Effectiveness and Safety of Mechanical Debridement for Treating Experimental Peri-Implantitis in Elderly Rats Receiving Oncological Dosages of Zoledronate
Abstract
1. Introduction
2. Results
2.1. Assessment of the Animals’ Overall Health and Clinical Examination of Their Oral Condition
2.2. Histopathological Characteristics of Peri-Implant Tissues
2.3. Percentage of Total Bone Tissue (B.Ar/T.Ar) and Percentage of Non-Vital Bone Tissue (NVB.Ar/B.Ar) in the Peri-Implant Region
2.4. Immunolabeling for TNFα, IL-1β, VEGF, and OCN in Peri-Implant Tissues
2.5. Immunolabeling for TRAP in Peri-Implant Bone Tissue
3. Discussion
4. Materials and Methods
4.1. Animals Used and Ethical Considerations
4.2. General Anesthesia
4.3. DI and Transmucosal Component Design
4.4. Extraction of the Upper Right Incisor
4.5. Installation of the DI
4.6. Reopening, Exposure of the DI Platform, and Installation of the Transmucosal Component
4.7. Experimental Groups and Drug Protocol
4.8. Ligature-Induced Experimental Peri-Implantitis (EPI)
4.9. Local Treatment Through Mechanical Debridement
4.10. Euthanasia, Sample Collection, and Processing
4.11. Histological Processing
4.12. Immunohistochemical Reaction
4.13. Analysis of the General Health Condition of the Animals and Intraoral Clinical Examination
4.14. Histopathological Analysis
4.15. Histometric Analyses of the Percentage of Total Bone Tissue (B.Ar/T.Ar) and the Percentage of Non-Vital Bone Tissue (NVB.Ar/B.Ar)
4.16. Immunohistochemical Analyses
4.17. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruggiero, S.L.; Dodson, T.B.; Aghaloo, T.; Carlson, E.R.; Ward, B.B.; Kademani, D. American Association of Oral and Maxillofacial Surgeons’ Position Paper on Medication-Related Osteonecrosis of the Jaws-2022 Update. J. Oral Maxillofac. Surg. 2022, 80, 920–943. [Google Scholar] [CrossRef]
- Giovannacci, I.; Meleti, M.; Manfredi, M.; Mortellaro, C.; Lucchina, A.G.; Bonanini, M.; Vescovi, P. Medication-Related Osteonecrosis of the Jaw Around Dental Implants: Implant Surgery-Triggered or Implant Presence-Triggered Osteonecrosis? J. Craniofac. Surg. 2016, 27, 697–701. [Google Scholar] [CrossRef]
- Kwon, T.G.; Lee, C.O.; Park, J.W.; Choi, S.Y.; Rijal, G.; Shin, H.I. Osteonecrosis associated with dental implants in patients undergoing bisphosphonate treatment. Clin. Oral Implants Res. 2014, 25, 632–640. [Google Scholar] [CrossRef]
- Bennardo, F.; Buffone, C.; Muraca, D.; Antonelli, A.; Giudice, A. Medication-Related Osteonecrosis of the Jaw with Spontaneous Hemimaxilla Exfoliation: Report of a Case in Metastatic Renal Cancer Patient under Multidrug Therapy. Case Rep. Med. 2020, 2020, 8093293. [Google Scholar] [CrossRef] [PubMed]
- Escobedo, M.F.; Cobo, J.L.; Junquera, S.; Milla, J.; Olay, S.; Junquera, L.M. Medication-related osteonecrosis of the jaw. Implant presence-triggered osteonecrosis: Case series and literature review. J. Stomatol. Oral Maxillofac. Surg. 2020, 121, 40–48. [Google Scholar] [CrossRef]
- Goss, A.; Bartold, M.; Sambrook, P.; Hawker, P. The nature and frequency of bisphosphonate-associated osteonecrosis of the jaws in dental implant patients: A South Australian case series. J. Oral Maxillofac. Surg. 2010, 68, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, C.; Metzler, P.; Rössle, M.; Obwegeser, J.; Zemann, W.; Grätz, K.W. Osteopathology induced by bisphosphonates and dental implants: Clinical observations. Clin. Oral Investig. 2013, 17, 167–175. [Google Scholar] [CrossRef]
- Lazarovici, T.S.; Yahalom, R.; Taicher, S.; Schwartz-Arad, D.; Peleg, O.; Yarom, N. Bisphosphonate-related osteonecrosis of the jaw associated with dental implants. J. Oral Maxillofac. Surg. 2010, 68, 790–796. [Google Scholar] [CrossRef] [PubMed]
- López-Cedrún, J.L.; Sanromán, J.F.; García, A.; Peñarrocha, M.; Feijoo, J.; Limeres, J.; Diz, P. Oral bisphosphonate-related osteonecrosis of the jaws in dental implant patients: A case series. Br. J. Oral Maxillofac. Surg. 2013, 51, 874–879. [Google Scholar] [CrossRef]
- Pogrel, M.A.; Ruggiero, S.L. Previously successful dental implants can fail when patients commence anti-resorptive therapy-a case series. Int. J. Oral Maxillofac. Surg. 2018, 47, 220–222. [Google Scholar] [CrossRef]
- Pichardo, S.E.C.; van der Hee, J.G.; Fiocco, M.; Appelman-Dijkstra, N.M.; van Merkesteyn, J.P.R. Dental implants as risk factors for patients with medication-related osteonecrosis of the jaws (MRONJ). Br. J. Oral Maxillofac. Surg. 2020, 58, 771–776. [Google Scholar] [CrossRef]
- Stavropoulos, A.; Bertl, K.; Pietschmann, P.; Pandis, N.; Schiødt, M.; Klinge, B. The effect of antiresorptive drugs on implant therapy: Systematic review and meta-analysis. Clin. Oral Implants Res. 2018, 29, 54–92. [Google Scholar] [CrossRef]
- Grant, B.T.; Amenedo, C.; Freeman, K.; Kraut, R.A. Outcomes of placing dental implants in patients taking oral bisphosphonates: A review of 115 cases. J. Oral Maxillofac. Surg. 2008, 66, 223–230. [Google Scholar] [CrossRef]
- Sher, J.; Kirkham-Ali, K.; Luo, J.D.; Miller, C.; Sharma, D. Dental Implant Placement in Patients with a History of Medications Related to Osteonecrosis of the Jaws: A Systematic Review. J. Oral Implantol. 2021, 47, 249–268. [Google Scholar] [CrossRef]
- Otto, S.; Sotlar, K.; Ehrenfeld, M.; Pautke, C. Osteonecrosis of the jaw as a possible rare side effect of annual bisphosphonate administration for osteoporosis: A case report. J. Med. Case Rep. 2011, 5, 477. [Google Scholar] [CrossRef]
- Seki, K.; Namaki, S.; Kamimoto, A.; Hagiwara, Y. Medication-Related Osteonecrosis of the Jaw Subsequent to Peri-Implantitis: A Case Report and Literature Review. J. Oral Implantol. 2021, 47, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Tempesta, A.; Capodiferro, S.; Mauceri, R.; Lauritano, D.; Maiorano, E.; Favia, G.; Limongelli, L. Peri-implantitis-like medication-related osteonecrosis of the jaw: Clinical considerations and histological evaluation with confocal laser scanning microscope. Oral Dis. 2022, 28, 1603–1609. [Google Scholar] [CrossRef] [PubMed]
- Troeltzsch, M.; Cagna, D.; Stähler, P.; Probst, F.; Kaeppler, G.; Troeltzsch, M.; Ehrenfeld, M.; Otto, S. Clinical features of peri-implant medication-related osteonecrosis of the jaw: Is there an association to peri-implantitis? J. Craniomaxillofac. Surg. 2016, 44, 1945–1951. [Google Scholar] [CrossRef] [PubMed]
- Ting, M.; Suzuki, J.B. Peri-Implantitis. Dent. J. 2024, 12, 251. [Google Scholar] [CrossRef]
- Lang, N.P.; Salvi, G.E.; Sculean, A. Nonsurgical therapy for teeth and implants-When and why? Periodontol 2000 2019, 79, 15–21. [Google Scholar] [CrossRef]
- Smeets, R.; Henningsen, A.; Jung, O.; Heiland, M.; Hammächer, C.; Stein, J.M. Definition, etiology, prevention and treatment of peri-implantitis—A review. Head Face Med. 2014, 10, 34. [Google Scholar] [CrossRef]
- Ting, M.; Craig, J.; Balkin, B.E.; Suzuki, J.B. Peri-implantitis: A Comprehensive Overview of Systematic Reviews. J. Oral Implantol. 2018, 44, 225–247. [Google Scholar] [CrossRef] [PubMed]
- Ephros, H.; Kim, S.; DeFalco, R. Peri-implantitis: Evaluation and Management. Dent. Clin. N. Am. 2020, 64, 305–313. [Google Scholar] [CrossRef]
- Santos-Martins, B.G.; Fernandes, J.C.H.; Martins, A.G.; de Moraes Castilho, R.; de Oliveira Fernandes, G.V. Surgical and Nonsurgical Treatment Protocols for Peri-implantitis: An Overview of Systematic Reviews. Int. J. Oral Maxillofac. Implant. 2022, 37, 660–676. [Google Scholar] [CrossRef]
- Polymeri, A.; Loos, B.G.; Aronovich, S.; Steigmann, L.; Inglehart, M.R. Risk factors, diagnosis, and treatment of peri-implantitis: A cross-cultural comparison of U.S. and European periodontists’ considerations. J. Periodontol. 2022, 93, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Figuero, E.; Graziani, F.; Sanz, I.; Herrera, D.; Sanz, M. Management of peri-implant mucositis and peri-implantitis. Periodontol 2000 2014, 66, 255–273. [Google Scholar] [CrossRef]
- Wagner, T.P.; Pires, P.R.; Rios, F.S.; de Oliveira, J.A.P.; Costa, R.d.S.A.; Cunha, K.F.; Silveira, H.L.D.; Pimentel, S.; Casati, M.Z.; Rosing, C.K.; et al. Surgical and non-surgical debridement for the treatment of peri-implantitis: A two-center 12-month randomized trial. Clin. Oral Investig. 2021, 25, 5723–5733. [Google Scholar] [CrossRef]
- Renvert, S.; Polyzois, I. Treatment of pathologic peri-implant pockets. Periodontol 2000 2018, 76, 180–190. [Google Scholar] [CrossRef] [PubMed]
- McGowan, K.; McGowan, T.; Ivanovski, S. Risk factors for medication-related osteonecrosis of the jaws: A systematic review. Oral Dis. 2018, 24, 527–536. [Google Scholar] [CrossRef]
- Silva, P.G.; Ferreira Junior, A.E.; Teófilo, C.R.; Barbosa, M.C.; Júnior, R.C.P.L.; Sousa, F.B.; Mota, M.R.L.; Ribeiro, R.d.A.; Alves, A.P.N.N. Effect of different doses of zoledronic acid in establishing of bisphosphonate-related osteonecrosis. Arch. Oral Biol. 2015, 60, 1237–1245. [Google Scholar] [CrossRef]
- Chang, J.; Hakam, A.E.; McCauley, L.K. Current Understanding of the Pathophysiology of Osteonecrosis of the Jaw. Curr. Osteoporos. Rep. 2018, 16, 584–595. [Google Scholar] [CrossRef] [PubMed]
- Lesclous, P.; Abi Najm, S.; Carrel, J.P.; Baroukh, B.; Lombardi, T.; Willi, J.-P.; Rizzoli, R.; Saffar, J.-L.; Samson, J. Bisphosphonate-associated osteonecrosis of the jaw: A key role of inflammation? Bone 2009, 45, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Gao, L.; Ren, W.; Li, S.; Zheng, J.; Li, S.; Jiang, C.; Yang, S.; Zhi, K. The Role of the Immune Response in the Development of Medication-Related Osteonecrosis of the Jaw. Front. Immunol. 2021, 12, 606043. [Google Scholar] [CrossRef]
- Cremers, S.; Drake, M.T.; Ebetino, F.H.; Bilezikian, J.P.; Russell, R.G.G. Pharmacology of bisphosphonates. Br. J. Clin. Pharmacol. 2019, 85, 1052–1062. [Google Scholar] [CrossRef]
- Wehrhan, F.; Moebius, P.; Amann, K.; Ries, J.; Preidl, R.; Neukam, F.W.; Weber, M. Macrophage and osteoclast polarization in bisphosphonate associated necrosis and osteoradionecrosis. J. Craniomaxillofac. Surg. 2017, 45, 944–953. [Google Scholar] [CrossRef]
- Viola, A.; Munari, F.; Sánchez-Rodríguez, R.; Scolaro, T.; Castegna, A. The Metabolic Signature of Macrophage Responses. Front. Immunol. 2019, 10, 1462. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Atsuta, I.; Liu, S.; Chen, C.; Shi, S.; Shi, S.; Le, A.D. IL-17-mediated M1/M2 macrophage alteration contributes to pathogenesis of bisphosphonate-related osteonecrosis of the jaws. Clin. Cancer Res. 2013, 19, 3176–3188. [Google Scholar] [CrossRef]
- Zhu, W.; Xu, R.; Du, J.; Fu, Y.; Li, S.; Zhang, P.; Liu, L.; Jiang, H. Zoledronic acid promotes TLR-4-mediated M1 macrophage polarization in bisphosphonate-related osteonecrosis of the jaw. FASEB J. 2019, 33, 5208–5219. [Google Scholar] [CrossRef]
- Funayama, H.; Tashima, I.; Okada, S.; Ogawa, T.; Yagi, H.; Tada, H.; Wakita, R.; Asada, Y.; Endo, Y. Effects of Zoledronate on Local and Systemic Production of IL-1β, IL-18, and TNF-α in Mice and Augmentation by Lipopolysaccharide. Biol. Pharm. Bull. 2019, 42, 929–936. [Google Scholar] [CrossRef]
- Morita, M.; Iwasaki, R.; Sato, Y.; Kobayashi, T.; Watanabe, R.; Oike, T.; Nakamura, S.; Keneko, Y.; Miyamoto, K.; Ishihara, K.; et al. Elevation of pro-inflammatory cytokine levels following anti-resorptive drug treatment is required for osteonecrosis development in infectious osteomyelitis. Sci. Rep. 2017, 7, 46322. [Google Scholar] [CrossRef]
- Soma, T.; Iwasaki, R.; Sato, Y.; Kobayashi, T.; Nakamura, S.; Kaneko, Y.; Ito, E.; Okada, H.; Watanabe, H.; Miyamoto, K.; et al. Tooth extraction in mice administered zoledronate increases inflammatory cytokine levels and promotes osteonecrosis of the jaw. J. Bone Miner. Metab. 2021, 39, 372–384. [Google Scholar] [CrossRef]
- Statkievicz, C.; Toro, L.F.; de Mello-Neto, J.M.; de Sá, D.P.; Casatti, C.A.; Issa, J.P.M.; Cintra, L.T.A.; de Almeida, J.M.; Nagata, M.J.H.; Garcia, V.G.; et al. Photomodulation multiple sessions as a promising preventive therapy for medication-related osteonecrosis of the jaws after tooth extraction in rats. J. Photochem. Photobiol. B 2018, 184, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Monje, A.; Eick, S.; Buser, D.; Salvi, G.E. Microbial and host-derived biomarker changes during ligature-induced and spontaneous peri-implantitis in the Beagle dog. J. Periodontal Res. 2021, 56, 93–100. [Google Scholar] [CrossRef]
- Bormann, K.H.; Stühmer, C.; Z’Graggen, M.; Kokemöller, H.; Rücker, M.; Gellrich, N.C. IL-1 polymorphism and periimplantitis. A literature review. Schweiz. Monatsschr. Zahnmed. 2010, 120, 510–520. [Google Scholar] [PubMed]
- Cavaillon, J.M. Exotoxins and endotoxins: Inducers of inflammatory cytokines. Toxicon 2018, 149, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Marx, R.E.; Sawatari, Y.; Fortin, M.; Broumand, V. Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: Risk factors, recognition, prevention, and treatment. J. Oral Maxillofac. Surg. 2005, 63, 1567–1575. [Google Scholar] [CrossRef]
- Ebetino, F.H.; Hogan, A.M.; Sun, S.; Tsoumpra, M.K.; Duan, X.; Triffitt, J.T.; Kwaasi, A.A.; Dunford, J.E.; Barnett, B.L.; Oppermann, U.; et al. The relationship between the chemistry and biological activity of the bisphosphonates. Bone 2011, 49, 20–33. [Google Scholar] [CrossRef]
- Rogers, M.J.; Crockett, J.C.; Coxon, F.P.; Mönkkönen, J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone 2011, 49, 34–41. [Google Scholar] [CrossRef]
- Gross, C.; Weber, M.; Creutzburg, K.; Möbius, P.; Preidl, R.; Amann, K.; Wehrhan, F. Osteoclast profile of medication-related osteonecrosis of the jaw secondary to bisphosphonate therapy: A comparison with osteoradionecrosis and osteomyelitis. J. Transl. Med. 2017, 15, 128. [Google Scholar] [CrossRef]
- Aguirre, J.I.; Castillo, E.J.; Kimmel, D.B. Biologic and pathologic aspects of osteocytes in the setting of medication-related osteonecrosis of the jaw (MRONJ). Bone 2021, 153, 116168. [Google Scholar] [CrossRef]
- Dhuriya, Y.K.; Sharma, D. Necroptosis: A regulated inflammatory mode of cell death. J. Neuroinflamm. 2018, 15, 199. [Google Scholar] [CrossRef]
- Pasparakis, M.; Vandenabeele, P. Necroptosis and its role in inflammation. Nature 2015, 517, 311–320. [Google Scholar] [CrossRef]
- Zhou, W.; Yuan, J. Necroptosis in health and diseases. Semin. Cell Dev. Biol. 2014, 35, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Grootjans, S.; Vanden Berghe, T.; Vandenabeele, P. Initiation and execution mechanisms of necroptosis: An overview. Cell Death Differ. 2017, 24, 1184–1195. [Google Scholar] [CrossRef] [PubMed]
- Broughton, G., 2nd; Janis, J.E.; Attinger, C.E. Wound healing: An overview. Plast. Reconstr. Surg. 2006, 117, 1e-S–32e-S. [Google Scholar] [CrossRef]
- Huang, X.; Huang, S.; Guo, F.; Xu, F.; Cheng, P.; Ye, Y.; Dong, Y.; Xiang, W.; Chen, A. Dose-dependent inhibitory effects of zoledronic acid on osteoblast viability and function in vitro. Mol. Med. Rep. 2016, 13, 613–622. [Google Scholar] [CrossRef]
- Manzano-Moreno, F.J.; Ramos-Torrecillas, J.; Melguizo-Rodríguez, L.; Illescas-Montes, R.; Ruiz, C.; García-Martínez, O. Bisphosphonate Modulation of the Gene Expression of Different Markers Involved in Osteoblast Physiology: Possible Implications in Bisphosphonate-Related Osteonecrosis of the Jaw. Int. J. Med. Sci. 2018, 15, 359–367. [Google Scholar] [CrossRef]
- Naidu, A.; Dechow, P.C.; Spears, R.; Wright, J.M.; Kessler, H.P.; Opperman, L.A. The effects of bisphosphonates on osteoblasts in vitro. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2008, 106, 5–13. [Google Scholar] [CrossRef]
- Qu, X.; Wang, Z.; Wu, K.; Wang, Y.; Shan, L. Zoledronate inhibits the differentiation potential of adipose-derived stem cells into osteoblasts in repairing jaw necrosis. Mol. Cell. Probes 2020, 51, 101525, Correction in Mol. Cell. Probes 2020, 52, 101603. https://doi.org/10.1016/j.mcp.2020.101603. [Google Scholar] [CrossRef] [PubMed]
- Toro, L.F.; de Mello-Neto, J.M.; Santos, F.F.V.D.; Ferreira, L.C.; Statkievicz, C.; Cintra, L.T.Â.; Issa, J.P.M.; Dornelles, R.C.M.; de Almeida, J.M.; Nagata, M.J.H.; et al. Application of Autologous Platelet-Rich Plasma on Tooth Extraction Site Prevents Occurence of Medication-Related Osteonecrosis of the Jaws in Rats. Sci. Rep. 2019, 9, 22. [Google Scholar] [CrossRef]
- Wehrhan, F.; Stockmann, P.; Nkenke, E.; Schlegel, K.A.; Guentsch, A.; Wehrhan, T.; Neukam, F.W.; Amann, K. Differential impairment of vascularization and angiogenesis in bisphosphonate-associated osteonecrosis of the jaw-related mucoperiosteal tissue. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 112, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, J.; Wan, J.; Zhang, W.; Wang, Y.; Du, Y. Vascular Analysis of Soft Tissues Around the Bone Lesion in Osteoradionecrosis, Medication-Related Osteonecrosis, and Infectious Osteomyelitis of the Jaw. J. Craniofac. Surg. 2022, 33, e750–e754. [Google Scholar] [CrossRef] [PubMed]
- Quintão Manhanini Souza, E.; Felipe Toro, L.; Franzão Ganzaroli, V.; Freire, J.d.O.A.; Matsumoto, M.A.; Casatti, C.A.; Cintra, L.T.Â.; Buchaim, R.L.; Issa, J.P.M.; Garcia, V.G.; et al. Peri-implantitis increases the risk of medication-related osteonecrosis of the jaws associated with osseointegrated implants in rats treated with zoledronate. Sci. Rep. 2024, 14, 627. [Google Scholar] [CrossRef]
- Ervolino, E.; Statkievicz, C.; Toro, L.F.; de Mello-Neto, J.M.; Cavazana, T.P.; Issa, J.P.M.; Dornelles, R.C.M.; de Almeida, J.M.; Nagata, M.J.H.; Okamoto, R.; et al. Antimicrobial photodynamic therapy improves the alveolar repair process and prevents the occurrence of osteonecrosis of the jaws after tooth extraction in senile rats treated with zoledronate. Bone 2019, 120, 101–113. [Google Scholar] [CrossRef] [PubMed]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Toro, L.F.; Souza, E.Q.M.; Ganzaroli, V.F.; Freire, J.d.O.A.; Costa, L.L.d.; Pereira, E.L.; Machado, B.A.; Mello-Neto, J.M.d.; Matsumoto, M.A.; Casatti, C.A.; et al. Effectiveness and Safety of Mechanical Debridement for Treating Experimental Peri-Implantitis in Elderly Rats Receiving Oncological Dosages of Zoledronate. Int. J. Mol. Sci. 2026, 27, 1355. https://doi.org/10.3390/ijms27031355
Toro LF, Souza EQM, Ganzaroli VF, Freire JdOA, Costa LLd, Pereira EL, Machado BA, Mello-Neto JMd, Matsumoto MA, Casatti CA, et al. Effectiveness and Safety of Mechanical Debridement for Treating Experimental Peri-Implantitis in Elderly Rats Receiving Oncological Dosages of Zoledronate. International Journal of Molecular Sciences. 2026; 27(3):1355. https://doi.org/10.3390/ijms27031355
Chicago/Turabian StyleToro, Luan Felipe, Eduardo Quintão Manhanini Souza, Vinícius Franzão Ganzaroli, Jéssica de Oliveira Alvarenga Freire, Leandro Lemes da Costa, Estevão Lopes Pereira, Beatriz Alexandrelli Machado, João Martins de Mello-Neto, Mariza Akemi Matsumoto, Cláudio Aparecido Casatti, and et al. 2026. "Effectiveness and Safety of Mechanical Debridement for Treating Experimental Peri-Implantitis in Elderly Rats Receiving Oncological Dosages of Zoledronate" International Journal of Molecular Sciences 27, no. 3: 1355. https://doi.org/10.3390/ijms27031355
APA StyleToro, L. F., Souza, E. Q. M., Ganzaroli, V. F., Freire, J. d. O. A., Costa, L. L. d., Pereira, E. L., Machado, B. A., Mello-Neto, J. M. d., Matsumoto, M. A., Casatti, C. A., Cintra, L. T. Â., Theodoro, L. H., Garcia, V. G., & Ervolino, E. (2026). Effectiveness and Safety of Mechanical Debridement for Treating Experimental Peri-Implantitis in Elderly Rats Receiving Oncological Dosages of Zoledronate. International Journal of Molecular Sciences, 27(3), 1355. https://doi.org/10.3390/ijms27031355

