Highly Efficient Photocatalytic Degradation of Bisphenol A Under UV–Visible Light Irradiation Using Au/Zn3In2S6 Schottky Junction Photocatalyst
Abstract
1. Introduction
2. Results and Discussion
2.1. Material Preparation Flowchart
2.2. XPS Analysis


2.3. Physical Properties and Band Structure Analysis
2.4. Analysis of Photocatalytic Activity and Cycling Stability

2.5. Electrochemical Analysis
2.6. Free Radical Scavenging and ESR Analysis
2.7. Analysis of Charge Transfer and Catalytic Mechanisms
3. Materials and Methods
3.1. Chemicals
3.2. Preparation Procedures of Zn3In2S6 and Au/Zn3In2S6
3.3. Characterizations
3.4. Photocatalytic Performance Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alalm, M.G.; Djellabi, R.; Meroni, D.; Pirola, C.; Bianchi, C.L.; Boffito, D.C. Toward Scaling-Up Photocatalytic Process for Multiphase Environmental Applications. Catalysts 2021, 11, 562. [Google Scholar] [CrossRef]
- Castilla-Caballero, D.; Sadak, O.; Martinez-Diaz, J.; Martinez-Castro, V.; Machuca-Martinez, F.; Hernandez-Ramirez, A.; Vazquez-Rodriguez, S.; Gunasekaran, S. Solid-state photocatalysis for plastics abatement: A review. Mat. Sci. Semicon. Proc. 2022, 149, 106890. [Google Scholar] [CrossRef]
- Du, M.Z.; Liu, W.; Liu, N.; Ling, Y.; Kang, S.F. Mechanisms of noble metal-enhanced ferroelectric spontaneous polarized photocatalysis. Nano Energy 2024, 124, 109495. [Google Scholar] [CrossRef]
- Hu, C.; Tu, S.C.; Tian, N.; Ma, T.Y.; Zhang, Y.H.; Huang, H.W. Photocatalysis Enhanced by External Fields. Angew. Chem. Int. Ed. 2021, 133, 16445–16464. [Google Scholar] [CrossRef]
- Lee, M.; Koziel, J.A.; Li, P.Y.; Jenks, W.S. Mitigation of Air Pollutants by UV-A Photocatalysis in Livestock and Poultry Farming: A Mini-Review. Catalysts 2022, 12, 782. [Google Scholar] [CrossRef]
- Liu, N.; Sun, Z.; Zhang, H.; Klausen, L.H.; Moonhee, R.; Kang, S.F. Emerging high-ammonia-nitrogen wastewater remediation by biological treatment and photocatalysis techniques. Sci. Total Environ. 2023, 875, 162603. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, Z.; Pan, L.; Wang, Y.; Yang, J.; Gao, Y.; Song, Y. Sucrose-Powered Liposome Nanosensors for Urinary Glucometer-Based Monitoring of Cancer. Angew. Chem. Int. Ed. 2024, 63, e202404493. [Google Scholar] [CrossRef]
- Masjidin, N.N.D.; Joseph, C.G.; Taufiq-Yap, Y.H.; Abdullah, A.Z.; Shoparwe, N.F.; Affandi, N.A.; Nga, J.L.H. Elimination of Recalcitrant Pollutants from Aquaculture Effluent via Photolysis and Photocatalysis Treatment Processes: A Review Paper. Environ. Eng. Manag. J. 2023, 22, 1–15. [Google Scholar] [CrossRef]
- Mikaeili, F.; Gilmore, T.; Gouma, P.I. Photochemical Water Splitting via Transition Metal Oxides. Catalysts 2022, 12, 1303. [Google Scholar] [CrossRef]
- Mu, C.X.; Lv, C.Y.; Meng, X.C.; Sun, J.H.; Tong, Z.F.; Huang, K.L. In Situ Characterization Techniques Applied in Photocatalysis: A Review. Adv. Mater. Interfaces 2023, 10, 2201842. [Google Scholar] [CrossRef]
- Roopashree, B.N.; Gurushantha, K.; Nagaraju, K.; Meena, S. Recent Review on S-Scheme Photocatalysis. Water Air Soil Pollut. 2024, 235, 570. [Google Scholar]
- Saraswat, V.; Singh, P. Exploring the photocatalytic efficacy of carbonaceous materials in drug degradation: A contemporary review. Chem. Pap. 2024, 78, 5169–5190. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Tang, Y.X.; Yang, X.Y.; Feng, D.Z.; Feng, B.; Guan, R.Q.; Che, G.B. Magnetic Field-Assisted Photocatalysis: Mechanisms, Devices, and Applications. Small Methods 2025, 9, 2402041. [Google Scholar] [CrossRef]
- Costa, M.J.D.; Araújo, J.V.S.; Moura, J.K.L.; Moreno, L.H.D.; Pereira, P.A.; Santos, R.D.; Moura, C.V.R. A Brief Review of Detection and Removal of Bisphenol A in Aqueous Media. Water Air Soil Pollut. 2022, 233, 362. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Kurniawan, S.B.; Khongthaw, B.; Buhari, J.; Chauhan, P.K.; Georgin, J.; Franco, D.S.P. Bisphenol A (BPA) toxicity assessment and insights into current remediation strategies. RSC Adv. 2024, 14, 35128–35162. [Google Scholar] [CrossRef] [PubMed]
- John, K.I.; Omorogie, M.O.; Bayode, A.A.; Adeleye, A.T.; Helmreich, B. Environmental microplastics and their additives-a critical review on advanced oxidative techniques for their removal. Chem. Pap. 2023, 77, 657–676. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, D.; Lokhande, P.E.; Kadam, V.; Jagtap, C.; Vedapathak, A.S.; Singh, K.; Mishra, Y.K.; Kaushik, A. Emergence of perovskites oxides as advanced Photocatalysts for energy and environmental remediation applications. Coordin. Chem. Rev. 2025, 534, 216556. [Google Scholar] [CrossRef]
- Latosinska, J.; Grdulska, A. A Review of Methods for the Removal of Endocrine-Disrupting Compounds with a Focus on Oestrogens and Pharmaceuticals Found in Wastewater. Appl. Sci. 2025, 15, 6514. [Google Scholar] [CrossRef]
- Mojiri, A.; Zhou, J.L.; Farahani, S. Advancements in photocatalysis and machine learning for bisphenol A (BPA) degradation in aquatic systems: A critical review. J. Clean. Prod. 2025, 518, 145919. [Google Scholar] [CrossRef]
- Ologundudu, O.T.; Msagati, T.A.M.; Popoola, O.E.; Edokpayi, J.N. Bisphenol A in Selected South African Water Sources: A Critical Review. ACS Omega 2025, 10, 6279–6293. [Google Scholar] [CrossRef]
- Cai, Y.S.; Xiao, F.X. Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Phys.-Chim. Sin. 2024, 40, 230604. [Google Scholar] [CrossRef]
- Chandrapal, R.R.; Bakiyaraj, G. Rational Design of Heterojunction Photocatalyst for Pollutant Degradation (Dyes)—A Review. Water Air Soil Pollut. 2024, 235, 376. [Google Scholar] [CrossRef]
- Chen, Z.F.; Meng, Z.F.; Zhang, Z.G.; Ma, W.F. MXene-Polymer Nanocomposites for High-Efficiency Photocatalytic Antibiotic Degradation Review: Microstructure Control, Environmental Adaptability and Future Prospects. Polymers 2025, 17, 2630. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.W.; Peng, B.; Wang, Z.H.; Han, Q.F. Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Phys.-Chim. Sin. 2024, 40, 2305048. [Google Scholar] [CrossRef]
- Dong, H.J.; Qu, C.H.; Li, C.M.; Hu, B.; Li, X.; Liang, G.J.; Jiang, J.Z. Recent advances of covalent organic frameworks-based photocatalysts: Principles, designs, and applications. Chin. J. Catal. 2025, 70, 142–206. [Google Scholar] [CrossRef]
- Isa, A.T.; Hafeez, H.Y.; Mohammed, J.; Ndikilar, C.E.; Suleiman, A.B.; Kafadi, A.D.G. Photocatalytic performance of MXenes co-catalyst in hydrogen (H2) production via photocatalytic water splitting: A review. J. Alloys Compd. 2024, 1005, 175951. [Google Scholar] [CrossRef]
- Jabbar, Z.H.; Graimed, B.H.; Ammar, S.H.; Sabit, D.A.; Najim, A.A.; Radeef, A.Y.; Taher, A.G. The latest progress in the design and application of semiconductor photocatalysis systems for degradation of environmental pollutants in wastewater: Mechanism insight and theoretical calculations. Mat. Sci. Semicon. Proc. 2024, 173, 108153. [Google Scholar] [CrossRef]
- Wei, J.; Luo, D.; Shi, M.; Yuan, Q.; Wang, M.; Huang, Y.; Ni, Y. Ultrathin Carbon Nitride Nanosheets Exfoliated and In Situ Modified with a Nickel Bis(Chelate) Complex for Boosting Photocatalytic Performances. Inorg. Chem. 2023, 62, 10973–10983. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Gong, Q.; Zhao, Q.; Wu, Q.; Niu, C.; Jiao, L.; Hao, E. Synthesis, Photophysical and Redox Properties of Highly Stable Radicals of Nickel(II) Bis(2-aminophenyl)-azadipyrromethene. Inorg. Chem. 2025, 64, 9114–9123. [Google Scholar] [CrossRef]
- Jagadeeswararao, M.; Galian, R.E.; Perez-Prieto, J. Photocatalysis Based on Metal Halide Perovskites for Organic Chemical Transformations. Nanomaterials 2024, 14, 94. [Google Scholar] [CrossRef]
- Kavan, L. Electrochemistry and band structure of semiconductors (TiO2, SnO2, ZnO): Avoiding pitfalls and textbook errors. J. Solid State Electr. 2024, 28, 829–845. [Google Scholar] [CrossRef]
- Li, Q.; Wang, C.H.; Yao, H.X.; He, C.M.; Guo, C.F.; Hu, Y. Cocatalysts for photocatalysis: Comprehensive insight into interfacial charge transfer mechanism by energy band theory. Coordin. Chem. Rev. 2025, 535, 216652. [Google Scholar] [CrossRef]
- Pasindu, V.; Munaweera, I. Harnessing atomic-scale defect engineering in 2D photocatalysts: Synergistic integration of nanocomposite architectures for bandgap tuning and charge transfer optimization. RSC Adv. 2025, 15, 34191–34210. [Google Scholar] [CrossRef]
- Wei, S.H.; Hou, R.P.; Zhu, Q.; Shakir, I.; Fang, Z.B.; Duan, X.F.; Xu, Y.X. Hybrid materials based on covalent organic frameworks for photocatalysis. InfoMat 2025, 7, e12646. [Google Scholar] [CrossRef]
- Chen, S.Y.; Wu, Z.K.; Cheng, X.Y.; Chen, L.; Chen, Y.N.; Guo, Y.N.; Wang, C.H.; Shang, Q.K. Efficient photocatalytic degradation of phenolic pollutants using MIL-100(Fe)@Zn3In2S6 Z-scheme heterojunction. Colloids Surf. A 2025, 707, 135884. [Google Scholar] [CrossRef]
- Ding, C.S.; Ruan, X.W.; Xu, M.H.; Meng, D.P.; Fang, G.Z.; Jiao, D.X.; Zhang, W.; Leng, J.; Jiang, Z.F.; Ba, K.K.; et al. Step-Scheme SnO2/Zn3In2S6 Catalysts for Solar Production of Hydrogen Peroxide From Seawater. Small 2024, 20, e2406959. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, D.; Stern, T.; Zhang, J.J.; Yuwono, J.A.; Pan, J.; Li, Q.Y.; Yu, H.L.; Gunawan, M.; Hocking, R.K.; Toe, C.Y.; et al. Scalable solar-driven reforming of alcohol feedstock to H2 using Ni/Zn3In2S6 photocatalyst. Chem. Eng. J. 2025, 513, 162965, Erratum in Chem. Eng. J. 2025, 515, 163701. [Google Scholar] [CrossRef]
- Jin, H.J.; Liu, Q.; Naghizadeh, M.; Guan, L.; Dong, S.Y.; Huang, T.L. Zn3In2S6/Bi3O4Br nanoflowers with oxygen vacancies and heterojunctions: A strategy for enhanced nitrofurazone photodegradation. J. Colloid Interf. Sci. 2025, 687, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Katsamitros, A.; Karamoschos, N.; Sygellou, L.; Andrikopoulos, K.S.; Tasis, D. Construction of Hierarchical 2D-3D@3D Zn3In2S6@CdS Photocatalyst for Boosting Degradation of an Azo Dye. Molecules 2025, 30, 1409. [Google Scholar] [CrossRef]
- Luan, W.Q.; Yan, Y.Y.; Wang, J.X.; Zong, Y.X.; Zhao, R.Y.; Han, J.S.; Wang, L. Fabrication of In-doped CdSe/Zn3In2S6 type II heterojunction composite for efficient photocatalytic hydrogen evolution. Sep. Purif. Technol. 2025, 356, 129907. [Google Scholar] [CrossRef]
- Su, K.; Yin, W.Q.; Liu, X.F.; Cai, S.H.; He, P.; Xiao, Y.; Ren, T.Y. Fabricating NiCoP/Zn3In2S6 type II heterojunction photocatalyst for boosted photocatalytic hydrogen evolution performance. Inorg. Chem. Commun. 2025, 178, 114488. [Google Scholar] [CrossRef]
- Wang, H.Y.; Li, M.K.; You, Z.M.; Chen, Y.H.; Liu, Y. An innovative Zn3In2S6/ZnIn2S4 homojunction photocatalyst with enhanced interfacial charge transfer for the highly efficient degradation of tetracycline under visible radiation. J. Environ. Manag. 2024, 365, 121605. [Google Scholar] [CrossRef]
- Wang, J.T.; Gao, M.C.; Xu, M.Y.; Chu, Q.; Gong, Y.Y.; Meng, M.Y.; Cui, H.C.; Feng, Y.Y. Construction of multi-functional S-Vacancy-Zn3In2S6/Bi-MOF S-scheme heterojunction containing interfacial chemical bonds for the efficient photocatalytic production of H2O2 and excellent photocatalytic degradation of OTC and TC. Colloid. Surf. A 2024, 702, 135169. [Google Scholar] [CrossRef]
- Zhang, C.; Cheng, X.; Zhao, R.; Fu, M.; Wang, M.; Chen, Z.; Zhang, C.; Li, X. Enhanced Antibiotic Removal via Magnetic Ni@ZIF-8 Composite Nanotubes: Synergistic Adsorption, Facile Recovery and Adsorption Mechanism. Sep. Purif. Technol. 2025, 363, 131988. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Deng, Y.; Wang, H.; Han, S.; Wang, Y.; Zhang, X.; Liu, X. Functionalization of 2H-MoS with Pt Nanoclusters for HER in Alkaline Solutions and Supercapacitors. Langmuir 2025, 41, 14265–14274. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Liu, S.; Xu, Q.; Yuan, P.; Zhang, P.; Zhuo, S.; Zhu, C.; Du, J. Facile Synthesis of Porous Graphitic Carbon Nitride Modulated by Up-Conversion Carbon Quantum Dots for Visible Light-Triggered Photocatalysis towards Bacteria Inactivation. Appl. Catal. A 2024, 673, 119586. [Google Scholar] [CrossRef]
- Meng, A.Y.; Li, W.; Li, Z.H.; Xiong, G.Y.; Pu, X.Y.; Zhang, J.F.; Li, Z. S-scheme heterojunction BiOBr/Cd8.05Zn1.95S10-DETA nanocomposite photocatalyst for enhanced and stable degradation of dichlorvos. Surf. Interfaces 2025, 68, 106697. [Google Scholar] [CrossRef]
- Li, W.; Meng, A.Y.; Li, Z.; Zhang, J.F.; Fu, J.W. S-scheme CeO2/Cd7.23Zn2.77S10-DETA heterojunctions for superior cocatalyst-free visible-light photocatalytic hydrogen evolution. J. Cent. South Univ. 2024, 31, 4572–4585. [Google Scholar] [CrossRef]
- Meng, A.Y.; Yang, R.Q.; Li, W.; Li, Z.; Zhang, J.F. Enhanced photocatalytic hydrogen production through tuning charge transfer in TiO2/CdSxSe1−x-DETA nanocomposites with S-scheme heterojunction structure. J. Mater. 2025, 11, 100919. [Google Scholar]
- Li, W.; Meng, A.; Li, C.; Sun, Y.; Zhang, J.; Li, Z. Enhanced efficiency and stability in the degradation of triazophosphorus pesticides by Al6Si2O13/WO2.72 nanocomposites through synergistic action of S-scheme heterojunction and oxygen vacancies. J. Colloid Interface Sci. 2025, 677, 704–717. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Mao, S.; Jing, H.; Xu, Y.; Zhang, Q.; Belfiore, L.A.; Tang, J. Study of nanoscale three-dimensional Au/GaN Schottky junctions: Fabrication, morphology, and optoelectronic properties. Appl. Surf. Sci. 2024, 642, 158627. [Google Scholar] [CrossRef]
- Che, Y.; Weng, B.; Li, K.; He, Z.; Chen, S.; Meng, S. Chemically bonded nonmetallic LSPR S-scheme hollow heterostructure for boosting photocatalytic performance. Appl. Catal. B Environ. Energy 2025, 361, 124656. [Google Scholar] [CrossRef]
- Li, S.; Meng, S.; Zhang, H.; Puente-Santiago, A.R.; Wang, Z.; Chen, S.; Muñoz-Batista, M.J.; Zheng, Y.M.; Weng, B. Tailoring Redox Active Sites with Dual-Interfacial Electric Fields for Concurrent Photocatalytic Biomass Valorization and H2 Production. Adv. Funct. Mater. 2025, e13682. [Google Scholar] [CrossRef]
- Ruan, X.; Ding, C.; Leng, J.; Jiao, D.; Zhang, X.; Xu, M.; Meng, D.; Cui, X.; Zheng, Z.; Zhu, Y.; et al. Decoupling of Carrier Pathways in Au/Cu-Zn3In2S6 Through Bulk Hole Trapping and Surface Hot Electron Accumulation Enhances Photocatalytic Hydrogen Peroxide Production. Adv. Mater. 2025, 37, e11422. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Meng, A.Y.; Li, Z.H.; Xiong, G.Y.; Li, Z.; Zhang, J.F. CeO2/WO2.72 nanocomposites with S-scheme heterojunctions and oxygen vacancies for enhanced photocatalytic degradation of dichlorvos. J. Mater. Sci. Technol. 2026, 242, 200–212. [Google Scholar] [CrossRef]
- Meng, S.; Ye, X.; Zhang, J.; Fu, X.; Chen, S. Effective use of photogenerated electrons and holes in a system: Photocatalytic selective oxidation of aromatic alcohols to aldehydes and hydrogen production. J. Catal. 2018, 367, 159–170. [Google Scholar] [CrossRef]
- Yu, C.; Di, G.; Li, Q.; Guo, X.; Wang, L.; Gong, Q.; Wei, Y.; Zhao, Q.; Jiao, L.; Hao, E. Multicomponent Diversity-Oriented Access to Boronic-Acid-Derived Pyrrolide Salicyl-Hydrazone Fluorophores with Strong Solid-State Emission. Inorg. Chem. 2024, 63, 21397–21409. [Google Scholar] [CrossRef]
- Wang, H.; Cai, F.; Feng, D.; Zhou, L.; Li, D.; Wei, Y.; Feng, Z.; Zhang, J.; He, J.; Wu, Y. Synthesis, Crystal Structure, Photophysical Property and Bioimaging Application of a Series of Zn(II) Terpyridine Complexes. J. Mol. Struct. 2019, 1194, 157–162. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, J.; Liu, L.; Wu, W.; Wang, Y.; Huang, H.; Deng, F.; Liu, X. Platinum Cluster Decoration on Hollow Carbon Spheres for High-Efficiency Hydrogen Evolution Reaction. Langmuir 2024, 40, 15031–15037. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chen, D.; Meng, A.; Li, Z.; Zhang, J. Highly Efficient Photocatalytic Degradation of Bisphenol A Under UV–Visible Light Irradiation Using Au/Zn3In2S6 Schottky Junction Photocatalyst. Int. J. Mol. Sci. 2026, 27, 705. https://doi.org/10.3390/ijms27020705
Chen D, Meng A, Li Z, Zhang J. Highly Efficient Photocatalytic Degradation of Bisphenol A Under UV–Visible Light Irradiation Using Au/Zn3In2S6 Schottky Junction Photocatalyst. International Journal of Molecular Sciences. 2026; 27(2):705. https://doi.org/10.3390/ijms27020705
Chicago/Turabian StyleChen, Di, Aoyun Meng, Zhen Li, and Jinfeng Zhang. 2026. "Highly Efficient Photocatalytic Degradation of Bisphenol A Under UV–Visible Light Irradiation Using Au/Zn3In2S6 Schottky Junction Photocatalyst" International Journal of Molecular Sciences 27, no. 2: 705. https://doi.org/10.3390/ijms27020705
APA StyleChen, D., Meng, A., Li, Z., & Zhang, J. (2026). Highly Efficient Photocatalytic Degradation of Bisphenol A Under UV–Visible Light Irradiation Using Au/Zn3In2S6 Schottky Junction Photocatalyst. International Journal of Molecular Sciences, 27(2), 705. https://doi.org/10.3390/ijms27020705

