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Abstract: Dyes with a donor–π–spacer–acceptor (D-π-A) structure containing a dicyanovinyl group
as an acceptor have recently been of interest for the production of single-component organic solar cells.
The most convenient precursors for their synthesis are the corresponding aldehydes. In this com-
munication, 4,4-bis(2-ethylhexyl)-6-(9-(2-ethylhexyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazol-6-yl)-4H-
cyclopenta[2,1-b:3,4-b′]dithiophene-2-carbaldehyde was synthesized by the Suzuki cross-coupling re-
action between 4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2,6-dicarbaldehyde and
9-(2-ethylhexyl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3,4,4a,9,9a-hexahydro-1H-carbazole
in the presence of tetrakis(triphenylphosphine)palladium(0). The structure of the newly synthesized
compound was established by means of high-resolution mass spectrometry, 1H, 13C NMR, IR, and
UV spectroscopy.

Keywords: small molecules for solar cells; building block for solar cells components; Suzuki cross-
coupling reaction; 4H-cyclopenta[2,1-b:3,4-b′]dithiophene; 2,3,4,4a,9,9a-hexahydro-1H-carbazole

1. Introduction

Organic solar cells (OSCs) have received unrelenting interest over the past 50 years [1].
The development of various solar cell components, such as narrow-gap π-conjugated poly-
mers [2,3], molecular donors [4,5], non-fullerene acceptors [6,7], has made it possible to
increase power conversion efficiency (PCE) in donor–acceptor bulk heterojunction OSCs
(BHJ) from 1% to 20% over the past two decades [8]. However, the industrial develop-
ment of OSCs is constrained by issues of cost, synthesis scalability, and stability of organic
dyes [1,9,10]. To solve the problem of reducing the cost of OSC production, the efforts of
chemists in recent years have been focused on simplifying the structure of active materials
and devices, including single-component organic solar cells (SMOSCs) [11,12]. As a rule,
such simple molecules have a donor–π–spacer–acceptor (D-π-A) structure, where the di-
cyanovinyl group acts as an acceptor [11–14]. The main method for introducing this group is
the Knoevenagel reaction of malononitrile with the corresponding aldehydes. Therefore, the
synthesis of the aldehyde precursor is the most important step in this short reaction scheme.
Herein, we report the synthesis of 4,4-bis(2-ethylhexyl)-6-(9-(2-ethylhexyl)-2,3,4,4a,9,9a-
hexahydro-1H-carbazol-6-yl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2-carbaldehyde 1 as a
key precursor for the preparation of the organic solar cells component.

2. Results and Discussion

π–Spacers containing a thiophene ring have demonstrated their perfect suitability
in organic dyes for DSSCs [15]. Among them, one of the most striking examples is the
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4H-cyclopenta[2,1-b:3,4-b′]dithiophene fragment, the use of which in organic solar cells
leads to the highest PCE values [16]. On the other hand, among the donor building
blocks, one of the most interesting is 2,3,4,4a,9,9a-hexahydro-1H-carbazole, the intro-
duction of which into the dye molecule also gives an increase in the photovoltaic effi-
ciency [17,18]. We hypothesized that the combination of these two building blocks in
a sensitizer molecule could lead to interesting results. It was found that Suzuki cross-
coupling reaction between 4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-
2,6-dicarbaldehyde 2 [19] and 9-(2-ethylhexyl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-
2-yl)-2,3,4,4a,9,9a-hexahydro-1H-carbazole 3 [17] upon prolonged reflux in anhydrous
THF and catalysis with tetrakis(triphenylphosphine)palladium (Pd(PPh3)4) led to 4,4-bis(2-
ethylhexyl)-6-(9-(2-ethylhexyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazol-6-yl)-4H-cyclopenta[2,1-
b:3,4-b′]dithiophene-2-carbaldehyde 1 in a high yield (Scheme 1).
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Scheme 1. Synthesis of 4,4-bis(2-ethylhexyl)-6-(9-(2-ethylhexyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazol-
6-yl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2-carbaldehyde 1.

We have measured the optical absorption spectra of compound 1 in dichloromethane
and hexane solutions. It was found that, regardless of the polarity of the solvent used, two
broad absorption bands were observed in the absorption spectra, one of which, located in
the short-wavelength region at 250–310 nm, refers to π–π* transitions of the conjugated
system, and the long-wavelength band in the range 400–520 nm due to the presence of
intramolecular charge transfer (ICT) [20,21]. As expected, the ICT absorption maximum
depended on the polarity of the solvent used: in n-hexane solution, it had a red shift relative
to this value recorded in a dichloromethane solution (460 nm for CH2Cl2 and 430 nm for
hexane), which indicates the presence of a solvatochromic effect.

The structure of 4,4-bis(2-ethylhexyl)-6-(9-(2-ethylhexyl)-2,3,4,4a,9,9a-hexahydro-1H-
carbazol-6-yl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2-carbaldehyde 1 was confirmed by
means of high-resolution mass-spectrometry, 1H, 13C NMR, IR, and UV spectroscopy.

3. Materials and Methods

4,4-Bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2,6-dicarbaldehyde 2 [19]
and 9-(2-ethylhexyl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3,4,4a,9,9a-hexahydro-
1H-carbazole 3 [17] were prepared according to the published methods. The solvents and
reagents were purchased from commercial sources and used as received. Melting point was
determined on a Kofler hot-stage apparatus and is uncorrected. 1H and 13C NMR spectra
were taken with a Bruker AM-300 machine (Bruker AXS Handheld Inc., Kennewick, WA,
USA) (at frequencies of 300 and 75 MHz) in CDCl3 solution, with TMS as the standard.
J values are given in Hz. IR spectrum was measured with a Bruker “Alpha-T” instru-
ment in a KBr pellet. High-resolution MS spectrum was measured on a Bruker micrOTOF
II instrument (Bruker Daltonik Gmbh, Bremen, Germany) using electrospray ionization
(ESI). Solution UV-visible absorption spectra were recorded using a OKB Spektr SF-2000
UV/Vis/NIR spectrophotometer controlled with SF-2000 software. The sample was mea-
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sured in the standard 10 mm photometric quartz cells in HPLC grade CH2Cl2 and C6H14
in a concentration of 5 × 10−6 M.

Synthesis of 4,4-bis(2-ethylhexyl)-6-(9-(2-ethylhexyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazol-
6-yl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2-carbaldehyde 1 (Supplementary Materials).

Aldehyde 2 (390 mg, 0.76 mmol) and boronic ester 3 (377 mg, 0.92 mmol) were
dissolved in anhydrous THF (20 mL), and 2 M K2CO3 (10 mL) was added. The mixture
was degassed for 20 min with a stream of argon, and Pd(PPh3)4 (50 mg, 40 µmol, 5%) was
added in one portion. After refluxing for 10 h in inert atmosphere, the mixture was poured
into water (50 mL) and extracted with EtOAc (3 × 20 mL). The combined organic layers
were washed with brine, dried over MgSO4, filtered, and concentrated under reduced
pressure. The crude product was purified by column chromatography on silica gel (Silica
gel Merck 60, eluent ethyl acetate /hexane, 1:25, v/v). Yield 400 mg (73%), orange oil,
Rf = 0.6 (hexane/ethyl acetate, 10:1, v/v). IR spectrum, ν, cm–1: 2957, 2927, 2855, 1654,
1612, 1481, 1385, 1315, 1224, 1138. 1H NMR (ppm): δ 9.72 (s, 1H), 7.45 (s 1H), 7.29–7.23 (m,
1H), 7.18 (s, 1H), 6.95 (s, 1H), 6.35 (d, J = 8.1, 1H), 3.48 (m, 1H), 3.07 (m, 1H), 2.94–2.75 (m,
2H), 1.92–1.81 (m, 4H), 1.77–1.68 (m, 2H), 1.66–1.58 (m, 2H), 1.53–1.44 (m, 2H), 1.43–1.34
(m, 3H), 1.27 (s, 8H), 0.98–0.80 (m, 22H), 0.72–0.62 (m, 8H), 0.52–0.57 (m, 6H). 13C NMR
(ppm): δ 182.1, 163.4, 156.4, 152.9, 151.6, 149.2, 141.9, 134.2, 132.6, 130.6, 125.4, 123.6, 120.3,
116.0, 106.6, 64.9, 64.6, 53.9, 50.3, 49.9, 43.2, 40.4, 38.9, 38.7, 35.3, 34.2, 34.1, 31.4, 31.1, 29.1,
28.9, 28.6, 27.5, 27.3, 27.1, 25.4, 25.3, 24.7, 24.3, 23.2, 22.8, 21.6, 14.0, 11.1, 10.8, 10.6. HRMS
(ESI-TOF), m/z: calcd for C46H67OS2N [M]+, 713.4659, found, 713.4669. UV-Vis spectrum,
λmax: 460 nm (ε = 29,160 M−1 cm−1, CH2Cl2), 430 nm (ε = 29,020 M−1 cm−1, C6H14).

Supplementary Materials: The following are available online: copies of 1H, 13C NMR, IR, UV/Vis,
and HRMS-spectra for the compound 1.
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