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Abstract: Indolo[2,1-b]quinazolin-6,12-dione (tryptanthrin) derivatives present important types of
nitrogen-containing heterocyclic compounds which are useful intermediate products in organic
synthesis and have potential pharmaceutical applications. The new ethyl 5-oxo0-5-(((12-oxoindolo[2,1-
b]quinazolin-6(12H)-ylidene)amino)oxy)pentanoate (Compound 2) was synthesized. Compound 2
is the first example of a tryptanthrin derivative containing a dicarboxylic acid residue in the side
chain. The Z,E-isomerism of Compound 2 was investigated by DFT calculations. Bioavailability
was evaluated in silico using ADME predictions. According to the ADME results, Compound 2 is
potentially highly bioavailable and has the prospective to be used as the main component for the
development of anti-inflammatory drugs.
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1. Introduction

Tetracyclic heteroaromatic compounds with linear or angularly fused indoloquinazo-
line ring systems constitute an important structural moiety in natural products. Indolo[2,1-
blquinazolin-6,12-dione (tryptanthrin) is a well-known alkaloid and antibiotic isolated from
the fungus Candida lipolytica [1-5], higher plants, and several species of different marine
micro- and macro-organisms. This alkaloid has various pharmacological effects, such as
anti-inflammatory [6], antimicrobial [7,8], antiviral [9], and anti-tumor activities [10-15].
It was found that tryptanthrin-6-oxime can serve as a specific small-molecule modulator
for mechanistic studies of c-Jun N-terminal kinase (JNK) functioning [16]. The structure
of tryptanthrin is attractive for obtaining its derivatives with various functional groups
in position 6, as well as those substituted on the indole and quinazoline moieties. At the
moment, a huge number of tryptanthrin analogs are known, both natural and chemically
synthesized (Scheme 1).

Methylisatoid (E) [17-19] and cephalanthrin B (F) [18] are naturally occurring
indolo[2,1-b]quinazoline alkaloids which were isolated from various plant sources and
different cell cultures. These compounds showed cytotoxicity against MCF-7, NCI-H460,
and SF-268 cell lines [18]. The oxime esters A and B were obtained by esterification
of tryptanthrin-6-oxime with acetic anhydride or the mixed anhydride of formic and
acetic acids. These compounds are antiproliferative and cytotoxic agents [20]. Com-
pound D showed potent anti-oxidant activity. The anti-cancer activity was investigated
using MTT assay protocol and the results show that compounds containing the 4-pyridyl
or 4-carboxyphenyl substituents at position § of the tryptanthrin framework are the most
promising cytotoxic agent against A549, MCF-7, and HeLa human cancer cell lines as com-
pared to other derivatives and the standard drug cisplatin [21]. Grandolini et al. discovered
that tryptanthrin undergoes the Darzens reaction to yield Compound C, which showed
antimicrobial activity [22].
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Scheme 1. Examples of biologically active tryptanthrin analogs with carboxylic groups.

However, the use of dicarboxylic acids as acylating agents in reaction with tryptanthrin
has not been previously reported. It should be noted that the carboxyl group is an important
constituent of organic molecules, such as amino acids and fatty acids, which play essential
roles in biosynthesis and cellular respiration. An attachment of the carboxyl group makes
a compound very soluble in polar solvents. This polarity, coupled with the presence of a
carboxylate fragment at the other end of the molecule, allows dicarboxylic acid derivatives
to engage in a strong hydrogen bonding that leads to an effective anchoring of the molecules
within binding sites of potential biotargets.

In this paper, we report the previously unknown tryptanthrin derivative which can
be classified as the glutamic acid nonsymmetric diester bearing thyptanthrin-6-oxime
and ethanol moieties. This derivative can be regarded as a prospective biologically
active compound.

2. Results and Discussion
2.1. Synthesis

We have preliminarily obtained tryptanthrin-6-oxime by the condensation of commer-
cially available tryptanthrin with hydroxylamine hydrochloride [16,20] (Scheme 2).

0]
N
N
Ejﬁr% o ©/WY\%D
I NH,OH*HCI

tryptanthrin tryptanthrin-6-oxime
Scheme 2. Synthesis of tryptanthrin-6-oxime.

Further modification of tryptanthrin-6-oxime by the action of ethyl glutaryl chloride
(Compound 1) led to ethyl 5-ox0-5-(((12-oxoindolo[2,1-b]quinazolin-6(12H)-ylidene)
amino)oxy)pentanoate (target product 2, Scheme 3). The acylation reaction proceeds for
40 min at 0 °C in pyridine as the solvent and the base. At the end of the process, complete
conversion was achieved (control by TLC, eluent chloroform). The expected crude acyl
oxime derivative was isolated by filtration with 88% yield. The compound was purified by
recrystallization from ethanol.
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Scheme 3. Synthesis of title Compound 2.

Title Compound 2 is the first representative of a tryptanthrin-6-oxime derivative
containing a dicarboxylic acid residue in the substituent. This compound can be applicable
in medicinal, organic, and materials chemistry.

It is known [23] that oximes and their derivatives exist in the forms of Z- or E-isomers
that differ in the C=N double bond configuration. According to the NMR data (acetone-ds),
the recrystallized Compound 2 presents an individual isomer. The 'H NMR spectrum (Fig-
ure S1, Supplementary Materials) contains signals of the ethyl ester group at 4.13 (quartet)
and 1.23 (triplet) ppm. Signals of the trimethylene linker within the dicarboxylic moiety
are located between 2.10 and 2.93 ppm. Protons of the indolo[2,1-b]quinazoline heterocycle
are observed between 7.49 and 8.60 ppm. The signals in the NMR '3C spectrum (Figure S2)
also confirm the structure of the resulting product (see NMR results, Section 3). The atom
numbering is shown in Scheme 4.

R = -OC(O)(CH,);C(O)OCH,CH,

Scheme 4. Atom numbering for NMR assignments in molecule 2.

The main characteristics of the title Compound 2: yellow crystals, M.p. 124-125 °C,
soluble in acetone and chloroform.

2.2. DFT Study of Z,E-Isomerism

We studied the relative stability of two possible geometric isomers of Compound 2
in acetone using the DFT method. The lowest-energy conformations of the isomers were
pre-optimized using the r?’SCAN-3c composite DFT approach [24] and their single point
energies were further evaluated with an M06-2X functional and def2-TZVPD basis set.
This basis set includes diffuse functions pertinent for an adequate treatment of oxime
lone pair interactions. The optimized structures of the geometric isomers are presented
in Figure S3. The E-isomer was found to be more stable, while the Z-isomer has the
calculated energy 7.73 k] /mol above the E-isomer. Based on these results, we propose that
the synthesized Compound 2 consists of a relatively more stable E-isomer (see Section 2.1).
It should be noted that the side chains in the optimized structures of both Z- and E-isomers
are oriented towards the heterocyclic fragment, obviously because of attractive Van der
Waals interactions.

To evaluate the energy barrier for Z,E-isomerization about the C=N bond, we applied
the climbing image nudged elastic band (CI-NEB) methodology that is efficient in finding
a minimum energy path and a transition state (TS) [25]. The climbing image obtained
by us was considered a good guess for the saddle point and was refined by the TS opti-
mization procedure with the r’SCAN-3c method. The TS energy calculated further at the
MO06-2X/def2-TZVPD level led to the value of 208.4 k] /mol for the E 2 Z isomerization
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barrier of Compound 2. The TS structure (Figure S3) suggests that the interconversion
between Z- and E-isomers occurs via in-plane inversion of the nitrogen atom like in other
similar compounds [26,27], i.e., without rotation about the C=N double bond. The cal-
culated isomerization barrier is high enough and close to the corresponding values of
other oximes [27].

2.3. In Silico ADME Predictions

We have evaluated ADME characteristics of Compound 2 using the SwissADME
online tool [28]. The SwissADME program analyzes the structure of a chemical compound
and gives a number of values, including physicochemical properties, the value of the
lipophilicity coefficient (octanol-water partition coefficient), solubility in water, and some
pharmacokinetic parameters (binding to liver enzymes, etc.). The program also checks a
compound for compliance with bioavailability criteria, including Lipinski rules [29-33].

We obtained bioavailability radar plots that display an assessment of Compound
2 drug-likeness. Six important physicochemical properties, including lipophilicity, size,
polarity, solubility, flexibility (conformational change), and insaturation, were considered.
It was obtained that the investigated derivative of tryptanthrin-6-oxime and glutaric acid
in general has satisfactory ADME properties as illustrated by a radar representation of
bioavailability in Figure S4 (Panel A). Incorporation of the glutaric acid residue significantly
improves the insaturation score of Compound 2 with respect to its precursor tryptanthrin-
6-oxime and to the known JNK inhibitor SP600125 of the anthrapyrazolone series [34] (see
Figure S4, Panels B and C). Compared to tryptanthrin-6-oxime and SP600125, molecule 2
has a higher flexibility and polarity, which gives the ability to address a wider variety of
binding sites. According to the calculated ADME parameters (Table 1) and bioavailability
radar (Figure S4), the synthesized derivative 2 is expected to be highly bioavailable.

Table 1. Physicochemical ADME properties of Compound 2.

Property Compound 2
Formula CarH19N305
Molecular Weight (g/mol) 405.40
Heavy Atoms 30
Fraction Csp? 0.23
Rotatable Bonds 8
H-bond Acceptors 7
H-bond Donors 0
Molar Refractivity 110.46
Topological Polar Surface Area (tPSA), A2 99.85
Lipophilicity (Consensus Log Popy) 2.85
BBB Permeation No
Synthetic Accessibility 3.65
Bioavailability Score 0.55

3. Materials and Methods
3.1. General Information and Compound 2 Synthesis

Elemental analysis was made using a Carlo Erba analyzer (Thermo Fisher Scientific,
Waltham, MA, USA). The IH and 3C NMR spectra were recorded on a Bruker AVANCE
[T HD instrument (operating frequency 'H—400 MHz; 1*C—100 MHz, Bruker Corpora-
tion, Billerica, MA, USA). The melting point of the obtained compound was measured
using a Melting Point Apparatus SMP30 (Stuart Scientific, Staffordshire, UK), heating rate
3.0 °C/min. IR spectra were recorded on a FI-IR spectrometer Nicolet 5700 (Thermo Fisher
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Scientific, Waltham, MA, USA) with KBr pellets. The reaction was monitored by thin layer
chromatography (TLC) on Silufol UV-254 and Merck plates, silica gel 60, F254.

Tryptanthrin was purchased from Combi-Blocks (San Diego, CA, USA). Tryptanthrin-
6-oxime was prepared according to the procedures in the literature [16,20].

Ethyl 5-oxo-5-(((12-oxoindolo[2,1-b]quinazolin-6(12H)-ylidene)amino)oxy)pentanoate (Com-
pound 2). To a solution of tryptanthrin-6-oxime (0.5 mmol, 0.132 g) in 5 mL pyridine, ethyl
glutaryl chloride (0.5 mmol, 0.0781 mL) was added on permanent stirring at 0 °C for 40 min.
The reaction was monitored by TLC (eluent: chloroform). The reaction mixture was poured
in water, the precipitate was filtered out and washed with water. The title Compound 2
was obtained as yellow crystals (yield 88%); M.p. 124-125 °C (from ethanol).

'H NMR (400 MHz, (CD;),CO), 5, ppm: 1.23 (t, 3H, | 8 Hz, CH,CHj), 2.10 (m, 2H,
CH,CH,CHy), 2.53 (t, 2H, ] 8 Hz, CH,CH,CH,COOE), 2.93 (t, 2H, ] 6 Hz, CH,CH,CH,COOEY),
4.13 (q, 2H, ] 8 Hz, CH,CH3), 7.49 (t, 1H, ] 8 Hz, H-8), 7.68 (t, 1H, ] 7 Hz, H-9), 7.76 (t, 1H,
J 7 Hz, H-2),7.86 (d, 1H, ] 8 Hz, H-10), 7.92 (t, 1H, ] 8 Hz, H-3), 8.35 (d, 1H, | 8 Hz, H-4),
8.44 (d, 1H, ] 8 Hz, H-7), 8.60 (d, ] 8 Hz, H-1) 13C NMR (100 MHz, CDCl3), 8, ppm: 14.38;
20.03; 31.67; 33.07; 60.74; 117.72; 118.23; 122.62; 127.23; 127.36; 129.03; 129.55; 129.60; 135.11;
135.17; 141.57; 146.91; 147.15; 150.02; 158.95; 169.65; 172.94. IR (KBr), cm~!: v(CH3) 2981;
v(CHy) 2874; v(C=0) 1784, 1728, 1680; v(C=N) 1647, 1614; v(C(O)-O) 1199. Found, % C,
65.37; H, 4.58; N, 10.31, C»,H19N3O5 Calculated, %: C, 65.18; H, 4.72; N, 10.37.

3.2. DFT Calculations

The ORCA 5.0 computational chemistry software [35] was used for DFT calculations
of E- and Z-isomers of Compound 2. Before the calculations, conformation searches were
performed for geometric isomers using the VConf 2.0 program of the VeraChem suite of
software (VeraChem LLC, Germantown, MD, USA). For the best (Top 10) conformations
found for each isomer, singlet state geometry optimizations were carried out with ORCA
5.0 employing the r?’SCAN-3c composite method [24] and the CPCM solvation model
with acetone as a solvent. Afterwards, for the lowest-energy conformation of each isomer,
single point energy calculations were performed with an M06-2X functional [36], def2-
TZVPD basis set [37,38], and SMD solvation model [39]. For CI-NEB calculations of
the isomerization paths, the PBEh-3c method [40] was applied. The obtained climbing
image was optimized with the OptTS keyword in ORCA 5.0 using the r’SCAN-3c method,
and a single point energy evaluation was made for the obtained TS at the M06-2X/ def2-
TZVPD/SMD level of theory. The energy values of the E-isomer and TS calculated with
MO06-2X functional were used for the estimation of the isomerization barrier. Frequency
calculations were performed for all the geometries optimized with r>SCAN-3c in order
to establish the nature of the stationary points. Analysis and visualization of the DFT
results were made with the Chemcraft 1.8 program. The ORCA 5.0 output files for the
lowest-energy conformations and the TS are available in Supplementary Materials.

3.3. ADME Predictions

The physicochemical properties of selected compounds were computed using Swis-
sADME (http:/ /www.swissadme.ch, accessed on 7 July 2022).

4. Conclusions

In this work, we presented a synthesis of the previously unknown Compound 2 (Ethyl
5-0x0-5-(((12-oxoindolo[2,1-b]quinazolin-6(12H)-ylidene)amino)oxy)pentanoate). The com-
pound structure was confirmed by NMR, IR spectrometry, and elemental analysis. Accord-
ing to the DFT results, Compound 2 has a more favorable E-configuration. The calculated
isomerization path suggest that the E,Z-isomerization occurs via in-plane inversion of
the oxime nitrogen atoms. An in silico estimation of ADME characteristics indicates that
Compound 2 should be highly bioavailable and thus has the prospective to be used as a
biologically active compound like other indoloquinazoline analogues [6-22]. While clas-
sical methods were used to obtain the O-substituted oxime 2, this compound is the first
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representative of tryptanthrin derivatives with dicarboxylic acid residue, which are of great
interest for further drug design.

Supplementary Materials: The following are available online. Figures: the NMR 'H and 13C of
Compound 2; the DFT-optimized conformations of Z- and E-isomers of the title compound; the
structure of the TS for Z,E-isomerization; ADME radar plots for the title compound, SP600125, and
tryptanthrin-6-oxime. Files: ORCA 5.0 output files for geometric isomers of Compound 2 and for the
transition state optimized by r> SCAN-3c method.
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