5-(1-(4-Hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-2-oxo-2-phenylethyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Methods
3.2. Synthesis of 5-(1-(4-Hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-2-oxo-2-phenylethyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (4)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Toure, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev. 2009, 109, 4439–4486. [Google Scholar] [CrossRef] [PubMed]
- Insuasty, D.; Castillo, J.; Becerra, D.; Rojas, H.; Abonia, R. Synthesis of biologically active molecules through multicomponent reactions. Molecules 2020, 25, 505. [Google Scholar] [CrossRef] [PubMed]
- de Graaff, C.; Ruijter, E.; Orru, R.V. Recent developments in asymmetric multicomponent reactions. Chem. Soc. Rev. 2012, 41, 3969–4009. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari-Sis, B.; Zirak, M.; Akbari, A. Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev. 2013, 113, 2958–3043. [Google Scholar] [CrossRef]
- Mousavi, H. A concise and focused overview upon arylglyoxal monohydrates-based one-pot multi-component synthesis of fascinating potentially biologically active pyridazines. J. Mol. Struct. 2022, 1251, 131742. [Google Scholar] [CrossRef]
- Lee, J.S. Recent advances in the synthesis of 2-pyrones. Mar. Drugs 2015, 13, 1581–1620. [Google Scholar] [CrossRef]
- Dobler, D.; Leitner, M.; Moor, N.; Reiser, O. 2-Pyrone—A Privileged Heterocycle and Widespread Motif in Nature. Eur. J. Org. Chem. 2021, 2021, 6180–6205. [Google Scholar] [CrossRef]
- Ziarani, G.M.; Aleali, F.; Lashgari, N. Recent applications of barbituric acid in multicomponent reactions. RSC Adv. 2016, 6, 50895–50922. [Google Scholar] [CrossRef]
- Kliethermes, C.L.; Metten, P.; Belknap, J.K.; Buck, K.J.; Crabbe, J.C. Selection for pentobarbital withdrawal severity: Correlated differences in withdrawal from other sedative drugs. Brain Res. 2004, 1009, 17–25. [Google Scholar] [CrossRef]
- Archana; Srivastava, V.K.; Kumar, A. Synthesis of some newer derivatives of substituted quinazolinonyl-2-oxo/thiobarbituric acid as potent anticonvulsant agents. Bioorg. Med. Chem. 2004, 12, 1257–1264. [Google Scholar] [CrossRef]
- Dhorajiya, B.D.; Dholakiya, B.Z.; Mohareb, R.M. Hybrid probes of aromatic amine and barbituric acid: Highly promising leads for anti-bacterial, anti-fungal and anti-cancer activities. Med. Chem. Res. 2014, 23, 3941–3952. [Google Scholar] [CrossRef]
- Singh, P.; Kaur, M.; Verma, P. Design, synthesis and anticancer activities of hybrids of indole and barbituric acids--identification of highly promising leads. Bioorg. Med. Chem. Lett. 2009, 19, 3054–3058. [Google Scholar] [CrossRef] [PubMed]
- Elinson, M.N.; Vereshchagin, A.N.; Anisina, Y.E.; Leonova, N.A.; Egorov, M.P. On water noncatalytic tandem Knoevenagel–Michael reaction of aldehydes, N,N′-dimethylbarbituric acid and cyclohexane-1,3-diones. Mendeleev Commun. 2020, 30, 15–17. [Google Scholar] [CrossRef]
- Elinson, M.N.; Vereshchagin, A.N.; Ryzhkova, Y.E.; Krymov, S.K.; Leonova, N.A.; Goloveshkin, A.S.; Egorov, M.P. Electrocatalytic one-pot multicomponent assembly of aldehydes, 2,4-dihydro-3H-pyrazol-3-ones and kojic acid. Mendeleev Commun. 2020, 30, 223–225. [Google Scholar] [CrossRef]
- Elinson, M.N.; Ryzhkova, Y.E.; Krymov, S.K.; Vereshchagin, A.N.; Goloveshkin, A.S.; Egorov, M.P. Electrochemically induced multicomponent ‘one-pot’ assembling benzaldehydes, N,N′-dimethylbarbituric acid, and kojic acid. Monatsh. Chem. 2020, 151, 567–573. [Google Scholar] [CrossRef]
- Elinson, M.N.; Ryzhkova, Y.E.; Ryzhkov, F.V.; Vereshchagin, A.N.; Leonova, N.A.; Egorov, M.P. Electrochemically Induced Facile and Efficient Multicomponent Approach to Medicinally Relevant 4-[4-oxo-4H-pyran-2-yl](aryl)-methylisoxazol-5(2H)-one Scaffold. ChemistrySelect 2020, 5, 5981–5986. [Google Scholar] [CrossRef]
- Elinson, M.N.; Ryzhkova, Y.E.; Vereshchagin, A.N.; Leonova, N.A.; Minaeva, A.P.; Egorov, M.P. Electrochemically induced tandem Knoevenagel-Michael assembling of aldehydes with kojic acid: Direct and efficient arylbis[3-hydroxy-6-(hydroxymethyl)-4-oxo-4H-pyran-2-yl]methanes formation. Arkivoc 2020, 7, 201–213. [Google Scholar] [CrossRef]
- Elinson, M.N.; Vereshchagin, A.N.; Ryzhkova, Y.E.; Karpenko, K.A.; Ryzhkov, F.V.; Egorov, M.P. Electrocatalytic tandem assembly of aldehydes with 2-thiobarbituric acid into 5,5′-(arylmethylene)bis(1,3-diethyl-2-thiobarbituric acids) and evaluation of their interaction with catalases. Chem. Heterocycl. Comp. 2021, 57, 274–283. [Google Scholar] [CrossRef]
- Ryzhkova, Y.E.; Kalashnikova, V.M.; Fakhrutdinov, A.N.; Elinson, M.N. Green multicomponent approach to novel 5-[(2H-Pyran-3-yl)(aryl)methyl]-1,3-dimethylpyrimidines. J. Heterocycl. Chem. 2022, 1, 576–584. [Google Scholar] [CrossRef]
- Elinson, M.N.; Dorofeev, A.S.; Nasybullin, R.F.; Nikishin, G.I. Facile and Convenient Synthesis of 4,4′-(Arylmethylene)bis(1H-pyrazol-5-ols) by Electrocatalytic Tandem Knoevenagel-Michael Reaction. Synthesis 2008, 12, 1933–1937. [Google Scholar] [CrossRef]
- Korotkikh, N.I.; Cowley, A.H.; Moore, J.A.; Glinyanaya, N.V.; Panov, I.S.; Rayenko, G.F.; Pekhtereva, T.M.; Shvaika, O.P. Reaction of 1-tert-butyl-3,4-diphenyl-1,2,4-triazol-5-ylidenes with a malonic ester. Org. Biomol. Chem. 2008, 6, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.-F.; Ang, K.-P.; Jayachandran, H. Ionization constants of some hydroxypyrones in water and in 80% (w/w) dimethyl sulphoxide–water at 25 °C. J. Chem. Soc. Perkin Trans. 2 1983, 4, 471–473. [Google Scholar] [CrossRef]
- Web Site for PASS. Available online: http://way2drug.com/passonline/predict.php (accessed on 17 March 2023).
- Stepanchikova, A.V.; Lagunin, A.A.; Filimonov, D.A.; Poroikov, V.V. Prediction of biological activity spectra for substances: Evaluation on the diverse set of drug-like structures. Curr. Med. Chem. 2003, 10, 225–233. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryzhkova, Y.E.; Kalashnikova, V.M.; Ryzhkov, F.V.; Elinson, M.N. 5-(1-(4-Hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-2-oxo-2-phenylethyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione. Molbank 2023, 2023, M1640. https://doi.org/10.3390/M1640
Ryzhkova YE, Kalashnikova VM, Ryzhkov FV, Elinson MN. 5-(1-(4-Hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-2-oxo-2-phenylethyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione. Molbank. 2023; 2023(2):M1640. https://doi.org/10.3390/M1640
Chicago/Turabian StyleRyzhkova, Yuliya E., Varvara M. Kalashnikova, Fedor V. Ryzhkov, and Michail N. Elinson. 2023. "5-(1-(4-Hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-2-oxo-2-phenylethyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione" Molbank 2023, no. 2: M1640. https://doi.org/10.3390/M1640
APA StyleRyzhkova, Y. E., Kalashnikova, V. M., Ryzhkov, F. V., & Elinson, M. N. (2023). 5-(1-(4-Hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-2-oxo-2-phenylethyl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione. Molbank, 2023(2), M1640. https://doi.org/10.3390/M1640