Synthesis of Substituted Pyrrole Derivatives Based on 8-Azaspiro[5.6]dodec-10-ene Scaffold
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Procedure for Synthesis of Compounds 5–10
- (5-(2-Fluoro-4-(trifluoromethyl)phenyl)-1H-pyrrol-2-yl)((1RS,2RS,6RS)-2-(4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl)-1-hydroxy-8-azaspiro[5.6]dodec-10-en-8-yl)methanone (5)
- (5-(3-Fluoro-4-(trifluoromethyl)phenyl)-1H-pyrrol-2-yl)((1RS,2RS,6RS)-2-(4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl)-1-hydroxy-8-azaspiro[5.6]dodec-10-en-8-yl)methanone (6)
- ((1RS,2RS,6RS)-2-(4-(4-Fluorophenyl)-1H-1,2,3-triazol-1-yl)-1-hydroxy-8-azaspiro[5.6]dodec-10-en-8-yl)(5-(5-(trifluoromethyl)pyridin-2-yl)-1H-pyrrol-2-yl)methanone (7)
- (5-(5-Chloropyridin-2-yl)-1H-pyrrol-2-yl)((1RS,2RS,6RS)-2-(4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl)-1-hydroxy-8-azaspiro[5.6]dodec-10-en-8-yl)methanone (8)
- (5-(5-Chloropyridin-2-yl)-3-methyl-1H-pyrrol-2-yl)((1RS,2RS,6RS)-2-(4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl)-1-hydroxy-8-azaspiro[5.6]dodec-10-en-8-yl)methanone (9)
- ((1RS,2RS,6RS)-2-(4-(4-Fluorophenyl)-1H-1,2,3-triazol-1-yl)-1-hydroxy-8-azaspiro[5.6]dodec-10-en-8-yl)(3-methyl-5-(5-(trifluoromethyl)pyridin-2-yl)-1H-pyrrol-2-yl)methanone (10)
3.2. Crystallography Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chhikara, B.S.; Parang, K. Global Cancer Statistics 2022: The Trends Projection Analysis. Chem. Biol. Lett. 2023, 10, 451. [Google Scholar]
- Barghi Lish, A.; Foroumadi, A.; Kolvari, E.; Safari, F. Synthesis and Biological Evaluation of 12-Aryl-11-Hydroxy-5,6-Dihydropyrrolo[2″,1″:3′,4′]Pyrazino[1′,2′:1,5]Pyrrolo[2,3-d]Pyridazine-8(9 H)-One Derivatives as Potential Cytotoxic Agents. ACS Omega 2023, 8, 42212–42224. [Google Scholar] [CrossRef]
- Moghadam, E.S.; Mireskandari, K.; Abdel-Jalil, R.; Amini, M. An Approach to Pharmacological Targets of Pyrrole Family from Medicinal Chemistry Viewpoint. Mini Rev. Med. Chem. 2022, 22, 2486–2561. [Google Scholar] [CrossRef]
- Li Petri, G.; Spanò, V.; Spatola, R.; Holl, R.; Raimondi, M.V.; Barraja, P.; Montalbano, A. Bioactive Pyrrole-Based Compounds with Target Selectivity. Eur. J. Med. Chem. 2020, 208, 112783. [Google Scholar] [CrossRef]
- Kilic-Kurt, Z.; Bakar-Ates, F.; Aka, Y.; Kutuk, O. Design, Synthesis and In Vitro Apoptotic Mechanism of Novel Pyrrolopyrimidine Derivatives. Bioorganic Chem. 2019, 83, 511–519. [Google Scholar] [CrossRef]
- Curreli, F.; Ahmed, S.; Benedict Victor, S.M.; Iusupov, I.R.; Belov, D.S.; Markov, P.O.; Kurkin, A.V.; Altieri, A.; Debnath, A.K. Preclinical Optimization of Gp120 Entry Antagonists as Anti-HIV-1 Agents with Improved Cytotoxicity and ADME Properties through Rational Design, Synthesis, and Antiviral Evaluation. J. Med. Chem. 2020, 63, 1724–1749. [Google Scholar] [CrossRef]
- Li, Z.; Pan, M.; Su, X.; Dai, Y.; Fu, M.; Cai, X.; Shi, W.; Huang, W.; Qian, H. Discovery of Novel Pyrrole-Based Scaffold as Potent and Orally Bioavailable Free Fatty Acid Receptor 1 Agonists for the Treatment of Type 2 Diabetes. Bioorganic Med. Chem. 2016, 24, 1981–1987. [Google Scholar] [CrossRef]
- Szczukowski, Ł.; Redzicka, A.; Wiatrak, B.; Krzyżak, E.; Marciniak, A.; Gębczak, K.; Gębarowski, T.; Świątek, P. Design, Synthesis, Biological Evaluation and in Silico Studies of Novel Pyrrolo[3,4-d]Pyridazinone Derivatives with Promising Anti-Inflammatory and Antioxidant Activity. Bioorganic Chem. 2020, 102, 104035. [Google Scholar] [CrossRef]
- Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Oudard, S.; Negrier, S.; Szczylik, C.; Pili, R.; Bjarnason, G.A.; et al. Overall Survival and Updated Results for Sunitinib Compared with Interferon Alfa in Patients with Metastatic Renal Cell Carcinoma. J. Clin. Oncol. 2009, 27, 3584–3590. [Google Scholar] [CrossRef]
- Demetri, G.D.; Van Oosterom, A.T.; Garrett, C.R.; Blackstein, M.E.; Shah, M.H.; Verweij, J.; McArthur, G.; Judson, I.R.; Heinrich, M.C.; Morgan, J.A.; et al. Efficacy and Safety of Sunitinib in Patients with Advanced Gastrointestinal Stromal Tumour after Failure of Imatinib: A Randomised Controlled Trial. Lancet 2006, 368, 1329–1338. [Google Scholar] [CrossRef]
- La Regina, G.; Bai, R.; Coluccia, A.; Famiglini, V.; Pelliccia, S.; Passacantilli, S.; Mazzoccoli, C.; Ruggieri, V.; Sisinni, L.; Bolognesi, A.; et al. New Pyrrole Derivatives with Potent Tubulin Polymerization Inhibiting Activity as Anticancer Agents Including Hedgehog-Dependent Cancer. J. Med. Chem. 2014, 57, 6531–6552. [Google Scholar] [CrossRef]
- Sullivan, R.J.; Infante, J.R.; Janku, F.; Wong, D.J.L.; Sosman, J.A.; Keedy, V.; Patel, M.R.; Shapiro, G.I.; Mier, J.W.; Tolcher, A.W.; et al. First-in-Class ERK1/2 Inhibitor Ulixertinib (BVD-523) in Patients with MAPK Mutant Advanced Solid Tumors: Results of a Phase I Dose-Escalation and Expansion Study. Cancer Discov. 2018, 8, 184–195. [Google Scholar] [CrossRef]
- Bianco, M.D.C.A.D.; Marinho, D.I.L.F.; Hoelz, L.V.B.; Bastos, M.M.; Boechat, N. Pyrroles as Privileged Scaffolds in the Search for New Potential HIV Inhibitors. Pharmaceuticals 2021, 14, 893. [Google Scholar] [CrossRef]
- Kombarov, R.; Altieri, A.; Genis, D.; Kirpichenok, M.; Kochubey, V.; Rakitina, N.; Titarenko, Z. BioCores: Identification of a Drug/Natural Product-Based Privileged Structural Motif for Small-Molecule Lead Discovery. Mol. Divers. 2010, 14, 193–200. [Google Scholar] [CrossRef]
- Zheng, Y.-J.; Tice, C.M. The Utilization of Spirocyclic Scaffolds in Novel Drug Discovery. Expert Opin. Drug Discov. 2016, 11, 831–834. [Google Scholar] [CrossRef]
- Ritchie, T.J.; Macdonald, S.J.F. The Impact of Aromatic Ring Count on Compound Developability—Are Too Many Aromatic Rings a Liability in Drug Design? Drug Discov. Today 2009, 14, 1011–1020. [Google Scholar] [CrossRef]
- Lovering, F. Escape from Flatland 2: Complexity and Promiscuity. Med. Chem. Commun. 2013, 4, 515. [Google Scholar] [CrossRef]
- Iusupov, I.R.; Lukyanenko, E.R.; Altieri, A.; Kurkin, A.V. Design and Synthesis of Fsp3-Enriched Spirocyclic-Based Biological Screening Compound Arrays via DOS Strategies and Their NNMT Inhibition Profiling. ChemMedChem 2022, 17, e202200394. [Google Scholar] [CrossRef]
- Iusupov, I.R.; Lyssenko, K.A.; Altieri, A.; Kurkin, A.V. (1RS,2RS,6RS)-2-(6-Amino-9H-Purin-9-Yl)-8-Azaspiro[5.6]Dodec-10-En-1-Ol Dihydrochloride. Molbank 2022, 2022, M1495. [Google Scholar] [CrossRef]
- Curreli, F.; Ahmed, S.; Benedict Victor, S.M.; Iusupov, I.R.; Spiridonov, E.A.; Belov, D.S.; Altieri, A.; Kurkin, A.V.; Debnath, A.K. Design, Synthesis, and Antiviral Activity of a Series of CD4-Mimetic Small-Molecule HIV-1 Entry Inhibitors. Bioorganic Med. Chem. 2021, 32, 116000. [Google Scholar] [CrossRef]
- Curreli, F.; Belov, D.S.; Kwon, Y.D.; Ramesh, R.; Furimsky, A.M.; O’Loughlin, K.; Byrge, P.C.; Iyer, L.V.; Mirsalis, J.C.; Kurkin, A.V.; et al. Structure-Based Lead Optimization to Improve Antiviral Potency and ADMET Properties of Phenyl-1H-Pyrrole-Carboxamide Entry Inhibitors Targeted to HIV-1 Gp120. Eur. J. Med. Chem. 2018, 154, 367–391. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. A Short History of SHELX. Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, K.; Berndt, M. Diamond, Version 2.1 e; Crystal Impact GbR: Bonn, Germany, 1999. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iusupov, I.R.; Tafeenko, V.A.; Altieri, A.; Kurkin, A.V. Synthesis of Substituted Pyrrole Derivatives Based on 8-Azaspiro[5.6]dodec-10-ene Scaffold. Molbank 2024, 2024, M1765. https://doi.org/10.3390/M1765
Iusupov IR, Tafeenko VA, Altieri A, Kurkin AV. Synthesis of Substituted Pyrrole Derivatives Based on 8-Azaspiro[5.6]dodec-10-ene Scaffold. Molbank. 2024; 2024(1):M1765. https://doi.org/10.3390/M1765
Chicago/Turabian StyleIusupov, Ildar R., Victor A. Tafeenko, Andrea Altieri, and Alexander V. Kurkin. 2024. "Synthesis of Substituted Pyrrole Derivatives Based on 8-Azaspiro[5.6]dodec-10-ene Scaffold" Molbank 2024, no. 1: M1765. https://doi.org/10.3390/M1765
APA StyleIusupov, I. R., Tafeenko, V. A., Altieri, A., & Kurkin, A. V. (2024). Synthesis of Substituted Pyrrole Derivatives Based on 8-Azaspiro[5.6]dodec-10-ene Scaffold. Molbank, 2024(1), M1765. https://doi.org/10.3390/M1765