Targeted Lipidomics and Lipid Metabolism Elucidate Anti-Obesity Effects of Lactic Acid Bacteria-Fermented Purple Sweet Potato Tainung No. 73 Extract in Obese Mice
Abstract
1. Introduction
2. Results
2.1. Fermentation Screening and Extraction Efficiency
2.2. FSPE Reduces Body Weight Gain and Adiposity in High-Fat Diet-Induced Obese Mice
2.3. Effects of FSPE on Serum Biochemical Parameters in High-Fat Diet-Induced Obese Mice
2.4. FSPE Increased SCFAs Production in High-Fat Diet-Induced Obese Mice
2.5. FSPE Modulates the Expression of Genes Associated with Obesity and Inflammation in Adipose and Liver Tissues of HFD-Fed Mice
2.6. FSPE Modulates Serum Lipidomic Profiles
2.7. Chemical Composition of FSPE
3. Discussion
4. Materials and Methods
4.1. Fermentation of Sweet Potato Samples
4.2. Extraction of Fermented Purple Sweet Potato
4.3. Total Phenolic Content
4.4. Total Flavonoid Content
4.5. Total Anthocyanin Content
4.6. Reducing Sugar Content
4.7. Animal Handling and Treatment
4.8. Liver Triglycerides Test
4.9. Liver Total Cholesterol Test
4.10. Measurement of MDA in Liver Homogenate
4.11. Pathological Tissue Analysis
4.12. Real-Time Quantitative Polymerase Chain Reaction (qPCR)
4.13. Fecal Short-Chain Fatty Acid (SCFA) Analysis
4.14. Lipidomics Analysis
4.15. Analysis of Chemical Compounds from Fermented Sweet Potato Extract (FSPE)
4.16. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MASLD | Metabolic dysfunction-associated steatotic liver disease |
| LAB | Lactic acid bacteria |
| TPC | Total phenolic content |
| TFC | Total flavonoid content |
| TAC | Total anthocyanin content |
| SCFA | Short-chain fatty acid |
| HFD | High-fat diet |
| WAT | White adipose tissue |
| PCA | Principal component analysis |
| VIP | Variable Importance in Projection |
| PPARγ | Peroxisome proliferator-activated receptor gamma |
| TNF-α | Tumor necrosis factor-alpha |
| SREBP-1c | Sterol regulatory element-binding protein 1c |
| ATGL | Adipose triglyceride lipase |
| PGC-1α | Peroxisome proliferator-activated receptor gamma coactivator 1-alpha |
References
- Tak, Y.J.; Lee, S.Y. Anti-obesity drugs: Long-term efficacy and safety: An updated review. World J. Men’s Health 2020, 39, 208. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Chen, C.C.; Lin, K.H.; Chao, P.Y.; Lin, H.H.; Huang, M.Y. Bioactive compounds, antioxidants, and health benefits of sweet potato leaves. Molecules 2021, 26, 1820. [Google Scholar] [CrossRef] [PubMed]
- Laveriano-Santos, E.P.; López-Yerena, A.; Jaime-Rodríguez, C.; González-Coria, J.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A.; Romanyà, J.; Pérez, M. Sweet potato is not simply an abundant food crop: A comprehensive review of its phytochemical constituents, biological activities, and the effects of processing. Antioxidants 2022, 11, 1648. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Fan, S.H.; Zheng, Y.L.; Lu, J.; Wu, D.M.; Shan, Q.; Hu, B. Purple sweet potato color attenuates oxidative stress and inflammatory response induced by d-galactose in mouse liver. Food Chem. Toxicol. 2009, 47, 496–501. [Google Scholar] [CrossRef]
- Ju, R.; Zheng, S.; Luo, H.; Wang, C.; Duan, L.; Sheng, Y.; Zhao, C.; Xu, W.; Huang, K. Purple sweet potato attenuate weight gain in high fat diet induced obese mice. J. Food Sci. 2017, 82, 787–793. [Google Scholar] [CrossRef]
- Sun, J.; Gou, Y.; Liu, J.; Chen, H.; Kan, J.; Qian, C.; Zhang, N.; Niu, F.; Jin, C. Anti-inflammatory activity of a water-soluble polysaccharide from the roots of purple sweet potato. RSC Adv. 2020, 10, 39673–39686. [Google Scholar] [CrossRef]
- Luo, C.L.; Zhou, Q.; Yang, Z.W.; Wang, R.D.; Zhang, J.L. Evaluation of structure and bioprotective activity of key high molecular weight acylated anthocyanin compounds isolated from the purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8). Food Chem. 2018, 241, 23–31. [Google Scholar] [CrossRef]
- Lestari, L.; Soesatyo, M.; Iravati, S.; Harmayani, E. Characterization of Bestak sweet potato (Ipomoea batatas) variety from Indonesian origin as prebiotic. Int. Food Res. J. 2013, 20, 2241–2245. [Google Scholar]
- Sancho, R.A.S.; Souza, J.D.R.; de Lima, F.A.; Pastore, G.M. Evaluation of oligosaccharide profiles in selected cooked tubers and roots subjected to in vitro digestion. LWT 2017, 76, 270–277. [Google Scholar] [CrossRef]
- Fan, G.; Han, Y.; Gu, Z.; Gu, F. Composition and colour stability of anthocyanins extracted from fermented purple sweet potato culture. LWT 2008, 41, 1412–1416. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, H.; Zeng, H.; Prinyawiwatukul, W.; Xu, W.; Xu, Z. Increases in phenolic, fatty acid, and phytosterol contents and anticancer activities of sweet potato after fermentation by Lactobacillus acidophilus. J. Agric. Food Chem. 2018, 66, 2735–2741. [Google Scholar] [CrossRef]
- Lee, S.G.; Chae, J.; Kim, D.S.; Lee, J.-B.; Kwon, G.-S.; Kwon, T.K.; Nam, J.-O. Enhancement of the antiobesity and antioxidant effect of purple sweet potato extracts and enhancement of the effects by fermentation. Antioxidants 2021, 10, 888. [Google Scholar] [CrossRef]
- Gu, Y.; Xiao, X.; Pan, R.; Zhang, J.; Zhao, Y.; Dong, Y.; Cui, H. Lactobacillus plantarum dy-1 fermented barley extraction activates white adipocyte browning in high-fat diet-induced obese rats. J. Food Biochem. 2021, 45, e13680. [Google Scholar] [CrossRef]
- Wang, R.; Li, B.; Lam, S.M.; Shui, G. Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression. J. Genet. Genom. 2020, 47, 69–83. [Google Scholar] [CrossRef]
- Vianello, E.; Ambrogi, F.; Kalousová, M.; Badalyan, J.; Dozio, E.; Tacchini, L.; Schmitz, G.; Zima, T.; Tsongalis, G.J.; Corsi-Romanelli, M.M. Circulating perturbation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is associated to cardiac remodeling and NLRP3 inflammasome in cardiovascular patients with insulin resistance risk. Exp. Mol. Pathol. 2024, 137, 104895. [Google Scholar] [CrossRef]
- Heimerl, S.; Fischer, M.; Baessler, A.; Liebisch, G.; Sigruener, A.; Wallner, S.; Schmitz, G. Alterations of plasma lysophosphatidylcholine species in obesity and weight loss. PLoS ONE 2014, 9, e111348. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Yang, C.; Shi, Z.; Wang, Z.; Jiang, D. Analysis of serum metabolomics in obese mice induced by high-fat diet. Diabetes Metab. Syndr. Obes. 2021, 14, 4671–4678. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Shang, Y.; Wang, Q. Exploration of the mechanism of linoleic acid metabolism dysregulation in metabolic syndrome. Genet. Res. 2022, 2022, 6793346. [Google Scholar] [CrossRef]
- Chintha, P.; Sarkar, D.; Pecota, K.; Dogramaci, M.; Shetty, K. Improving phenolic bioactive-linked functional qualities of sweet potatoes using beneficial lactic acid bacteria-based biotransformation strategy. Horticulturae 2021, 7, 367. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Yang, S.; Gao, X.; Wang, S.; Wang, Z.; Zhang, C.; Zhou, Z.; Chen, Y.; Wang, Z. Comparison of local metabolic changes in Diabetic Rodent kidneys using Mass Spectrometry Imaging. Metabolites 2023, 13, 324. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Cao, J.; Zhang, L.; Wang, K.; Lin, H.; Qin, L.; Zhang, Q.; Qu, C.; Miao, J.; Xue, C. Indole-3-lactic acid derived from Lacticaseibacillus paracasei inhibits helicobacter pylori infection via destruction of bacteria cells, protection of gastric mucosa epithelial cells, and alleviation of inflammation. J. Agric. Food Chem. 2024, 72, 15725–15739. [Google Scholar] [CrossRef] [PubMed]
- Gorissen, L.; Raes, K.; De Smet, S.; De Vuyst, L.; Leroy, F. Microbial production of conjugated linoleic and linolenic acids in fermented foods: Technological bottlenecks. Eur. J. Lipid Sci. Technol. 2012, 114, 486–491. [Google Scholar] [CrossRef]
- Xu, S.; Boylston, T.D.; Glatz, B.A. Conjugated linoleic acid content and organoleptic attributes of fermented milk products produced with probiotic bacteria. J. Agric. Food Chem. 2005, 53, 9064–9072. [Google Scholar] [CrossRef]
- Atmaca, M.; Bilgin, H.M.; Obay, B.D.; Diken, H.; Kelle, M.; Kale, E. The hepatoprotective effect of coumarin and coumarin derivates on carbon tetrachloride-induced hepatic injury by antioxidative activities in rats. J. Physiol. Biochem. 2011, 67, 569–576. [Google Scholar] [CrossRef]
- Yang, F.; Chen, C.; Ni, D.; Yang, Y.; Tian, J.; Li, Y.; Chen, S.; Ye, X.; Wang, L. Effects of fermentation on bioactivity and the composition of polyphenols contained in polyphenol-rich foods: A review. Foods 2023, 12, 3315. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Y.; Sun, S.; Xie, Y.; Pan, C.; Li, M.; Li, C.; Liu, Y.; Xu, Z.; Liu, W. Indolepropionic acid reduces obesity-induced metabolic dysfunction through colonic barrier restoration mediated via tuft cell-derived IL-25. FEBS J. 2022, 289, 5985–6004. [Google Scholar] [CrossRef]
- van der Hee, B.; Wells, J.M. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol. 2021, 29, 700–712. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Deng, Q.; Xu, J.; Wang, X.; Hu, C.; Tang, H.; Huang, F. Sinapic acid and resveratrol alleviate oxidative stress with modulation of gut microbiota in high-fat diet-fed rats. rats. Food Res. Int. 2019, 116, 1202–1211. [Google Scholar] [CrossRef]
- Ye, Z.; Cao, C.; Li, Q.; Xu, Y.-J.; Liu, Y. Different dietary lipid consumption affects the serum lipid profiles, colonic short chain fatty acid composition and the gut health of Sprague Dawley rats. Food Res. Int. 2020, 132, 109117. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wu, T.; Chu, X.; Tang, S.; Cao, W.; Liang, F.; Fang, Y.; Pan, S.; Xu, X. Fermented blueberry pomace with antioxidant properties improves fecal microbiota community structure and short chain fatty acids production in an in vitro mode. LWT 2020, 125, 109260. [Google Scholar] [CrossRef]
- Huang, G.; Wang, Z.; Wu, G.; Cao, X.; Zhang, R.; Dong, L.; Huang, F.; Zhang, M.; Su, D. In vitro simulated digestion and colonic fermentation of lychee pulp phenolics and their impact on metabolic pathways based on fecal metabolomics of mice. Food Funct. 2021, 12, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Varga, T.; Czimmerer, Z.; Nagy, L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Acta-Mol. Basis Dis. 2011, 1812, 1007–1022. [Google Scholar] [CrossRef]
- Ables, G.P. Update on pparγ and nonalcoholic Fatty liver disease. PPAR Res. 2012, 2012, 912351. [Google Scholar] [CrossRef]
- Steinberg, G.R.; Kemp, B.E.; Watt, M.J. Adipocyte triglyceride lipase expression in human obesity. Am. J. Physiol. Endocrinol. Metab. 2007, 293, E958–E964. [Google Scholar] [CrossRef]
- Ong, K.T.; Mashek, M.T.; Bu, S.Y.; Greenberg, A.S.; Mashek, D.G. Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning. Hepatology 2011, 53, 116–126. [Google Scholar] [CrossRef]
- Kobayashi, M.; Harada, T.; Takagi, N.; Tsuzuki, K.; Sugawara, M.; Fukuda, M. Effects of lactic acid-fermented soymilk on lipid metabolism-related gene expression in rat liver. Biosci. Biotechnol. Biochem. 2012, 76, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S.; Shargill, N.S.; Spiegelman, B.M. Adipose expression of tumor necrosis factor-α: Direct role in obesity-linked insulin resistance. Science 1993, 259, 87–91. [Google Scholar] [CrossRef]
- Vachliotis, I.D.; Polyzos, S.A. The role of tumor necrosis factor-alpha in the pathogenesis and treatment of nonalcoholic fatty liver disease. Curr. Obes. Rep. 2023, 12, 191–206. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, H.; Liu, R.; Huang, C.-L.; Li, H.; Deng, Z.-Y.; Tsao, R. Do short chain fatty acids and phenolic metabolites of the gut have synergistic anti-inflammatory effects?—New insights from a TNF-α-induced Caco-2 cell model. Food Res. Int. 2021, 139, 109833. [Google Scholar] [CrossRef]
- Chao, P.-Y.; Huang, Y.-P.; Hsieh, W.-B. Inhibitive effect of purple sweet potato leaf extract and its components on cell adhesion and inflammatory response in human aortic endothelial cells. Cell Adh. Migr. 2013, 7, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-M.; Sun, Y.-Z.; Sun, J.-M.; Ma, J.-Q.; Cheng, C. Protective role of quercetin against lead-induced inflammatory response in rat kidney through the ROS-mediated MAPKs and NF-κB pathway. Biochim. Biophys. Acta-Gen. Subj. 2012, 1820, 1693–1703. [Google Scholar] [CrossRef]
- Choi, S.; Snider, A.J. Sphingolipids in high fat diet and obesity-related diseases. Mediat. Inflamm. 2015, 2015, 520618. [Google Scholar] [CrossRef]
- Summers, S.A. Ceramides in insulin resistance and lipotoxicity. Prog. Lipid Res. 2006, 45, 42–72. [Google Scholar] [CrossRef]
- Shah, C.; Yang, G.; Lee, I.; Bielawski, J.; Hannun, Y.A.; Samad, F. Protection from high fat diet-induced increase in ceramide in mice lacking plasminogen activator inhibitor 1. J. Biol. Chem. 2008, 283, 13538–13548. [Google Scholar] [CrossRef] [PubMed]
- Chavez, J.A.; Siddique, M.M.; Wang, S.T.; Ching, J.; Shayman, J.A.; Summers, S.A. Ceramides and glucosylceramides are independent antagonists of insulin signaling. J. Biol. Chem. 2014, 289, 723–734. [Google Scholar] [CrossRef]
- Mihalik, S.J.; Goodpaster, B.H.; Kelley, D.E.; Chace, D.H.; Vockley, J.; Toledo, F.G.; DeLany, J.P. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity 2010, 18, 1695–1700. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.J.; Lin, L.; Gillingham, L.G.; Yang, H.; Omar, J.M. Modulation of plasma N-acylethanolamine levels and physiological parameters by dietary fatty acid composition in humans. J. Lipid Res. 2014, 55, 2655–2664. [Google Scholar] [CrossRef]
- Hou, J.; Ji, X.; Chu, X.; Shi, Z.; Wang, B.; Sun, K.; Wei, H.; Song, Z.; Wen, F. Comprehensive lipidomic analysis revealed the effects of fermented Morus alba L. intake on lipid profile in backfat and muscle tissue of Yuxi black pigs. J. Anim. Physiol. Anim. Nutr. 2024, 108, 764–777. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Peng, Z.; Zheng, W.; Yang, S.; Wu, M.; Liu, K.; Xiao, M.; Huang, T.; Xie, M.; Xiong, T. Probiotic-fermented tomato alleviates high-fat diet-induced obesity in mice: Insights from microbiome and metabolomics. Food Chem. 2024, 436, 137719. [Google Scholar] [CrossRef]
- Yen, C.-H.; Chiang, M.-H.; Lee, Y.-C.; Kao, E.-S.; Lee, H.-J. Purple Sweet Potato Ameliorates High-Fat Diet-Induced Visceral Adiposity by Attenuating Inflammation and Promoting Adipocyte Browning. J. Agric. Food Chem. 2025, 73, 3457–3467. [Google Scholar] [CrossRef]
- Li, J.-E.; Fan, S.-T.; Qiu, Z.-H.; Li, C.; Nie, S.-P. Total flavonoids content, antioxidant and antimicrobial activities of extracts from Mosla chinensis Maxim. cv. Jiangxiangru. LWT 2015, 64, 1022–1027. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Fu, C.-C.; Hung, T.-C.; Chen, J.-Y.; Su, C.-H.; Wu, W.-T. Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresour. Technol. 2010, 101, 8750–8754. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Bae, U.; Ahn, M.; Ka, S.; Woo, S.; Noh, S.; Kwon, Y.; Jung, K.; Wee, J.; Park, B. Aqueous extracts of purple sweet potato attenuate weight gain in high fat-fed mice. Int. J. Pharmacol. 2013, 9, 42–49. [Google Scholar] [CrossRef]
- Liu, H.Y.; Hu, P.; Li, Y.; Sun, M.A.; Qu, H.; Zong, Q.; Gu, H.; Chen, X.; Bao, W.; Cai, D. Targeted inhibition of PPAR α ameliorates CLA-induced hypercholesterolemia via hepatic cholesterol biosynthesis reprogramming. Liver Int. 2022, 42, 1449–1466. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.T.; Chiou, S.Y.; Hsu, A.H.; Lin, Y.C.; Lin, J.S. Lactobacillus rhamnosus strain LRH05 intervention ameliorated body weight gain and adipose inflammation via modulating the gut microbiota in high-fat diet-induced obese mice. Mol. Nutr. Food Res. 2022, 66, e2100348. [Google Scholar] [CrossRef]
- Devereux, C.J.; Bayliss, J.; Keenan, S.N.; Montgomery, M.K.; Watt, M.J. Investigating dual inhibition of ACC and CD36 for the treatment of nonalcoholic fatty liver disease in mice. Am. J. Physiol. Endocrinol. Metab. 2023, 324, E187–E198. [Google Scholar] [CrossRef] [PubMed]
- Nishida, K.; Ueno, S.; Seino, Y.; Hidaka, S.; Murao, N.; Asano, Y.; Fujisawa, H.; Shibata, M.; Takayanagi, T.; Ohbayashi, K.; et al. Impaired Fat Absorption from Intestinal Tract in High-Fat Diet Fed Male Mice Deficient in Proglucagon-Derived Peptides. Nutrients 2024, 16, 2270. [Google Scholar] [CrossRef]
- Pan, Z.G.; An, X.S. SARM1 deletion restrains NAFLD induced by high fat diet (HFD) through reducing inflammation, oxidative stress and lipid accumulation. Biochem. Biophys. Res. Commun. 2018, 498, 416–423. [Google Scholar] [CrossRef]
- Shi, Y.; Su, W.; Zhang, L.; Shi, C.; Zhou, J.; Wang, P.; Wang, H.; Shi, X.; Wei, S.; Wang, Q.; et al. TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP3 inflammasome activation. Front. Immunol. 2021, 11, 609060. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.W.; Sheng, H.; Bai, Y.F.; Weng, Y.Y.; Fan, X.Y.; Lou, L.J.; Zhang, F. Neohesperidin enhances PGC-1α-mediated mitochondrial biogenesis and alleviates hepatic steatosis in high fat diet fed mice. Nutr. Diabetes 2020, 10, 27. [Google Scholar] [CrossRef] [PubMed]







| Item | ND | HFD | FSPE |
|---|---|---|---|
| AST (U/L) | 46.26 ± 11.88 a | 61.20 ± 18.89 a | 58.76 ± 23.05 a |
| ALT (U/L) | 9.64 ± 1.31 b | 28.98 ± 23.75 a | 16.94 ± 5.24 a |
| TC (mg/dL) | 68.20 ± 6.79 c | 101.81 ± 8.58 a | 91.10 ± 5.10 b |
| TG (mg/dL) | 7.10 ± 2.30 c | 26.29 ± 6.28 a | 16.91 ± 5.75 b |
| HDL-C (mg/dL) | 53.26 ± 5.73 c | 81.45 ± 6.36 a | 73.78 ± 4.01 b |
| LDL-C (mg/dL) | 11.33 ± 1.50 a | 10.56 ± 2.06 a | 9.49 ± 1.49 a |
| Compounds | m/z | FSPE (Peak int.) | NNF 1 (Peak int.) | Fold Change (FSPE/NNF) |
|---|---|---|---|---|
| 9(10)-EpOME | 279.232 | 9.05 × 106 | 7.55 × 104 | 119.868 |
| Indolelactic acid | 206.081 | 3.70 × 106 | 3.00 × 104 | 114.907 |
| Conjugated linoleic Acid (10E,12Z) | 263.237 | 7.40 × 106 | 6.50 × 104 | 113.846 |
| Linoleic acid | 281.248 | 5.05 × 106 | 4.90 × 104 | 103.061 |
| Cedrelopsin | 261.113 | 1.03 × 106 | 4.35 × 104 | 23.563 |
| Isorhamnetin (Quercetin 3′-methyl ether) | 317.066 | 6.25 × 105 | 3.00 × 104 | 20.833 |
| Ethyl pyroglutamate | 158.081 | 1.05 × 106 | 1.60 × 105 | 6.531 |
| Scopoletin | 193.05 | 4.10 × 107 | 6.85 × 106 | 5.985 |
| pimelic acid | 183.05 | 2.60 × 105 | 6.00 × 104 | 4.333 |
| pyridoxal | 150.055 | 6.90 × 105 | 2.75 × 105 | 2.509 |
| Oxidised Phytochelatin 2 | 538.128 | 1.95 × 105 | 8.65 × 104 | 2.254 |
| 13S-Hydroxy-9Z,11E,15Z-octadecatrienoic acid | 277.217 | 1.55 × 105 | 6.95 × 104 | 2.23 |
| 3-methylquercetin | 317.066 | 6.85 × 105 | 3.15 × 105 | 2.175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yang, H.-Y.; Huang, C.-H.; Ho, S.-T.; Su, H.-H.; Chen, Y.-P.; Chen, Y.-T. Targeted Lipidomics and Lipid Metabolism Elucidate Anti-Obesity Effects of Lactic Acid Bacteria-Fermented Purple Sweet Potato Tainung No. 73 Extract in Obese Mice. Int. J. Mol. Sci. 2026, 27, 1489. https://doi.org/10.3390/ijms27031489
Yang H-Y, Huang C-H, Ho S-T, Su H-H, Chen Y-P, Chen Y-T. Targeted Lipidomics and Lipid Metabolism Elucidate Anti-Obesity Effects of Lactic Acid Bacteria-Fermented Purple Sweet Potato Tainung No. 73 Extract in Obese Mice. International Journal of Molecular Sciences. 2026; 27(3):1489. https://doi.org/10.3390/ijms27031489
Chicago/Turabian StyleYang, Hsien-Yi, Chien-Hsun Huang, Shang-Tse Ho, Hsin-Hui Su, Yen-Po Chen, and Yung-Tsung Chen. 2026. "Targeted Lipidomics and Lipid Metabolism Elucidate Anti-Obesity Effects of Lactic Acid Bacteria-Fermented Purple Sweet Potato Tainung No. 73 Extract in Obese Mice" International Journal of Molecular Sciences 27, no. 3: 1489. https://doi.org/10.3390/ijms27031489
APA StyleYang, H.-Y., Huang, C.-H., Ho, S.-T., Su, H.-H., Chen, Y.-P., & Chen, Y.-T. (2026). Targeted Lipidomics and Lipid Metabolism Elucidate Anti-Obesity Effects of Lactic Acid Bacteria-Fermented Purple Sweet Potato Tainung No. 73 Extract in Obese Mice. International Journal of Molecular Sciences, 27(3), 1489. https://doi.org/10.3390/ijms27031489

