Ethyl 4-((11-(Hexylamino)-11-oxoundecyl)oxy)benzoate
Abstract
:1. Introduction
2. Results
Synthesis of Ethyl 4-((11-(Hexylamino)-11-oxoundecyl)oxy)benzoate (OAM2)
3. Materials and Methods
3.1. Generals
3.2. Synthesis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Motta, F.L.; Stoyanov, S.R.; Soares, J.B.P. Application of Solidifiers for Oil Spill Containment: A Review. Chemosphere 2018, 194, 837–846. [Google Scholar] [CrossRef]
- George, M.; Tan, G.; John, V.T.; Weiss, R.G. Urea and Thiourea Derivatives as Low Molecular-Mass Organogelators. Chem. A Eur. J. 2005, 11, 3243–3254. [Google Scholar] [CrossRef]
- Sahoo, S.; Kumar, N.; Bhattacharya, C.; Sagiri, S.S.; Jain, K.; Pal, K.; Ray, S.S.; Nayak, B. Organogels: Properties and Applications in Drug Delivery. Des. Monomers Polym. 2011, 14, 95–108. [Google Scholar] [CrossRef]
- Prathap, A.; Sureshan, K.M. A Mannitol Based Phase Selective Supergelator Offers a Simple, Viable and Greener Method to Combat Marine Oil Spills. Chem. Commun. 2012, 48, 5250. [Google Scholar] [CrossRef]
- De Loos, M.; Friggeri, A.; Van Esch, J.; Kellogg, R.M.; Feringa, B.L. Cyclohexane Bis-Urea Compounds for the Gelation of Water and Aqueous Solutions. Org. Biomol. Chem. 2005, 3, 1631. [Google Scholar] [CrossRef]
- Ghosh, S.; Praveen, V.K.; Ajayaghosh, A. The Chemistry and Applications of π-Gels. Annu. Rev. Mater. Res. 2016, 46, 235–262. [Google Scholar] [CrossRef]
- Isare, B.; Petit, L.; Bugnet, E.; Vincent, R.; Lapalu, L.; Sautet, P.; Bouteiller, L. The Weak Help the Strong: Low-Molar-Mass Organogelators Harden Bitumen. Langmuir 2009, 25, 8400–8403. [Google Scholar] [CrossRef]
- Mukherjee, S.; Shang, C.; Chen, X.; Chang, X.; Liu, K.; Yu, C.; Fang, Y. N-Acetylglucosamine-Based Efficient, Phase-Selective Organogelators for Oil Spill Remediation. Chem. Commun. 2014, 50, 13940–13943. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Patel, A.M.; Ballabh, A. Stimuli Responsive Gelation of Tert-Butylacetic Acid Based LMOGs—Applications in Remediation of Marine Oil Spills, Dye Removal and Heavy Metal Sensing. Soft Matter 2023, 19, 8595–8603. [Google Scholar] [CrossRef]
- Sosa-Sevilla, J.E.; Brachetti-Sibaja, S.B.; Pérez-Sánchez, J.F.; Lozano-Navarro, J.I.; Díaz-Zavala, N.P. Alkoxybenzoate Derivatives: Design and Gelation Effect on Organic Solvents, Fuels, and Oils. Water Air Soil Pollut. 2021, 232, 239. [Google Scholar] [CrossRef]
- Das, A.; Naskar, S.; Dhar, M.; Manna, U. Rapid and Scalable Synthesis of a Vanillin-Based Organogelator and Its Durable Composite for a Comprehensive Remediation of Crude-Oil Spillages. ACS Appl. Mater. Interfaces 2021, 13, 46803–46812. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Hong, K.H.; Zhang, W.; Li, F.; Li, Q.; Yu, F.; Luo, G.; Gao, H.; He, Y.-P. Scaleable Two-Component Gelator from Phthalic Acid Derivatives and Primary Alkyl Amines: Acid–Base Interaction in the Cooperative Assembly. Soft Matter 2017, 13, 4066–4073. [Google Scholar] [CrossRef] [PubMed]
- Zapién-Castillo, S.; Díaz-Zavala, N.P.; Melo-Banda, J.A.; Schwaller, D.; Lamps, J.-P.; Schmutz, M.; Combet, J.; Mésini, P.J. Structure of Nanotubes Self-Assembled from a Monoamide Organogelator. Int. J. Mol. Sci. 2020, 21, 4960. [Google Scholar] [CrossRef] [PubMed]
- Thuo, M.M.; Reus, W.F.; Simeone, F.C.; Kim, C.; Schulz, M.D.; Yoon, H.J.; Whitesides, G.M. Replacing −CH2CH2– with −CONH– Does Not Significantly Change Rates of Charge Transport through AgTS-SAM//Ga2O3/EGaIn Junctions. J. Am. Chem. Soc. 2012, 134, 10876–10884. [Google Scholar] [CrossRef] [PubMed]
- Zapien, S.; Perez-Sanchez, J.F.; Díaz, N.; Melo-Banda, J.A. Qualitative determination of an amide of unknown fragmentation pattern using Gas Chromatography—Mass Spectrometry. AJER 2020, 9, 242–246. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montes-Patiño, J.J.; Díaz-Zavala, N.P.; Zapién-Castillo, S.; Mésini, P.J.; Lozano-Navarro, J.I.; Salas-Ordaz, L.M.; Aguirre-Lam, M.A. Ethyl 4-((11-(Hexylamino)-11-oxoundecyl)oxy)benzoate. Molbank 2024, 2024, M1829. https://doi.org/10.3390/M1829
Montes-Patiño JJ, Díaz-Zavala NP, Zapién-Castillo S, Mésini PJ, Lozano-Navarro JI, Salas-Ordaz LM, Aguirre-Lam MA. Ethyl 4-((11-(Hexylamino)-11-oxoundecyl)oxy)benzoate. Molbank. 2024; 2024(2):M1829. https://doi.org/10.3390/M1829
Chicago/Turabian StyleMontes-Patiño, Jorge Jesús, Nancy Patricia Díaz-Zavala, Samuel Zapién-Castillo, Philippe J. Mésini, Jessica Ismalé Lozano-Navarro, Lorena Margarita Salas-Ordaz, and Marco Antonio Aguirre-Lam. 2024. "Ethyl 4-((11-(Hexylamino)-11-oxoundecyl)oxy)benzoate" Molbank 2024, no. 2: M1829. https://doi.org/10.3390/M1829
APA StyleMontes-Patiño, J. J., Díaz-Zavala, N. P., Zapién-Castillo, S., Mésini, P. J., Lozano-Navarro, J. I., Salas-Ordaz, L. M., & Aguirre-Lam, M. A. (2024). Ethyl 4-((11-(Hexylamino)-11-oxoundecyl)oxy)benzoate. Molbank, 2024(2), M1829. https://doi.org/10.3390/M1829