Variants in IRF5 Increase the Risk of Primary Sjögren’s Syndrome in the Mexican Population
Abstract
1. Introduction
2. Result and Discussion
2.1. Clinical Characteristics of pSS Patients
2.2. HWE and Statistical Power
2.3. Genotypic and Allelic Frequencies of IRF5 SNVs in pSS Patients and Controls and Association Analysis
2.4. Association Analysis Between IRF5 SNV, Clinical Features and Autoantibodies in pSS Patients
2.5. LD and Haplotype Analysis
3. Methods and Materials
3.1. Study Population
3.2. Isolation of DNA from the Buffy Coat
3.3. Genotyping
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fox, R.I. Sjögren’s Syndrome. Lancet 2005, 366, 321–331. [Google Scholar] [CrossRef]
- Tzioufas, A.G.; Kapsogeorgou, E.K.; Moutsopoulos, H.M. Pathogenesis of Sjögren’s Syndrome: What We Know and What We Should Learn. J. Autoimmun. 2012, 39, 4–8. [Google Scholar] [CrossRef]
- Venables, P. Sjögren’s Syndrome. Best. Pract. Res. Clin. Rheumatol. 2004, 18, 313–329. [Google Scholar] [CrossRef]
- Brito-Zerón, P.; Baldini, C.; Bootsma, H.; Bowman, S.J.; Jonsson, R.; Mariette, X.; Sivils, K.; Theander, E.; Tzioufas, A.; Ramos-Casals, M. Sjögren Syndrome. Nat. Rev. Dis. Primers 2016, 2, 16047. [Google Scholar] [CrossRef]
- Takei, M.; Shiraiwa, H.; Azuma, T.; Hayashi, Y.; Seki, N.; Sawada, S. The Possible Etiopathogenic Genes of Sjögren’s Syndrome. Autoimmun. Rev. 2005, 4, 479–484. [Google Scholar] [CrossRef]
- Gottenberg, J.-E.; Cagnard, N.; Lucchesi, C.; Letourneur, F.; Mistou, S.; Lazure, T.; Jacques, S.; Ba, N.; Ittah, M.; Lepajolec, C.; et al. Activation of IFN Pathways and Plasmacytoid Dendritic Cell Recruitment in Target Organs of Primary Sjögren’s Syndrome. Proc. Natl. Acad. Sci. USA 2006, 103, 2770–2775, Correction in Proc. Natl. Acad. Sci. USA 2006, 103, 5242. [Google Scholar] [CrossRef]
- Apostolou, E.; Tzioufas, A.G. Type-III Interferons in Sjögren’s Syndrome. Clin. Exp. Rheumatol. 2020, 38, 245–252. [Google Scholar]
- Baechler, E.C.; Batliwalla, F.M.; Karypis, G.; Gaffney, P.M.; Ortmann, W.A.; Espe, K.J.; Shark, K.B.; Grande, W.J.; Hughes, K.M.; Kapur, V.; et al. Interferon-Inducible Gene Expression Signature in Peripheral Blood Cells of Patients with Severe Lupus. Proc. Natl. Acad. Sci. USA 2003, 100, 2610–2615. [Google Scholar] [CrossRef]
- Teos, L.Y.; Alevizos, I. Genetics of Sjögren’s Syndrome. Clin. Immunol. 2017, 182, 41–47. [Google Scholar] [CrossRef]
- Honda, K.; Taniguchi, T. IRFs: Master Regulators of Signalling by Toll-like Receptors and Cytosolic Pattern-Recognition Receptors. Nat. Rev. Immunol. 2006, 6, 644–658. [Google Scholar] [CrossRef]
- Tang, L.; Chen, B.; Ma, B.; Nie, S. Association between IRF5 Polymorphisms and Autoimmune Diseases: A Meta-Analysis. Genet. Mol. Res. 2014, 13, 4473–4485. [Google Scholar] [CrossRef]
- Wen, F.; Ellingson, S.M.; Kyogoku, C.; Peterson, E.J.; Gaffney, P.M. Exon 6 Variants Carried on Systemic Lupus Erythematosus (SLE) Risk Haplotypes Modulate IRF5 Function. Autoimmunity 2011, 44, 82–89. [Google Scholar] [CrossRef]
- López-Briceño, I.A.; Ramírez-Bello, J.; Montúfar-Robles, I.; Barbosa-Cobos, R.E.; Ángulo-Ramírez, A.V.; Valencia-Pacheco, G. IRF5 Variants Are Risk Factors for Systemic Lupus Erythematosus in Two Mexican Populations. J. Clin. Rheumatol. 2024, 30, 283–290. [Google Scholar] [CrossRef]
- Kristjansdottir, G.; Sandling, J.K.; Bonetti, A.; Roos, I.M.; Milani, L.; Wang, C.; Gustafsdottir, S.M.; Sigurdsson, S.; Lundmark, A.; Tienari, P.J.; et al. Interferon Regulatory Factor 5 (IRF5) Gene Variants Are Associated with Multiple Sclerosis in Three Distinct Populations. J. Med. Genet. 2008, 45, 362–369. [Google Scholar] [CrossRef]
- Miceli-Richard, C.; Gestermann, N.; Ittah, M.; Comets, E.; Loiseau, P.; Puechal, X.; Hachulla, E.; Gottenberg, J.; Lebon, P.; Becquemont, L.; et al. The CGGGG Insertion/Deletion Polymorphism of the IRF5 Promoter Is a Strong Risk Factor for Primary Sjögren’s Syndrome. Arthritis Rheum. 2009, 60, 1991–1997. [Google Scholar] [CrossRef]
- Zhao, W.; Yue, X.; Liu, K.; Zheng, J.; Huang, R.; Zou, J.; Riemekasten, G.; Petersen, F.; Yu, X. The Status of Pulmonary Fibrosis in Systemic Sclerosis Is Associated with IRF5, STAT4, IRAK1, and CTGF Polymorphisms. Rheumatol. Int. 2017, 37, 1303–1310. [Google Scholar] [CrossRef]
- Chua, K.H.; Lian, L.H.; Khor, W.C.; Lee, W.S.; Hilmi, I.; Goh, K.L.; Kee, B.P. Association between Genetic Polymorphisms in Interferon Regulatory Factor 5 (IRF5) Gene and M Alaysian Patients with Crohn’s Disease. J. Dig. Dis. 2015, 16, 205–216. [Google Scholar] [CrossRef]
- Lessard, C.J.; Li, H.; Adrianto, I.; Ice, J.A.; Rasmussen, A.; Grundahl, K.M.; Kelly, J.A.; Dozmorov, M.G.; Miceli-Richard, C.; Bowman, S.; et al. Variants at Multiple Loci Implicated in Both Innate and Adaptive Immune Responses Are Associated with Sjögren’s Syndrome. Nat. Genet. 2013, 45, 1284–1292. [Google Scholar] [CrossRef]
- Taylor, K.E.; Wong, Q.; Levine, D.M.; McHugh, C.; Laurie, C.; Doheny, K.; Lam, M.Y.; Baer, A.N.; Challacombe, S.; Lanfranchi, H.; et al. Genome-Wide Association Analysis Reveals Genetic Heterogeneity of Sjögren’s Syndrome According to Ancestry. Arthritis Rheumatol. 2017, 69, 1294–1305. [Google Scholar] [CrossRef]
- Khatri, B.; Tessneer, K.L.; Rasmussen, A.; Aghakhanian, F.; Reksten, T.R.; Adler, A.; Alevizos, I.; Anaya, J.-M.; Aqrawi, L.A.; Baecklund, E.; et al. Genome-Wide Association Study Identifies Sjögren’s Risk Loci with Functional Implications in Immune and Glandular Cells. Nat. Commun. 2022, 13, 4287, Correction in Nat. Commun. 2022, 13, 6519. https://doi.org/10.1038/s41467-022-34311-8; Correction in Nat. Commun. 2023, 14, 598. [Google Scholar] [CrossRef]
- The International Consortium for Systemic Lupus Erythematosus Genetics (SLEGEN); Harley, J.B.; Alarcón-Riquelme, M.E.; Criswell, L.A.; Jacob, C.O.; Kimberly, R.P.; Moser, K.L.; Tsao, B.P.; Vyse, T.J.; Langefeld, C.D. Genome-Wide Association Scan in Women with Systemic Lupus Erythematosus Identifies Susceptibility Variants in ITGAM, PXK, KIAA1542 and Other Loci. Nat. Genet. 2008, 40, 204–210. [Google Scholar] [CrossRef]
- Yang, W.; Shen, N.; Ye, D.-Q.; Liu, Q.; Zhang, Y.; Qian, X.-X.; Hirankarn, N.; Ying, D.; Pan, H.-F.; Mok, C.C.; et al. Genome-Wide Association Study in Asian Populations Identifies Variants in ETS1 and WDFY4 Associated with Systemic Lupus Erythematosus. PLoS Genet. 2010, 6, e1000841. [Google Scholar] [CrossRef]
- Alarcón-Riquelme, M.E.; Ziegler, J.T.; Molineros, J.; Howard, T.D.; Moreno-Estrada, A.; Sánchez-Rodríguez, E.; Ainsworth, H.C.; Ortiz-Tello, P.; Comeau, M.E.; Rasmussen, A.; et al. Genome-Wide Association Study in an Amerindian Ancestry Population Reveals Novel Systemic Lupus Erythematosus Risk Loci and the Role of European Admixture. Arthritis Rheumatol. 2016, 68, 932–943. [Google Scholar] [CrossRef]
- Langefeld, C.D.; Ainsworth, H.C.; Graham, D.S.C.; Kelly, J.A.; Comeau, M.E.; Marion, M.C.; Howard, T.D.; Ramos, P.S.; Croker, J.A.; Morris, D.L.; et al. Transancestral Mapping and Genetic Load in Systemic Lupus Erythematosus. Nat. Commun. 2017, 8, 16021. [Google Scholar] [CrossRef]
- Miceli-Richard, C.; Comets, E.; Loiseau, P.; Puechal, X.; Hachulla, E.; Mariette, X. Association of an IRF5 Gene Functional Polymorphism with Sjögren’s Syndrome. Arthritis Rheum. 2007, 56, 3989–3994. [Google Scholar] [CrossRef]
- Colhoun, H.M.; McKeigue, P.M.; Davey Smith, G. Problems of reporting genetic associations with complex outcomes. Lancet 2003, 361, 865–872. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Wang, G.; Li, X. Association of FAM167A-BLK Rs2736340 Polymorphism with Susceptibility to Autoimmune Diseases: A Meta-Analysis. Immunol. Investig. 2016, 45, 336–348. [Google Scholar] [CrossRef]
- Kumar, M.; Yip, L.; Wang, F.; Marty, S.E.; Fathman, C.G. Autoimmune disease: Genetic susceptibility, environmental triggers, and immune dysregulation. Where can we develop therapies? Front. Immunol. 2025, 16, 1626082. [Google Scholar] [CrossRef]
- Yu, X.; Rehman, A.U.; Dang, L.; Zhang, X.; Liu, J.; Xiong, X.; Chen, G.; Jian, Z. Interferon regulatory factor 5: A potential target for therapeutic intervention in inflammatory diseases. Front. Immunol. 2025, 16, 1535823. [Google Scholar] [CrossRef]
- Reddy, M.V.P.L.; Velázquez-Cruz, R.; Baca, V.; Lima, G.; Granados, J.; Orozco, L.; Alarcón-Riquelme, M.E. Genetic Association of IRF5 with SLE in Mexicans: Higher Frequency of the Risk Haplotype and Its Homozygozity than Europeans. Hum. Genet. 2007, 121, 721–727. [Google Scholar] [CrossRef]
- López-Briceño, I.A.; Valencia-Pacheco, G.; Montúfar-Robles, I.; Zeb, U.; Barbosa-Cobos, R.E.; Ramírez-Bello, J. IRF5 variants and rheumatoid arthritis susceptibility in women from Central Mexico. Biomol. Biomed. 2025, 26, 433–440. [Google Scholar] [CrossRef]
- Graham, R.R.; Kozyrev, S.V.; Baechler, E.C.; Reddy, M.V.P.L.; Plenge, R.M.; Bauer, J.W.; Ortmann, W.A.; Koeuth, T.; Escribano, M.F.G.; Collaborative Groups, T.A.A.S.; et al. A Common Haplotype of Interferon Regulatory Factor 5 (IRF5) Regulates Splicing and Expression and Is Associated with Increased Risk of Systemic Lupus Erythematosus. Nat. Genet. 2006, 38, 550–555. [Google Scholar] [CrossRef]
- Kozyrev, S.V.; Lewén, S.; Reddy, P.M.V.L.; Pons-Estel, B.; Argentine Collaborative Group; Witte, T.; German Collaborative Group; Junker, P.; Laustrup, H.; Gutiérrez, C.; et al. Structural Insertion/Deletion Variation in IRF5 Is Associated with a Risk Haplotype and Defines the Precise IRF5 Isoforms Expressed in Systemic Lupus Erythematosus. Arthritis Rheum. 2007, 56, 1234–1241. [Google Scholar] [CrossRef]
- Graham, R.R.; Kyogoku, C.; Sigurdsson, S.; Vlasova, I.A.; Davies, L.R.L.; Baechler, E.C.; Plenge, R.M.; Koeuth, T.; Ortmann, W.A.; Hom, G.; et al. Three Functional Variants of IFN Regulatory Factor 5 (IRF5) Define Risk and Protective Haplotypes for Human Lupus. Proc. Natl. Acad. Sci. USA 2007, 104, 6758–6763. [Google Scholar] [CrossRef]
- Kelly, J.A.; Kelley, J.M.; Kaufman, K.M.; Kilpatrick, J.; Bruner, G.R.; Merrill, J.T.; James, J.A.; Frank, S.G.; Reams, E.; Brown, E.E.; et al. Interferon Regulatory Factor-5 Is Genetically Associated with Systemic Lupus Erythematosus in African Americans. Genes Immun. 2008, 9, 187–194. [Google Scholar] [CrossRef]
- Li, Y.; Chen, S.; Li, P.; Wu, Z.; Li, J.; Liu, B.; Zhang, F.; Li, Y. Association of the IRF5 Rs2070197 Polymorphism with Systemic Lupus Erythematosus: A Meta-Analysis. Clin. Rheumatol. 2015, 34, 1495–1501. [Google Scholar] [CrossRef]
- Cunninghame Graham, D.S.; Manku, H.; Wagner, S.; Reid, J.; Timms, K.; Gutin, A.; Lanchbury, J.S.; Vyse, T.J. Association of IRF5 in UK SLE families identifies a variant involved in polyadenylation. Hum. Mol. Genet. 2007, 16, 579–591. [Google Scholar] [CrossRef]
- Westerlund, A.; Kejs, A.M.T.; Beydogan, H.; Gairy, K. Primary Sjögren’s Syndrome: A Retrospective Cohort Study of Burden of Illness in Sweden. Rheumatol. Ther. 2021, 8, 955–971. [Google Scholar] [CrossRef]
- Anquetil, C.; Hachulla, E.; Machuron, F.; Mariette, X.; Le Guern, V.; Vittecoq, O.; Dernis, E.; Larroche, C.; Dubost, J.J.; Perdriger, A.; et al. Is early-onset primary Sjögren’s syndrome a worse prognosis form of the disease? Rheumatology 2019, 58, 1163–1167. [Google Scholar] [CrossRef]
- Martinez-Marignac, V.L.; Valladares, A.; Cameron, E.; Chan, A.; Perera, A.; Globus-Goldberg, R.; Wacher, N.; Kumate, J.; McKeigue, P.; O’Donnell, D.; et al. Admixture in Mexico City: Implications for admixture mapping of type 2 diabetes genetic risk factors. Hum. Genet. 2007, 20, 807–819. [Google Scholar] [CrossRef]
- Martínez-Cortés, G.; Salazar-Flores, J.; Fernández-Rodríguez, L.G.; Rubi-Castellanos, R.; Rodríguez-Loya, C.; Velarde-Félix, J.S.; Muñoz-Valle, J.F.; Parra-Rojas, I.; Rangel-Villalobos, H. Admixture and population structure in Mexican-Mestizos based on pa-ternal lineages. J. Hum. Genet. 2012, 57, 568–574. [Google Scholar] [CrossRef]
- Siu, H.O.; Yang, W.; Lau, C.S.; Chan, T.M.; Wong, R.W.; Wong, W.H.; Lau, Y.L.; Alarcon-Riquelme, M.E. Association of a haplotype of IRF5 gene with systemic lupus erythematosus in Chinese. J. Rheumatol. 2008, 35, 360–362. [Google Scholar]
- Kawasaki, A.; Kyogoku, C.; Ohashi, J.; Miyashita, R.; Hikami, K.; Kusaoi, M.; Tokunaga, K.; Takasaki, Y.; Hashimoto, H.; Behrens, T.W.; et al. Association of IRF5 polymorphisms with systemic lupus erythematosus in a Japanese population: Support for a crucial role of intron 1 polymorphisms. Arthritis Rheum. 2008, 58, 826–834. [Google Scholar] [CrossRef]
- Kim, Y.J.; Park, J.H.; Kim, I.; Kim, J.O.; Bae, J.S.; Shin, H.D.; Bae, S.C. Putative role of functional interferon regulatory factor 5 (IRF5) polymorphism in rheumatoid arthritis in a Korean population. J. Rheumatol. 2008, 35, 2106–2118. [Google Scholar] [CrossRef]
- Carmona, F.D.; Martin, J.E.; Beretta, L.; Simeón, C.P.; Carreira, P.E.; Callejas, J.L.; Fernández-Castro, M.; Sáez-Comet, L.; Beltrán, E.; Camps, M.T.; et al. The systemic lupus erythematosus IRF5 risk haplotype is associated with systemic sclerosis. PLoS ONE 2013, 8, e54419. [Google Scholar] [CrossRef]
- Guthridge, J.M.; Clark, D.N.; Templeton, A.; Dominguez, N.; Lu, R.; Vidal, G.S.; Kelly, J.A.; Kauffman, K.M.; Harley, J.B.; Gaffney, P.M.; et al. Effects of IRF5 lupus risk haplotype on pathways predicted to influence B cell functions. J. Biomed. Biotechnol. 2012, 2012, 594056. [Google Scholar] [CrossRef]
- Thurtle, E.; Grosjean, A.; Steenackers, M.; Strege, K.; Barcelos, G.; Goswami, P. Epidemiology of Sjögren’s: A Systematic Literature Review. Rheumatol. Ther. 2024, 11, 1–17. [Google Scholar] [CrossRef]
- Lahiri, D.K.; Numberger, J.I. A Rapid Non-Enzymatic Method for the Preparation of HMW DNA from Blood for RFLP Studies. Nucleic Acids Res. 1991, 19, 5444. [Google Scholar] [CrossRef]

| Variable | Frequency | (%) |
|---|---|---|
| Presence of antibodies | ||
| Anti-SSA (Ro) | 90 | 88.2 |
| Anti-SSB (La) | 53 | 52.0 |
| Extra-glandular manifestations | ||
| Fever | 9 | 8.8 |
| Weight loss | 4 | 3.9 |
| Arthritis | 30 | 29.4 |
| Myositis | 1 | 1.0 |
| Vasculitis | 6 | 5.9 |
| Raynaud phenomenon | 9 | 8.8 |
| Interstitial lung disease | 5 | 4.9 |
| Symptomatic treatment | ||
| Ocular | 93 | 91.2 |
| Oral | 44 | 43.1 |
| Comorbidity | ||
| Diabetes type 2 | 9 | 8.8 |
| Hypertension | 27 | 26.5 |
| Dyslipidemia | 30 | 29.4 |
| Smoking | 24 | 23.5 |
| Gene SNV | Model | Genotypes or Alleles | pSS n (%) | Controls n (%) | OR (95% CI) | p-Value Adjusted |
|---|---|---|---|---|---|---|
| IRF5 rs2004640 G/T | Codominant | GG | 26 (19.7) | 88 (38.1) | - | - |
| GT | 46 (34.9) | 108 (46.8) | 1.23 (0.61–2.51) | 0.560 | ||
| TT | 60 (45.4) | 35 (15.1) | 4.25 (1.95–9.26) | 7 × 10−4 | ||
| Allele | G | 98 (37.1) | 284 (61.5) | - | - | |
| T | 166 (62.9) | 178 (38.5) | 2.06 (1.38–3.07) | 8 × 10−4 | ||
| Dominant | GG | 26 (19.7) | 88 (38.1) | - | - | |
| GT + TT | 106 (80.3) | 143 (61.9) | 2.00 (1.05–3.80) | 0.036 | ||
| Recessive | GG + GT | 72 (54.6) | 196 (84.9) | - | - | |
| TT | 60 (45.4) | 35 (15.1) | 3.78 (1.95–7.32) | 2 × 10−4 | ||
| IRF5 rs2070197 T/C | Codominant | TT | 54 (40.9) | 128 (55.4) | - | - |
| TC | 51 (38.6) | 87 (37.7) | 1.40 (0.75–2.63) | 0.290 | ||
| CC | 27 (20.5) | 16 (6.9) | 3.41 (1.38–8.44) | 0.010 | ||
| Allele | T | 159 (60.2) | 343 (74.2) | - | - | |
| C | 105 (39.8) | 119 (25.8) | 1.71 (1.13–2.60) | 0.012 | ||
| Dominant | TT | 54 (40.9) | 128 (55.4) | - | - | |
| CT + CC | 78 (59.1) | 103 (44.6) | 1.75 (0.98–3.12) | 0.056 | ||
| Recessive | TT + TC | 105 (79.6) | 215 (93.1) | - | - | |
| CC | 27 (20.4) | 16 (6.9) | 2.95 (1.25–6.96) | 0.014 | ||
| IRF5 rs10954213 G/A | Codominant | GG | 22 (16.7) | 58 (25.1) | - | - |
| GA | 53 (40.1) | 123 (53.2) | 0.94 (0.44–1.99) | 0.860 | ||
| AA | 57 (43.2) | 50 (21.7) | 2.20 (0.99–4.90) | 0.110 | ||
| Allele | G | 97 (36.7) | 239 (51.7) | - | - | |
| A | 167 (63.3) | 223 (48.3) | 1.55 (1.03–2.33) | 0.037 | ||
| Dominant | GG | 22 (16.7) | 58 (25.1) | - | - | |
| GA + AA | 110 (83.3) | 173 (74.9) | 1.31 (0.65–2.64) | 0.440 | ||
| Recessive | GG + GA | 75 (56.8) | 181 (78.3) | - | - | |
| AA | 57 (43.2) | 50 (21.7) | 2.30 (1.23–4.29) | 0.010 | ||
| IRF5 rs59110799 G/T | Codominant | GG | 62 (47.0) | 140 (60.6) | - | - |
| GT | 51 (38.6) | 74 (32.0) | 2.24 (1.19–4.22) | 0.016 | ||
| TT | 19 (14.4) | 17 (7.4) | 2.11 (0.82–5.46) | 0.120 | ||
| Allele | G | 175 (66.3) | 354 (76.6) | - | - | |
| T | 89 (33.7) | 108 (23.4) | 1.66 (1.09–2.53) | 0.019 | ||
| Dominant | GG | 62 (47.0) | 140 (60.6) | - | - | |
| GT + TT | 70 (53.0) | 91 (39.4) | 2.21 (1.23–3.97) | 0.009 | ||
| Recessive | GG + GT | 113 (85.6) | 214 (92.6) | - | - | |
| TT | 19 (14.4) | 17 (7.4) | 1.54 (0.62–3.79) | 0.350 |
| Haplotype | pSS 2n (%) | Controls 2n (%) | OR (95% CI) | pc |
|---|---|---|---|---|
| GTGG | 73 (27.7) | 224 (48.5) | 0.41 (0.29–0.56) | <1 × 10−5 |
| TTGG | 17 (6.4) | 8 (1.7) | 3.91 (1.66–9.18) | 0.003 |
| TCAT | 70 (26.5) | 86 (18.6) | 1.58 (1.10–2.26) | 0.060 |
| TTAG | 39 (14.8) | 43 (9.3) | 1.69 (1.06–2.68) | 0.119 |
| GTAG | 15 (5.7) | 49 (10.6) | 0.51 (0.28–0.92) | 0.123 |
| TCAG | 26 (9.9) | 28 (6.1) | 1.69 (0.97–2.96) | 0.339 |
| TTAT | 8 (3.0) | 11 (2.4) | 1.28 (0.51–3.27) | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ramírez-Bello, J.; López-Briceño, I.A.; Valencia-Pacheco, G.; Barbosa-Cobos, R.E.; Hernández-Molina, G.; Jiménez-Morales, S.; Aranda-Uribe, I.S.; Montúfar-Robles, I.; Nath, S.K. Variants in IRF5 Increase the Risk of Primary Sjögren’s Syndrome in the Mexican Population. Int. J. Mol. Sci. 2026, 27, 599. https://doi.org/10.3390/ijms27020599
Ramírez-Bello J, López-Briceño IA, Valencia-Pacheco G, Barbosa-Cobos RE, Hernández-Molina G, Jiménez-Morales S, Aranda-Uribe IS, Montúfar-Robles I, Nath SK. Variants in IRF5 Increase the Risk of Primary Sjögren’s Syndrome in the Mexican Population. International Journal of Molecular Sciences. 2026; 27(2):599. https://doi.org/10.3390/ijms27020599
Chicago/Turabian StyleRamírez-Bello, Julian, Isaac Alberto López-Briceño, Guillermo Valencia-Pacheco, Rosa Elda Barbosa-Cobos, Gabriela Hernández-Molina, Silvia Jiménez-Morales, Iván Sammir Aranda-Uribe, Isela Montúfar-Robles, and Swapan K. Nath. 2026. "Variants in IRF5 Increase the Risk of Primary Sjögren’s Syndrome in the Mexican Population" International Journal of Molecular Sciences 27, no. 2: 599. https://doi.org/10.3390/ijms27020599
APA StyleRamírez-Bello, J., López-Briceño, I. A., Valencia-Pacheco, G., Barbosa-Cobos, R. E., Hernández-Molina, G., Jiménez-Morales, S., Aranda-Uribe, I. S., Montúfar-Robles, I., & Nath, S. K. (2026). Variants in IRF5 Increase the Risk of Primary Sjögren’s Syndrome in the Mexican Population. International Journal of Molecular Sciences, 27(2), 599. https://doi.org/10.3390/ijms27020599

