2-[2-(Diphenylphosphoryl)phenyl]-1H-perimidine
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Synthesis of 2-[2-(Diphenylphosphoryl)phenyl]-1H-perimidine (L1)
3.2. X-ray Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ju, Y.; Varma, R.S. Aqueous N-heterocyclization of primary amines and hydrazines with dihalides: Microwave-assisted syntheses of N-azacycloalkanes, isoindole, pyrazole, pyrazolidine, and phthalazine derivatives. J. Org. Chem. 2006, 71, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari-Sis, B.; Zirak, M.; Akbari, A. Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev. 2013, 113, 2958–3043. [Google Scholar] [CrossRef] [PubMed]
- Zarate, D.Z.; Aguilar, R.; Hernandez-Benitez, R.I.; Labarrios, E.M.; Delgado, F.; Tamariz, J. Synthesis of α-ketols by functionalization of captodative alkenes and divergent preparation of heterocycles and natural products. Tetrahedron 2015, 71, 6961–6978. [Google Scholar] [CrossRef]
- Kerru, N.; Maddila, S.; Jonnalagadda, S.B. Design of carbon–carbon and carbon–heteroatom bond formation reactions under green conditions. Curr. Org. Chem. 2019, 23, 3156–3192. [Google Scholar] [CrossRef]
- Sahiba, N.; Agarwal, S. Recent advances in the synthesis of perimidines and their applications. Top. Curr. Chem. 2020, 378, 44–91. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Gijon, C.A.; Olvera-Mancilla, J.; Lagadec, R.L.; Barba-Behrens, N.; Rico-Bautista, H.; Toscano, R.A.; Alexandrova, L. 2-Substituted perimidines: Zwitterionic tauterism in solid state, substituent effect on their crystal packing and biological activity. J. Mol. Stuct. 2022, 1252, 132056–132065. [Google Scholar] [CrossRef]
- Bassyouni, F.B.; Abu-Bakr, S.M.; Hegab, K.H.; El-Eraky, W.; ElBeih, A.A.; Abdel Rehim, M.E. Synthesis of new transition metal complexes of 1H-perimidine derivatives having antimicrobial and anti-inflammatory activities. Res. Chem. Intermed. 2012, 38, 1527–1550. [Google Scholar] [CrossRef]
- Nagasundaram, N.; Govindhan, C.; Sumitha, S.; Sedhu, N.; Raguvaran, K.; Santhosh, S.; Lalitha, A. Synthesis, characterization and biological evaluation of novel azo fused 2,3-dihydro-1H-perimidine derivatives: In vitro antibacterial, antibiofilm, anti-quorum sensing, DFT, in silico ADME and Molecular docking studies. J. Mol. Stuct. 2022, 1248, 131437–131459. [Google Scholar] [CrossRef]
- Menteşe, E.; Yilmaz, F.; Karaali, N.; Ülker, S.; Kahveci, B. Rapid synthesis and lipase inhibition activity of some new benzimidazole and perimidine derivatives. Russ. J. Bioorg. Chem. 2004, 40, 336–342. [Google Scholar] [CrossRef]
- Zhang, H.J.; Wang, X.Z.; Cao, Q.; Gong, G.H.; Quan, Z.S. Design, synthesis, anti-inflammatory activity, and molecular docking studies of perimidine derivatives containing triazole. Bioorg. Med. Chem. Lett. 2017, 27, 4409–4414. [Google Scholar] [CrossRef]
- Azam, M.; Warad, I.; Al-Rasayes, S.; Zahin, M.; Ahmad, I.; Shakir, M. Syntheses, Physico-chemical studies and antioxidant activities of transition metal complexes with a perimidine ligand. Z. Anorg. Allg. Chem. 2012, 638, 881–886. [Google Scholar] [CrossRef]
- Azam, M.; Warad, I.; Al-Rasayes, S.; Alzaqri, N.; Khan, M.R.; Pallepogu, R.; Dwivedi, S.; Musarrat, J.; Shakir, M. Synthesis and structural characterization of Pd(II) complexes derived from perimidine ligand and their in vitro antimicrobial studies. J. Mol. Struct. 2013, 1047, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Booysen, I.N.; Ebinumolishe, I.; Sithebe, S.; Akerman, M.P.; Xulu, B. Coordination behaviours of perimidine ligands incorporating fused N-donor heterocyclics towards rhenium(I) and -(V). Polyhedron 2016, 117, 755–7760. [Google Scholar] [CrossRef]
- Al-Hazmi, G.A.; Abou-Melha, K.S.; El-Metwaly, E.M.; Saleh, K.A. Synthesis of Novel VO(II)-Perimidine complexes: Spectral, computational, and antitumor studies. Bioinorg. Chem. And Appl. 2018, 2018, 7176040. [Google Scholar] [CrossRef]
- Patel, U.N.; Sungh, A. Metal complexation studies of 1-(4-Carboxy-3-hydroxy-N-methyl phenyl- amino methyl) 2-methyl perimidine. J. Chem. 2009, 6, S452–S458. [Google Scholar] [CrossRef]
- Munzeiwa, W.A.; Omondi, B.; Nyamori, V.O. Architecture and synthesis of P,N-heterocyclic phosphine ligands. Beilstein J. Org. Chem. 2020, 16, 362–383. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Li, Z.-Y.; Yuan, X.-Y.; Zhang, M.; Liu, F. Crystal structure of 1,3-dimethyl-2-phenyl-1H-perimidin-3-ium iodide, C19H17IN2. Z. Für Krist. New Cryst. Struct. 2017, 232, 541–543. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, C.; Yin, G.; Du, C.; Zhang, B. Efficiently luminescent heteroleptic neutral platinum(II) complexes based on N^O and N^P benzimidazole ligands. Dalton Trans. 2021, 50, 17319–17327. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, C.; Du, C.; Zhang, B. Efficiently red emitting cycloplatinated(II) complexes supported by N^O and N^P benzimidazole ancillary ligands. J. Organomet. Chem. 2022, 960, 122237–122246. [Google Scholar] [CrossRef]
- Llamas-Saiz, A.L.; Foces-Foces, C.; Sanz, D.; Claramunt, R.M.; Dotor, J.; Elguero, J.; Catalan, J.; del Valle, J.C. 2-Arylperimidine derivatives. Part 1. Synthesis, NMR spectroscopy, X-ray crystal and molecular structures. J. Chem. Soc. Perkin Trans. 1995, 2, 1389–1398. [Google Scholar] [CrossRef]
- CCD CrysAlis. CrysAlis Red; Xcalibur PX Software; Oxford Diffraction Ltd.: Abingdon, UK, 2008. [Google Scholar]
- Saint, B. Data Reduction Software, (v7.68A); Bruker AXS Inc.: Madison, WI, USA, 2009. [Google Scholar]
- Dolomanov, O.; Bourhis, L.; Gildea, R.; Howard, J.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; Streek, J.; Wood, P.A. Mercury CSD 2.0–new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470. [Google Scholar] [CrossRef]
Atom | Length/Å | Atom | Angle/° |
---|---|---|---|
P1-O1 | 1.4974(10) | O1-P-C17 | 110.47(6) |
P1-C17 | 1.8237(13) | O1-P-C23 | 109.76(6) |
P1-C23 | 1.8008(13) | O1-P-C24 | 110.19(6) |
P1-C24 | 1.8057(13) | C11-N1-C9 | 117.44(11) |
N1-C11 | 1.2948(17) | C11-N2-C1 | 120.50(11) |
N1-C9 | 1.3989(17) | N1-C11-N2 | 125.63(12) |
N2-C11 | 1.3581(17) | N1-C11-C12 | 116.92(11) |
N2-C1 | 1.3976(17) | N2-C11-C12 | 117.45(11) |
C11-C12 | 1.4868(17) |
Identification Code for C1 | cu_SS_MG_Ligand1_0ma |
---|---|
Empirical formula | C29H21N2OP |
Formula weight | 444.45 |
Temperature (K) | 104.70 |
Crystal system | monoclinic |
Space group | P21/n |
a (Å) | 12.4152(3) |
b/(Å) | 12.6297(3) |
c (Å) | 14.7434(3) |
α (°) | 90 |
β (°) | 107.8970(10) |
γ (°) | 90 |
Volume (Å3) | 2199.90(9) |
Z | 4 |
ρcalc (g cm−3) | 1.342 |
μ (mm−1) | 1.300 |
F (000) | 928.0 |
Crystal size (mm3) | 0.245 × 0.085 × 0.055 |
Radiation source, λ (Å) | Cu(Kα), λ = 1.54178 |
2θ range for data collection (°) | 8.168 to 135.448 |
Index ranges | −14 ≤ h ≤ 14, −15 ≤ k ≤ 15, −17 ≤ l ≤ 17 |
Reflections collected | 59,040 |
Independent reflections | 3985 [Rint = 0.0355, Rσ = 0.0123] |
Data/restraints/parameters | 3985/0/298 |
Goodness-of-fit on F2 | 1.073 |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.0310, wR2 = 0.0825 |
Final R indexes (all data) | R1 = 0.0333, wR2 = 0.0846 |
Largest diff. peak/hole (e Å−3) | 0.39/−0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goge, M.N.; Sithebe, S.; Papo, T.R. 2-[2-(Diphenylphosphoryl)phenyl]-1H-perimidine. Molbank 2023, 2023, M1537. https://doi.org/10.3390/M1537
Goge MN, Sithebe S, Papo TR. 2-[2-(Diphenylphosphoryl)phenyl]-1H-perimidine. Molbank. 2023; 2023(1):M1537. https://doi.org/10.3390/M1537
Chicago/Turabian StyleGoge, Mangaliso N., Siphamandla Sithebe, and Tshephiso R. Papo. 2023. "2-[2-(Diphenylphosphoryl)phenyl]-1H-perimidine" Molbank 2023, no. 1: M1537. https://doi.org/10.3390/M1537
APA StyleGoge, M. N., Sithebe, S., & Papo, T. R. (2023). 2-[2-(Diphenylphosphoryl)phenyl]-1H-perimidine. Molbank, 2023(1), M1537. https://doi.org/10.3390/M1537