]
- Boojamra, C.G.; Burow, K.M.; Thompson, L.A.; Ellman, J.A. Solid-Phase Synthesis of 1,4-Benzodiazepine-2,5-diones. Library Preparation and Demonstration of Synthesis Generality. J. Org. Chem. 1997, 62, 1240–1256. [Google Scholar] [CrossRef]
- Ngu, K.; Patel, D.V. A New and Efficient Solid-Phase Synthesis of Hydroxamic Acids. J. Org. Chem. 1997, 62, 7088–7089. [Google Scholar] [CrossRef]
- Yamashita, D.S.; Dong, X.; Oh, H.-J.; Brook, C.S.; Tomaszek, T.A.; Szewczuk, L.; Tew, D.G.; Veber, D.F. Solid-Phase Synthesis of a Combinatorial Array of 1,3-Bis(acylamino)-2-butanones, Inhibitors of the Cysteine Proteases Cathepsins K and L. J. Comb. Chem. 1999, 1, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Forns, P.; Sevilla, S.; Erra, M.; Ortega, A.; Fernández, J.-C.; de la Figuera, N.; Fernández-Forner, D.; Albericio, F. BAL resin for the preparation of secondary amines. Tetrahedron Lett. 2003, 44, 6907–6910. [Google Scholar] [CrossRef]
- Kappel, J.C.; Yokum, T.S.; Barany, G. Parallel Solid-Phase Syntheses of 1,3,4-Thiadiazolium-2-Aminides. J. Comb. Chem. 2004, 6, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Scott, W.L.; Zhou, Z.; Martynow, J.G.; O’Donnell, M.J. Solid-Phase Synthesis of Amino- and Carboxyl-Functionalized Unnatural α-Amino Acid Amides. Org. Lett. 2009, 11, 3558–3561. [Google Scholar] [CrossRef]
- Zajdel, P.; Król, J.; Grychowska, K.; Pawłowski, M.; Subra, G.; Nomezine, G.; Martinez, J.; Satała, G.; Bojarski, A.J.; Zhou, Z.; et al. Solid-Phase Synthesis of Arylpiperazine Derivatives and Implementation of the Distributed Drug Discovery (D3) Project in the Search for CNS Agents. Molecules 2011, 16, 4104–4121. [Google Scholar] [CrossRef]
- Congreve, M.S.; Ladlow, M.; Marshall, P.; Parr, N.; Scicinski, J.J.; Sheppard, T.; Vickerstaffe, E.; Carr, R.A.E. Reporter Resins for Solid-Phase Chemistry. Org. Lett. 2001, 3, 507–510. [Google Scholar] [CrossRef]
- Galan, J.A.; Guo, M.; Sanchez, E.E.; Cantu, E.; Rodriguez-Acosta, A.; Perez, J.C.; Tao, W.A. Quantitative Analysis of Snake Venoms Using Soluble Polymer-Based Isotope Labeling. Mol. Cell Proteom. 2008, 7, 785–799. [Google Scholar] [CrossRef]
- Okorochenkov, S.; Burglova, K.; Popa, I.; Hlavac, J. Solid-Supported Hydrazone of 4-(4′-Formyl-3′-Methoxyphenoxy)Butyric Acid As a New Traceless Linker for Solid-Phase Synthesis. Org. Lett. 2015, 17, 180–183. [Google Scholar] [CrossRef]
- Pittelkow, M.; Boas, U.; Jessing, M.; Jensen, K.J.; Christensen, J.B. Role of the peri-effect in synthesis and reactivity of highly substituted naphthaldehydes: A novel backbone amide linker for solid-phase synthesis. Org. Biomol. Chem. 2005, 3, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Jessing, M.; Brandt, M.; Jensen, K.J.; Christensen, J.B.; Boas, U. Thiophene Backbone Amide Linkers, a New Class of Easily Prepared and Highly Acid-Labile Linkers for Solid-Phase Synthesis. J. Org. Chem. 2006, 71, 6734–6741. [Google Scholar] [CrossRef] [PubMed]
- Neidrauer, M.L.; Hostetler, M.A.; Khan, K.R.; Kang, S.S.; Lipton, M.A. A Photolabile Backbone Amide Linker for the Solid-Phase Synthesis of Cyclic Peptides and C-Terminal Thioesters. 2025; Manuscript in process. [Google Scholar]
- Hammershøj, P.; Jessing, M.; Madsen, A.Ø.; Jensen, K.J.; Christensen, J.B.; Boas, U. X-Ray Crystal Structure of a Highly Functionalized Thiophene as a New Backbone Amide Linker for Solid-phase Peptide Synthesis. Relationship between Crystal Structure and Reactivity. Int. J. Pept. Res. Ther. 2007, 13, 209–212. [Google Scholar] [CrossRef]
- MacRae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From Visualization to Analysis, Design and Prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. B 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Wuyts, C.; Vande Velde, C.M.L.; Geise, H.J.; Blockhuys, F. 4-Hydroxy-2,6-Dimethoxybenzaldehyde. Acta Crystallogr. E 2005, 61, o79–o80. [Google Scholar] [CrossRef]
- Pan, Z.; Xu, M.; Cheung, E.Y.; Platts, J.A.; Harris, K.D.M.; Constable, E.C.; Housecroft, C.E. Solid-State Structural Properties of 2,4,6-Trimethoxybenzene Derivatives, Determined Directly from Powder X-Ray Diffraction Data in Conjunction with Other Techniques. J. Solid State Chem. 2006, 179, 3214–3223. [Google Scholar] [CrossRef]
- Asiri, A.M.; Khan, S.A.; Tan, K.W.; Ng, S.W. 4-Nitroaniline–2,4,6-Trimethoxybenzaldehyde (1/1). Acta Crystallogr. E 2010, 66, o1765. [Google Scholar] [CrossRef]
- Bruker AXS. APEX5; Bruker AXS: Madison, WI, USA, 2023. [Google Scholar]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef]
- Bruker. SAINT; Bruker AXS Inc.: Madison, WI, USA, 2023. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Kratzert, D. FinalCif, V150; Available online: https://dkratzert.de/finalcif.html.
Length/Angle | BAL | FAXXEI | YUPWOW |
---|---|---|---|
C1–C2 | 1.446 (2) Å | 1.425 (4) Å | 1.454 (3) Å |
C3–O2 | 1.3502 (18) Å | 1.356 (3) Å | 1.357 (3) Å |
C5–O3 | 1.3543 (17) Å | 1.342 (4) Å | 1.358 (3) Å |
C7–O4 | 1.3586 (17) Å | 1.350 (3) Å | 1.360 (3) Å |
O1–C1–C2 | 126.35 (15)° | 127.8 (3)° | 127.8 (2)° |
C8–O2–C3 | 118.22 (12)° | 117.9 (3)° | 118.10 (19)° |
C9–O4–C7 | 117.75 (11)° | 117.7 (3)° | 117.03 (19)° |
O1–C1–C2–C3 | −0.4 (2)° | −4.7 (6)° | −9.3 (4)° |
C2–C3–O2–C8 | 178.94 (13)° | −174.7 (3)° | −177.9 (2)° |
C2–C7–O4–C9 | −178.51 (13)° | 179.7 (3)° | −179.4 (2)° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lovstedt, A.; Thompson, T.R.; Barany, G. 4-(4-Formyl-3,5-dimethoxyphenoxy)butyric Acid (BAL). Molbank 2025, 2025, M2029. https://doi.org/10.3390/M2029
Lovstedt A, Thompson TR, Barany G. 4-(4-Formyl-3,5-dimethoxyphenoxy)butyric Acid (BAL). Molbank. 2025; 2025(3):M2029. https://doi.org/10.3390/M2029
Chicago/Turabian StyleLovstedt, Alex, Tracy R. Thompson, and George Barany. 2025. "4-(4-Formyl-3,5-dimethoxyphenoxy)butyric Acid (BAL)" Molbank 2025, no. 3: M2029. https://doi.org/10.3390/M2029
APA StyleLovstedt, A., Thompson, T. R., & Barany, G. (2025). 4-(4-Formyl-3,5-dimethoxyphenoxy)butyric Acid (BAL). Molbank, 2025(3), M2029. https://doi.org/10.3390/M2029