3-Phenyl-10-(2,3,4-trimethoxyphenyl)-9,10-dihydro-4H,8H-pyrano [2,3-f]chromene-4,8-dione
Abstract
:1. Introduction
2. Results
3. Materials and Methods
4. Conclusions
Experimental Procedure for the Synthesis of 3-phenyl-10-(2,3,4-trimethoxyphenyl)-9,10-dihydro-4H,8H-pyrano [2,3-f]chromene-4,8-dione 4
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Blicharski, T.; Oniszczuk, A. Extraction Methods for the Isolation of Isoflavonoids from Plant Material. Open Chem. 2017, 15, 34–45. [Google Scholar] [CrossRef]
- Bustamante-Rangel, M.; Delgado-Zamarreño, M.M.; Pérez-Martín, L.; Rodríguez-Gonzalo, E.; Domínguez-Álvarez, J. Analysis of Isoflavones in Foods: Analysis of Isoflavones in Foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 391–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharifi-Rad, J.; Quispe, C.; Imran, M.; Rauf, A.; Nadeem, M.; Gondal, T.A.; Ahmad, B.; Atif, M.; Mubarak, M.S.; Sytar, O.; et al. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. Oxid. Med. Cell. Longev. 2021, 2021, 3268136. [Google Scholar] [CrossRef] [PubMed]
- Grynkiewicz, G. Isoflavone Research towards Healthcare Applications. J. Cancer Metastasis Treat. 2020, 6, 48. [Google Scholar] [CrossRef]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dulce-María, D.-A.; Adrián, C.-R.; Cuauhtémoc, R.-M.; Ada-Keila, M.-N.; Jorge, M.-C.; Erika, A.-S.; Edith-Oliva, C.-R. Isoflavones from Black Chickpea (Cicer arietinum L.) Sprouts with Antioxidant and Antiproliferative Activity. Saudi J. Biol. Sci. 2021, 28, 1141–1146. [Google Scholar] [CrossRef]
- Ko, K.-P. Isoflavones: Chemistry, Analysis, Functions and Effects on Health and Cancer. Asian Pac. J. Cancer Prev. 2014, 15, 7001–7010. [Google Scholar] [CrossRef] [Green Version]
- Sohn, S.I.; Pandian, S.; Oh, Y.J.; Kang, H.J.; Cho, W.S.; Cho, Y.S. Metabolic Engineering of Isoflavones: An Updated Overview. Front. Plant Sci. 2021, 12, 670103. [Google Scholar] [CrossRef]
- Munro, I.C.; Harwood, M.; Hlywka, J.J.; Stephen, A.M.; Doull, J.; Flamm, W.G.; Adlercreutz, H. Soy Isoflavones: A Safety Review. Nutr. Rev. 2003, 61, 1–33. [Google Scholar] [CrossRef]
- Cui, Y.; Huang, C.; Momma, H.; Niu, K.; Nagatomi, R. Daily Dietary Isoflavone Intake in Relation to Lowered Risk of Depressive Symptoms among Men. J. Affect. Disord. 2020, 261, 121–125. [Google Scholar] [CrossRef]
- Messina, M.; Mejia, S.B.; Cassidy, A.; Duncan, A.; Kurzer, M.; Nagato, C.; Ronis, M.; Rowland, I.; Sievenpiper, J.; Barnes, S. Neither Soyfoods nor Isoflavones Warrant Classification as Endocrine Disruptors: A Technical Review of the Observational and Clinical Data. Crit. Rev. Food Sci. Nutr. 2022, 62, 5824–5885. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.H.; Jo, A.; Casale, T.; Jeong, S.J.; Hong, S.-J.; Cho, J.K.; Holbrook, J.T.; Kumar, R.; Smith, L.J. Soy Isoflavones Reduce Asthma Exacerbation in Asthmatic Patients with High PAI-1–Producing Genotypes. J. Allergy Clin. Immunol. 2019, 144, 109–117.e4. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Ge, X.; Tian, X.; Zhang, Y.; Zhang, J.; Zhang, P. Soy Isoflavone: The Multipurpose Phytochemical (Review). Biomed. Rep. 2013, 1, 697–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, S.; Wang, Y.; Li, Y.; Li, Y.; Feng, C.; Li, Z. Daidzein-Rich Isoflavones Aglycone Inhibits Lung Cancer Growth through Inhibition of NF-ΚB Signaling Pathway. Immunol. Lett. 2020, 222, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Varinska, L.; Gal, P.; Mojzisova, G.; Mirossay, L.; Mojzis, J. Soy and Breast Cancer: Focus on Angiogenesis. Int. J. Mol. Sci. 2015, 16, 11728–11749. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, A.; Wegewitz, U.; Sommerfeld, C.; Grossklaus, R.; Lampen, A. Efficacy of Isoflavones in Relieving Vasomotor Menopausal Symptoms—A Systematic Review. Mol. Nutr. Food Res. 2009, 53, 1084–1097. [Google Scholar] [CrossRef]
- Chen, L.-R.; Ko, N.-Y.; Chen, K.-H. Isoflavone Supplements for Menopausal Women: A Systematic Review. Nutrients 2019, 11, 2649. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Jiang, C. Soy and Isoflavones Consumption and Breast Cancer Survival and Recurrence: A Systematic Review and Meta-Analysis. Eur. J. Nutr. 2019, 58, 3079–3090. [Google Scholar] [CrossRef]
- Wei, P.; Liu, M.; Chen, Y.; Chen, D.-C. Systematic Review of Soy Isoflavone Supplements on Osteoporosis in Women. Asian Pac. J. Trop. Med. 2012, 5, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Divi, R.L.; Chang, H.C.; Doerge, D.R. Anti-Thyroid Isoflavones from Soybean. Biochem. Pharmacol. 1997, 54, 1087–1096. [Google Scholar] [CrossRef]
- Divi, R.L.; Doerge, D.R. Inhibition of Thyroid Peroxidase by Dietary Flavonoids. Chem. Res. Toxicol. 1996, 9, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Di Dalmazi, G.; Giuliani, C. Plant Constituents and Thyroid: A Revision of the Main Phytochemicals That Interfere with Thyroid Function. Food Chem. Toxicol. 2021, 152, 112158. [Google Scholar] [CrossRef] [PubMed]
- Younus, H.A.; Al-Rashida, M.; Hameed, A.; Uroos, M.; Salar, U.; Rana, S.; Khan, K.M. Multicomponent Reactions (MCR) in Medicinal Chemistry: A Patent Review (2010-2020). Expert Opin. Ther. Pat. 2021, 31, 267–289. [Google Scholar] [CrossRef] [PubMed]
- Graebin, C.S.; Ribeiro, F.V.; Rogério, K.R.; Kümmerle, A.E. Multicomponent Reactions for the Synthesis of Bioactive Compounds: A Review. Curr. Org. Synth. 2019, 16, 855–899. [Google Scholar] [CrossRef] [PubMed]
- Lichitsky, B.V.; Shorunov, S.V.; Osipov, A.O.; Komogortsev, A.N.; Dudinov, A.A.; Krayushkin, M.M. Multicomponent Condensation of 6-Acetyl-5,7-Dihydroxy-4-Methylchromen-2-One with Aldehydes and Meldrum’s Acid. Russ. Chem. Bull. 2017, 66, 886–890. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lichitsky, B.V.; Komogortsev, A.N.; Melekhina, V.G. 3-Phenyl-10-(2,3,4-trimethoxyphenyl)-9,10-dihydro-4H,8H-pyrano [2,3-f]chromene-4,8-dione. Molbank 2022, 2022, M1516. https://doi.org/10.3390/M1516
Lichitsky BV, Komogortsev AN, Melekhina VG. 3-Phenyl-10-(2,3,4-trimethoxyphenyl)-9,10-dihydro-4H,8H-pyrano [2,3-f]chromene-4,8-dione. Molbank. 2022; 2022(4):M1516. https://doi.org/10.3390/M1516
Chicago/Turabian StyleLichitsky, Boris V., Andrey N. Komogortsev, and Valeriya G. Melekhina. 2022. "3-Phenyl-10-(2,3,4-trimethoxyphenyl)-9,10-dihydro-4H,8H-pyrano [2,3-f]chromene-4,8-dione" Molbank 2022, no. 4: M1516. https://doi.org/10.3390/M1516
APA StyleLichitsky, B. V., Komogortsev, A. N., & Melekhina, V. G. (2022). 3-Phenyl-10-(2,3,4-trimethoxyphenyl)-9,10-dihydro-4H,8H-pyrano [2,3-f]chromene-4,8-dione. Molbank, 2022(4), M1516. https://doi.org/10.3390/M1516