Ethyl 5-Oxo-5-(((12-oxoindolo[2,1-b]quinazolin-6(12H)-ylidene)amino)oxy)pentanoate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. DFT Study of Z,E-Isomerism
2.3. In Silico ADME Predictions
3. Materials and Methods
3.1. General Information and Compound 2 Synthesis
3.2. DFT Calculations
3.3. ADME Predictions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brufani, M.; Fedeli, W.; Mazza, F.; Gerhard, A.; Kellersc, W. Structure of tryptanthrin. Experientia 1971, 27, 1249–1250. [Google Scholar] [CrossRef]
- Schindler, F.; Zähner, H. Mitteilung. Tryptanthrin, ein von Tryptophan abzuleitendes Antibioticum aus Dandida Lipolytica. Arch. Mikrobiol. 1971, 79, 187. [Google Scholar] [CrossRef]
- Bergman, J.; Egestad, B.; Lindström, J.-O. The structure of some indolic constituents in Couroupita Guaianensis Aubl. Tetrahedron Lett. 1977, 18, 2625. [Google Scholar] [CrossRef]
- Honda, G.; Tosirisuk, V.; Tabata, M. Isolation of an Antidermatophytic, Tryptanthrin, from Indigo Plants, Polygonum tinctorium and Isatis tinctoria. Planta Med. 1980, 38, 275. [Google Scholar] [CrossRef] [PubMed]
- Wagner-Döbler, I.; Rheims, H.; Felske, A.; El-Ghezal, A.; Flade-Schröder, D.; Laatsch, H.; Lang, S.; Pukall, R.; Tindall, B.J. Oceanibulbus indolifex gen. nov., sp. nov., a North Sea alphaproteobacterium that produces bioactive metabolites. Int. J. Syst. Evol. Microbiol. 2004, 54, 1177. [Google Scholar] [CrossRef] [PubMed]
- Recio, M.-C.; Cerdá-Nicolás, M.; Potterat, O.; Hamburger, M.; Ríos, J.-L. Anti-Inflammatory and Antiallergic Activity in Vivo of Lipophilic Isatis tinctoria Extracts and Tryptanthrin. Planta Med. 2006, 72, 670. [Google Scholar] [CrossRef]
- Bandekar, P.P.; Roopnarine, K.A.; Parekh, V.J.; Mitchell, T.R.; Novak, M.J.; Sinden, R.R. Antimicrobial Activity of Tryptanthrins in Escherichia coli. J. Med. Chem. 2010, 53, 3558. [Google Scholar] [CrossRef] [PubMed]
- Kamal, A.; Reddy, B.V.S.; Sridevi, B.; Ravikumar, A.; Venkateswarlu, A.; Sravanthi, G.; Sridevi, J.P.; Yogeeswari, P.; Sriram, D. Synthesis and biological evaluation of phaitanthrin congeners as anti-mycobacterial agents. Bioorg. Med. Chem. Lett. 2015, 25, 3867. [Google Scholar] [CrossRef]
- Mani, J.S.; Johnson, J.B.; Steel, J.C.; Broszczak, D.A.; Neilsen, P.M.; Walsh, K.B.; Naiker, M. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res. 2020, 284, 197989. [Google Scholar] [CrossRef]
- Vedula Sharma, M.; Prasanna, P.; Adi Seshu, K.V.; Renuka, B.; Laxman Rao, C.V.; Sunil Kumar, G.; Prasad Narasimhulu, C.; Aravind Babu, P.; Puranik, R.C.; Subramanyam, D.; et al. Novel Indolo[2,1-b]quinazoline Analogues as Cytostatic Agents: Synthesis, Biological Evaluation and Structure–Activity Relationship. Bioorg. Med. Chem. Lett. 2002, 12, 2303. [Google Scholar] [CrossRef]
- Kimoto, T.; Hino, K.; Koya-Miyata, S.; Yamamoto, Y.; Takeuchi, M.; Nishizaki, Y.; Micallef, M.J.; Ushio, S.; Iwaki, K.; Ikeda, M.; et al. Cell differentiation and apoptosis of monocytic and promyelocytic leukemia cells (U-937 and HL-60) by tryptanthrin, an active ingredient of Polygonum tinctorium Lour. Pathol. Int. Cell 2001, 51, 315. [Google Scholar] [CrossRef]
- Miao, S.; Shi, X.; Zhang, H.; Wang, S.; Sun, J.; Hua, W.; Miao, Q.; Zhao, Y.; Zhang, C. Proliferation-Attenuating and Apoptosis-Inducing Effects of Tryptanthrin on Human Chronic Myeloid Leukemia K562 Cell Line in Vitro. Int. J. Mol. Sci. 2011, 12, 3831. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.T.; Chen, T.M.; Chern, J.W.; Tseng, S.Y.; Chen, Y.; Chen, H. Downregulation of GSTpi expression by tryptanthrin contributing to sensitization of doxorubicin-resistant MCF-7 cells through c-jun NH2-terminal kinase-mediated apoptosis. Anti-Cancer Drugs 2009, 20, 382. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhang, X.; Ma, G.J.; Wang, H.; Yang, Q.J. Transport Characteristics of Tryptanthrin and its Inhibitory Effect on P-gp and MRP2 in Caco-2 Cells. Pharm. Pharm. Sci. 2011, 14, 325. [Google Scholar] [CrossRef]
- Kim, W.; Youn, H.; Kwon, T.; Kang Kim, E.; Son, B.; Yang, H.J.; Youn, Y. PIM1 kinase inhibitors induce radiosensitization in non-small cell lung cancer cells. Pharmacol. Res. 2013, 70, 90. [Google Scholar] [CrossRef]
- Schepetkin, I.A.; Khlebnikov, A.I.; Potapov, A.S.; Kovrizhina, A.R.; Matveevskaya, V.V.; Belyanin, M.L.; Quinn, M.T. Synthesis, biological evaluation, and molecular modeling of 11H-indeno[1,2-b]quinoxalin-11-one derivatives and tryptanthrin-6-oxime as c-Jun N-terminal kinase inhibitors. Eur. J. Med. Chem. 2019, 161, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Jao, C.-W.; Lin, W.-C.; Wu, Y.-T.; Wu, P.-L. Isolation, Structure Elucidation, and Synthesis of Cytotoxic Tryptanthrin Analogues from Phaius mishmensis. J. Nat. Prod. 2008, 71, 1275. [Google Scholar] [CrossRef]
- Chang, C.-F.; Hsu, Y.-L.; Lee, C.-Y.; Wu, C.-H.; Wu, Y.-C.; Chuang, T.-H. Isolation and cytotoxicity evaluation of the chemical constituents from Cephalantheropsis gracilis. Int. J. Mol. Sci. 2015, 16, 3980–3989. [Google Scholar] [CrossRef]
- Jao, C.-W.; Hung, T.-H.; Chang, C.-F.; Chuang, T.-H. Chemical constituents of Phaius mishmensis. Molecules 2016, 21, 1605. [Google Scholar] [CrossRef] [PubMed]
- Krivogorsky, B.; Nelson, A.C.; Douglas, K.A.; Grundt, P. Tryptanthrin derivatives as Toxoplasma gondii inhibitors-Structure-activity-relationship of the 6-position. Bioorg. Med. Chem. Lett. 2013, 23, 1032–1035. [Google Scholar] [CrossRef]
- Guda, R.; Korra, R.; Balaji, S.; Palabindela, R.; Eerla, R.; Lingabathula, H.; Yellu, N.R.; Kumar, G.; Kasula, M. Design, synthesis and biological evaluation of 8-substituted-6-hydrazonoindolo[2,1-b]quinazolin-12(6H)-one scaffolds as potential cytotoxic agents: IDO-1 targeting molecular docking studies. Bioorg. Med. Chem. Lett. 2017, 27, 4741–4748. [Google Scholar] [CrossRef] [PubMed]
- Grandolini, G.; Ambrogi, V.; Perioli, L.; Giannangeli, M.; Jovicevic, L.; Rossi, V. Synthesis and antimicrobial activity of some new derivatives of 6,12-dihydroindolo[2,1-b]quinazolin-6,12-dione. Farmaco 1997, 52, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Karabatsos, G.J.; Taller, R.A. Structural studies by nuclear magnetic resonance—XV: Conformations and configurations of oximes. Tetrahedron 1968, 24, 3347–3360. [Google Scholar] [CrossRef]
- Grimme, S.; Hansen, A.; Ehlert, S.; Mewes, J.-M. r2SCAN-3c: A “Swiss army knife” composite electronic-structure method. Chem. Phys. 2021, 154, 064103. [Google Scholar] [CrossRef] [PubMed]
- Ásgeirsson, V.; Birgisson, B.O.; Bjornsson, R.; Becker, U.; Neese, F.; Riplinger, C.; Jónsson, H. Nudged Elastic Band Method for Molecular Reactions Using Energy-Weighted Springs Combined with Eigenvector Following. J. Chem. Theory Comput. 2021, 17, 4929–4945. [Google Scholar] [CrossRef]
- Weiss, K.; Warren, C.H.; Wettermark, G. cis-trans isomerization about the carbon-nitrogen double bond. Structures of the isomers of N-benzylideneaniline. J. Am. Chem. Soc. 1971, 93, 4658–4663. [Google Scholar] [CrossRef]
- Blanco, F.; Alkorta, I.; Elguero, J. Barriers about Double Carbon-Nitrogen Bond in Imine Derivatives (Aldimines, Oximes, Hydrazones, Azines). Croat. Chem. Acta. 2009, 82, 173–183. [Google Scholar]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Oprea, T.I.; Davis, A.M.; Teague, S.J.; Leeson, P.D. Is there a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comput. Sci. 2001, 41, 1308–1315. [Google Scholar] [CrossRef] [PubMed]
- Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov. 2007, 6, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Leo, A.; Hansch, C.; Elkins, D. Partition coefficients and their uses. Chem. Rev. 1971, 71, 525–616. [Google Scholar] [CrossRef]
- Bennett, B.L.; Sasaki, D.T.; Murray, B.W.; O’Leary, E.C.; Sakata, S.T.; Xu, W.; Leisten, J.C.; Motiwala, A.; Pierce, S.; Satoh, Y.; et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. USA 2001, 98, 13681–13686. [Google Scholar] [CrossRef] [PubMed]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Account 2008, 120, 215–241. [Google Scholar]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Rappoport, D.; Furche, F. Property-optimized Gaussian basis sets for molecular response calculations. J. Chem. Phys. 2010, 133, 134105. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Grimme, S.; Brandenburg, J.-G.; Bannwarth, C.; Hansen, A. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J. Chem. Phys. 2015, 143, 054107. [Google Scholar] [CrossRef]
Property | Compound 2 |
---|---|
Formula | C22H19N3O5 |
Molecular Weight (g/mol) | 405.40 |
Heavy Atoms | 30 |
Fraction Csp3 | 0.23 |
Rotatable Bonds | 8 |
H-bond Acceptors | 7 |
H-bond Donors | 0 |
Molar Refractivity | 110.46 |
Topological Polar Surface Area (tPSA), Å2 | 99.85 |
Lipophilicity (Consensus Log Po/w) | 2.85 |
BBB Permeation | No |
Synthetic Accessibility | 3.65 |
Bioavailability Score | 0.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovrizhina, A.R.; Kolpakova, A.A.; Kuznetzov, A.A.; Khlebnikov, A.I. Ethyl 5-Oxo-5-(((12-oxoindolo[2,1-b]quinazolin-6(12H)-ylidene)amino)oxy)pentanoate. Molbank 2022, 2022, M1451. https://doi.org/10.3390/M1451
Kovrizhina AR, Kolpakova AA, Kuznetzov AA, Khlebnikov AI. Ethyl 5-Oxo-5-(((12-oxoindolo[2,1-b]quinazolin-6(12H)-ylidene)amino)oxy)pentanoate. Molbank. 2022; 2022(4):M1451. https://doi.org/10.3390/M1451
Chicago/Turabian StyleKovrizhina, Anastasia R., Alina A. Kolpakova, Andrei A. Kuznetzov, and Andrei I. Khlebnikov. 2022. "Ethyl 5-Oxo-5-(((12-oxoindolo[2,1-b]quinazolin-6(12H)-ylidene)amino)oxy)pentanoate" Molbank 2022, no. 4: M1451. https://doi.org/10.3390/M1451
APA StyleKovrizhina, A. R., Kolpakova, A. A., Kuznetzov, A. A., & Khlebnikov, A. I. (2022). Ethyl 5-Oxo-5-(((12-oxoindolo[2,1-b]quinazolin-6(12H)-ylidene)amino)oxy)pentanoate. Molbank, 2022(4), M1451. https://doi.org/10.3390/M1451