Liquid Chromatography with Dual Mass Spectrometry Detection: An Approach to the Determination of Br-Containing Disinfection By-Products in Drinking Water
Abstract
1. Introduction
2. Results and Discussion
2.1. Screening of Br-Containing Compounds
2.2. Tentative Identification
2.3. Quantitation Procedure
- y—the area of a chromatographic peak;
- M(ClHmBrn…)—the molecular mass of the detected Br-containing compound;
- aBr—the sensitivity coefficient of ICP-MS to bromine Br79 = 5.75 × 105;
- M(Brn)—the total mass of Br-atoms in the compound n × 79.904 a.m.u.
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Water Samples and Sample Preparation
3.3. LC-ICP-MS and LC-HRMS Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Water and Sanitation Fact Sheet. 2022. Available online: https://www.who.int/europe/news-room/fact-sheets/item/water-and-sanitation (accessed on 24 December 2025).
- Cutler, D.; Miller, G. The role of public health improvements in health advances: The twentieth-century United States. Demography 2005, 42, 1–22. [Google Scholar] [CrossRef] [PubMed]
- EPA 815-R-99-014; Alternative Disinfectants and Oxidants Guidance Manual. Environmental Protection Agency: Washington, DC, USA, 1999. Available online: https://www.epa.gov/dwreginfo/interim-enhanced-surface-water-treatment-rule-documents (accessed on 24 December 2025).
- Lebedev, A.T. Mass spectrometry in the study of mechanisms of aquatic chlorination of organic substrates. Eur. J. Mass Spectrom. 2007, 13, 51–56. [Google Scholar] [CrossRef]
- Rook, J.J. Formation of haloforms during chlorination of natural waters. Water Treat. Exam. 1974, 23, 234–243. [Google Scholar]
- Bellar, T.A.; Lichtenberg, J.J.; Kroner, R.C. Occurance of organohalides in chlorinated drinking waters. J. Am. Water Work. Assoc. 1974, 66, 703–706. [Google Scholar] [CrossRef]
- Richardson, S.D.; Plewa, M.J.; Wagner, E.D.; Schoeny, R.; De-Marini, D.M. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutat. Res. Rev. Mutat. Res. 2007, 636, 178–242. [Google Scholar] [CrossRef]
- Clayton, G.E.; Thorn, R.M.; Reynolds, D.M. Comparison of Trihalomethane Formation Using Chlorine-Based Disinfectants Within a Model System; Applications Within Point-of-Use Drinking Water Treatment. Front. Environ. Sci. 2019, 7, 35. [Google Scholar] [CrossRef]
- Roccaro, P.; Vagliasindi, F.G.; Korshin, G.V. Relationships between trihalomethanes, haloacetic acids, and haloacetonitriles formed by the chlorination of raw, treated, and fractionated surface waters. J. Water Supply Res. Technol. 2014, 63, 21–30. [Google Scholar] [CrossRef]
- Lei, X.; Xie, Z.; Sun, Y.; Qiu, J.; Yang, X. Recent progress in identification of water disinfection byproducts and opportunities for future research. Environ. Pollut. 2023, 337, 122601. [Google Scholar] [CrossRef]
- Dong, F.; Zhu, J.; Li, J.; Fu, C.; He, G.; Lin, Q.; Li, C.; Song, S. The occurrence, formation and transformation of disinfection byproducts in the water distribution system: A review. Sci. Total. Environ. 2023, 867, 161497. [Google Scholar] [CrossRef] [PubMed]
- Forster, A.L.; Wiskur, S.L.; Richardson, S.D. Formation of Eight Classes of DBPs from Chlorine, Chloramine, and Ozone: Mechanisms and Formation Pathways. Environ. Sci. Technol. 2025, 59, 15594−15611. [Google Scholar] [CrossRef] [PubMed]
- Mazur, D.M.; Lebedev, A.T. Transformation of Organic Compounds during Water Chlorination/Bromination: Formation Pathways for Disinfection By-Products (A Review). J. Anal. Chem. 2022, 77, 1705–1728. [Google Scholar] [CrossRef]
- Richardson, S.D. Tackling unknown disinfection by-products: Lessons learned. J. Hazard. Mater. Lett. 2021, 2, 100041. [Google Scholar] [CrossRef]
- Richardson, S.D.; Thruston, A.D.; Rav-Acha, C.; Groisman, L.; Popilevsky, I.; Juraev, O.; Glezer, V.; McKague, A.B.; Plewa, M.J.; Wagner, E.D. Tribromopyrrole, Brominated Acids, and Other Disinfection Byproducts Produced by Disinfection of Drinking Water Rich in Bromide. Environ. Sci. Technol. 2003, 37, 3782–3793. [Google Scholar] [CrossRef]
- Powers, L.C.; Conway, A.; Mitchelmore, C.L.; Fleischacker, S.J.; Harir, M.; Westerman, D.C.; Croué, L.C.; Schmitt-Kopplin, P.; Richardson, S.D.; Gonsior, M. Tracking the formation of new brominated disinfection by-products during the seawater desalination process. Environ. Sci. Water Res. Technol. 2020, 6, 2521–2541. [Google Scholar] [CrossRef]
- Krasner, S.W.; Lee, C.F.T.; Chinn, R.; Hartono, S.; Weinberg, H.; Richardson, S.D.; Pressman, J.G.; Speth, T.F.; Miltner, R.J.; Simmons, J.E. Bro-mine incorporation in regulated and emerging DBPs and the relative predominance of mono-, di-, and trihalogenated DBPs. In Proceedings of the 2008 AWWA Water Quality Technology Conference, Cincinnati, OH, USA, 16–20 November 2008; pp. 1692–1708. [Google Scholar]
- Pan, Y.; Zhang, X. Four groups of new aromatic halogenated disinfection byproducts: Effect of bromide concentration on their formation and speciation in chlorinated drinking water. Environ. Sci. Technol. 2013, 47, 1265–1273. [Google Scholar] [CrossRef]
- Plewa, M.J.; Wagner, E.D.; Muellner, M.G.; Hsu, K.-M.; Richardson, S.D. Comparative mammalian cell toxicity of NDBPs and C-DBPs. Disinfection by-products in drinking water. ACS Symp. Ser. 2008, 995, 36–50. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, X. Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete Platynereis dumerilii. Environ. Sci. Technol. 2013, 47, 10868–10876. [Google Scholar] [CrossRef]
- Richardson, S.D.; Postigo, C. A new technique helps to uncover unknown peptides and disinfection by-products in water. J. Environ. Sci. 2016, 42, 6–8. [Google Scholar] [CrossRef]
- Richardson, S.D.; Ternes, T.A. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2018, 90, 398–428. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, X. Current trends in the analysis and identification of emerging disinfection byproducts. Trends Environ. Anal. Chem. 2016, 10, 24–34. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Zhang, Q.; Tan, F.; Liu, Q.; Yang, X. The Selectively Nontargeted Analysis of Halogenated Disinfection Byproducts in Tap Water by Micro-LC QTOFMS. Toxics 2024, 12, 630. [Google Scholar] [CrossRef]
- Richardson, S.D.; Kimura, S.Y. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2020, 92, 473−505. [Google Scholar] [CrossRef]
- Richardson, S.D.; Ternes, T.A. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2021, 94, 382–416. [Google Scholar] [CrossRef]
- Richardson, S.D.; Manasfi, T. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2024, 96, 8184–8219. [Google Scholar] [CrossRef]
- Feldmann, J.; Raab, A.; Krupp, E.M. Importance of ICPMS for speciation analysis is changing: Future trends for targeted and non-targeted element speciation analysis. Anal. Bioanal. Chem. 2018, 410, 661–667. [Google Scholar] [CrossRef]
- Meermann, B.; Bockx, M.; Laenen, A.; Van Looveren, C.; Cuyckens, F.; Vanhaecke, F. Speciation analysis of bromine-containing drug metabolites in feces samples from a human in vivo study by means of HPLC/ICP-MS combined with on-line isotope dilution. Anal. Bioanal. Chem. 2012, 402, 439–448. [Google Scholar] [CrossRef]
- Hogeback, J.; Schwarzer, M.; Wehe, C.A.; Sperling, M.; Karst, U. Investigating the adduct formation of organic mercury species with carbonic anhydrase and hemoglobin from human red blood cell hemolysate by means of LC/ESI-TOF-MS and LC/ICP-MS. Metallomics 2015, 8, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Delafiori, J.; Ring, G.; Furey, A. Clinical applications of HPLC–ICP-MS element speciation: A review. Talanta 2016, 153, 306–331. [Google Scholar] [CrossRef]
- Kokarnig, S.; Tsirigotaki, A.; Wiesenhofer, T.; Lackner, V.; Francesconi, K.A.; Pergantis, S.A.; Kuehnelt, D. Concurrent quantitative HPLC–mass spectrometry profiling of small selenium species in human serum and urine after ingestion of selenium supplements. J. Trace Elem. Med. Biol. 2015, 29, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Jensen, B.P.; Gammelgaard, B.; Hansen, S.H.; Andersen, J.V. HPLC-ICP-MS compared with radio-chemical detection for metabolite profiling of 3H-bromohexine in rat urine and faeces. J. Anal. At. Spectrom. 2005, 20, 204–209. [Google Scholar] [CrossRef]
- Gammelgaard, B.; Hansen, H.R.; Stürup, S.; Møller, C. The use of inductively coupled plasma mass spectrometry as a detector in drug metabolism studies. Expert Opin. Drug Metab. Toxicol. 2008, 4, 1187–1207. [Google Scholar] [CrossRef] [PubMed]
- Amayo, K.O.; Petursdottir, A.; Newcombe, C.; Gunnlaugsdottir, H.; Raab, A.; Krupp, E.M.; Feldmann, J. Identification and Quantification of Arsenolipids Using Reversed-Phase HPLC Coupled Simultaneously to High-Resolution ICPMS and High-Resolution Electrospray MS without Species-Specific Standards. Anal. Chem. 2011, 83, 3589–3595. [Google Scholar] [CrossRef] [PubMed]
- Lorenc, W.; Kruszka, D.; Kachlicki, P.; Kozłowska, J.; Barałkiewicz, D. Arsenic species and their transformation pathways in marine plants. Usefulness of advanced hyphenated techniques HPLC/ICP-MS and UPLC/ESI-MS/MS in arsenic species analysis. Talanta 2020, 220, 121384. [Google Scholar] [CrossRef]
- Jensen, B.P.; Smith, C.J.; Bailey, C.J.; Rodgers, C.; Wilson, I.D.; Nicholson, J.K. Investigation of the metabolic fate of 2-, 3- and 4-bromobenzoic acids in bile-duct-cannulated rats by inductively coupled plasma mass spectrometry and high-performance liquid chromatography/inductively coupled plasma mass spectrometry/electrospray mass spectrometry. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up-to-the-Minute. J. Mass Spectrom. 2005, 19, 519–524. [Google Scholar] [CrossRef]
- Abou-Shakra, F.R.; Sage, A.B.; Castro-Perez, J.; Nicholson, J.K.; Lindon, J.C.; Scarfe, G.B.; Wilson, I.D. High-performance liquid chromatography-UV diode array, inductively coupled plasma mass spectrometry (ICMPS) and orthogonal acceleration time-of-flight mass spectrometry (oa-TOFMS) applied to the simultaneous detection and identification of metabolites of 4-bromoaniline in rat urine. Chromatographia 2002, 55, S9–S13. [Google Scholar] [CrossRef]
- Cuyckens, F.; Balcaen, L.I.; De Wolf, K.; De Samber, B.; Van Looveren, C.; Hurkmans, R.; Vanhaecke, F. Use of the bromine isotope ratio in HPLC-ICP-MS and HPLC-ESI-MS analysis of a new drug in development. Anal. Bioanal. Chem. 2008, 390, 1717–1729. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Lindon, J.C.; Scarfe, G.; Wilson, I.D.; Abou-Shakra, F.; Castro-Perez, J.; Eaton, A.; Preece, S. High-performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for the analysis of xenobiotic metabolites in rat urine: Application to the metabolites of 4-bromoaniline. Analyst 2000, 125, 235–236. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Lindon, J.C.; Scarfe, G.B.; Wilson, I.D.; Abou-Shakra, F.; Sage, A.B.; Castro-Perez, J. High-performance liquid chromatography linked to inductively coupled plasma mass spectrometry and orthogonal acceleration time-of-flight mass spectrometry for the simultaneous detection and identification of metabolites of 2-bromo-4-trifluoromethyl-[13C]-acetanilide in rat urine. Anal. Chem. 2001, 73, 1491–1494. [Google Scholar] [CrossRef]
- Ul’yanovskii, N.V.; Kosyakov, D.S.; Sypalov, S.A.; Varsegov, I.S.; Shavrina, I.S.; Lebedev, A.T. Antiviral drug Umifenovir (Arbidol) in municipal wastewater during the COVID-19 pandemic: Estimated levels and transformation. Sci. Total Environ. 2022, 805, 150380. [Google Scholar] [CrossRef]
- Sypalov, S.A.; Ul’yanovskii, N.V.; Kosyakov, D.S.; Lebedev, A.T. Determination of Umifenovir and Its Metabolites by High-Performance Liquid Chromatography with Combined Mass Spectrometric Detection. J. Anal. Chem. 2023, 78, 1191–1198. [Google Scholar] [CrossRef]
- Vozhdaeva, M.Y.; Kholova, A.R.; Melnitskiy, I.A.; Beloliptsev, I.I.; Vozhdaeva, Y.S.; Kantor, E.A.; Lebedev, A.T. Monitoring and Statistical Analysis of Formation of Organochlorine and Organobromine Compounds in Drinking Water of Different Water Intakes. Molecules 2021, 26, 1852. [Google Scholar] [CrossRef]
- Ding, G.; Zhang, X.; Yang, M.; Pan, Y. Formation of new brominated disinfection byproducts during chlorination of saline sewage effluents. Water Res. 2013, 47, 2710–2718. [Google Scholar] [CrossRef]
- Zhai, H.; Zhang, X. Formation and decomposition of new and unknown polar brominated disinfection byproducts during chlorination. Environ. Sci. Technol. 2011, 45, 2194–2201. [Google Scholar] [CrossRef] [PubMed]
- Detenchuk, E.A.; Mazur, D.M.; Latkin, T.B.; Lebedev, A.T. Halogen substitution reactions of halobenzenes during water disinfection. Chemosphere 2022, 295, 133866. [Google Scholar] [CrossRef] [PubMed]
- Kosyakov, D.S.; Ul’yanovskii, N.V.; Popov, M.S.; Latkin, T.B.; Lebedev, A.T. Halogenated fatty amides–A brand new class of disinfection by-products. Water Res. 2017, 127, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, Y.; Li, A.; Xu, B.; Xian, Q.; Shuang, C.; Shi, P.; Zhou, Q. Detection, formation and occurrence of 13 new polar phenolic chlorinated and brominated disinfection byproducts in drinking water. Water Res. 2017, 112, 129–136. [Google Scholar] [CrossRef]
- EPA Method 8270E (SW-846); Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS). Environmental Protection Agency: Washington, DC, USA, 2014.




| № | tR, min | m/z, [M − H]− | m/z, [M + H]+ | Molecular Formula | Error, ppm | Preliminary Identity |
|---|---|---|---|---|---|---|
| 1 | 2.9 | + | - | - | - | - |
| 2 | 13.5 | 293.8402 | - | C6H3Br2NO3 | −1.7 | dibromonitrophenol |
| 3 | 13.9 | 249.8913 | - | C6H3BrClNO3 | 0.4 | bromochloronitrophenol |
| 4 | 14.6 | 326.7652 | - | C6H3Br3O | −2.8 | tribromophenol |
| 5 | 16.4 | 292.8455 | - | C7H4Br2O3 | 0.2 | dibromohydroxybenzoic acid |
| 6 | 16.6 | - | 376.1841 | C18H34BrNO2 | −1.2 | hydroxybromooctadecenamide |
| 7 | 17.3 | - | 378.2002 | C18H36BrNO2 | 0.05 | hydroxybromooctadecanamide |
| 8 | 18.0 | 377.1695 | - | C18H35BrO3 | −0.5 | Hydroxybromooctadecanoic acid |
| 9 | 18.6 | - | 394.1496 | C18H33BrClNO | −2.7 | chlorobromooctadecenamide |
| 10 | 19.1 | - | 396.1657 | C18H35BrClNO | −1.6 | chlorobromooctadecanamide |
| № | Formula | Molecular Mass, a.m.u. | Mass Fraction of Br, % | Concentration in the Sample, µg/L | ||
|---|---|---|---|---|---|---|
| RW | PWI | IWI | ||||
| 1 | Adducts with bromide ion | - | - | n.d. | 1.3 ± 0.1 * | 1.2 ± 0.1 * |
| 2 | C6H3Br2NO3 | 296.9028 | 54 | n.d. | 0.075 ± 0.007 | 0.033 ± 0.003 |
| 3 | C6H3BrClNO3 | 252.4515 | 32 | n.d. | 0.63 ± 0.06 | 0.26 ± 0.03 |
| 4 | C6H3Br3O | 330.8012 | 72 | n.d. | 0.081 ± 0.008 | 0.035 ± 0.004 |
| 5 | C7H4Br2O3 | 295.9150 | 54 | n.d. | 0.060 ± 0.006 | 0.058 ± 0.006 |
| 6 | C18H34BrNO2 | 376.3775 | 21 | n.d. | 0.18 ± 0.02 | 0.18 ± 0.02 |
| 7 | C18H36BrNO2 | 378.3934 | 21 | n.d. | 3.6 ± 0.4 | 4.1 ± 0.4 |
| 8 | C18H35BrO3 | 379.3781 | 21 | n.d. | 0.087 ± 0.009 | 0.22 ± 0.02 |
| 9 | C18H33BrClNO | 394.8229 | 20 | n.d. | 0.20 ± 0.02 | 0.28 ± 0.03 |
| 10 | C18H35BrClNO | 396.8387 | 20 | n.d. | 0.55 ± 0.05 | 2.2 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sypalov, S.A.; Varsegov, I.S.; Danilova, E.V.; Ulyanovskii, N.V.; Kosyakov, D.S.; Vozhdaeva, M.Y.; Kholova, A.R.; Mazur, D.M.; Lebedev, A.T. Liquid Chromatography with Dual Mass Spectrometry Detection: An Approach to the Determination of Br-Containing Disinfection By-Products in Drinking Water. Int. J. Mol. Sci. 2026, 27, 386. https://doi.org/10.3390/ijms27010386
Sypalov SA, Varsegov IS, Danilova EV, Ulyanovskii NV, Kosyakov DS, Vozhdaeva MY, Kholova AR, Mazur DM, Lebedev AT. Liquid Chromatography with Dual Mass Spectrometry Detection: An Approach to the Determination of Br-Containing Disinfection By-Products in Drinking Water. International Journal of Molecular Sciences. 2026; 27(1):386. https://doi.org/10.3390/ijms27010386
Chicago/Turabian StyleSypalov, Sergey A., Ilya S. Varsegov, Eleonora V. Danilova, Nikolay V. Ulyanovskii, Dmitry S. Kosyakov, Margarita Yu. Vozhdaeva, Alfiya R. Kholova, Dmitrii M. Mazur, and Albert T. Lebedev. 2026. "Liquid Chromatography with Dual Mass Spectrometry Detection: An Approach to the Determination of Br-Containing Disinfection By-Products in Drinking Water" International Journal of Molecular Sciences 27, no. 1: 386. https://doi.org/10.3390/ijms27010386
APA StyleSypalov, S. A., Varsegov, I. S., Danilova, E. V., Ulyanovskii, N. V., Kosyakov, D. S., Vozhdaeva, M. Y., Kholova, A. R., Mazur, D. M., & Lebedev, A. T. (2026). Liquid Chromatography with Dual Mass Spectrometry Detection: An Approach to the Determination of Br-Containing Disinfection By-Products in Drinking Water. International Journal of Molecular Sciences, 27(1), 386. https://doi.org/10.3390/ijms27010386

