Genetic Basis of Multiple Antibiotic Resistance of Pathogenic Escherichia coli Strains Isolated from Livestock Complexes in Krasnodar Krai, Russia
Abstract
1. Introduction
2. Results
2.1. Phenotypic Characteristics of E. coli Strains
2.2. Sensitivity to Antibiotics
2.3. Sequencing of Complete Genomes of E. coli Strains
2.4. Phylogenetic Position of the Isolated E. coli Strains
2.5. Description of Antibiotic Resistance and Virulence-Associated Genes
3. Discussion
3.1. Resistance to Aminoglycosides
3.2. Glycopeptides Resistance
3.3. Macrolides, Rifampicin, and Fusidic Acid Resistance
3.4. Resistance to Tetracyclines
3.5. Phenicols Resistance
3.6. Polypeptide Antibiotics Resistance
3.7. Sulfonamides Resistance
3.8. Resistance to Fluoroquinolones
3.9. Resistance to β-Lactam Antibiotics
3.10. Some Other Antibiotic Groups Resistance
4. Materials and Methods
4.1. Isolation and Biochemical Identification of E. coli Strains
4.2. Cultivation of Microorganisms
4.3. Deposition in Databases
4.4. Isolation of Bacterial DNA
4.5. Whole-Genome Sequencing
4.6. Antibiotic Susceptibility Testing
4.7. Phenotypic Characterization of Pathogenicity Factors
4.8. Bioinformatic Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ABDs | Antibacterial drugs |
| AMR | Antimicrobial resistance |
| MIC | Minimal Inhibitory Concentration |
References
- Zeineldin, M.; Aldridge, B.; Lowe, J. Antimicrobial Effects on Swine Gastrointestinal Microbiota and Their Accompanying Antibiotic Resistome. Front. Microbiol. 2019, 10, 1035. [Google Scholar] [CrossRef]
- Cao, H.; Bougouffa, S.; Park, T.J.; Lau, A.; Tong, M.K.; Chow, K.H.; Ho, P.L. Sharing of Antimicrobial Resistance Genes between Humans and Food Animals. mSystems 2022, 7, e0077522. [Google Scholar] [CrossRef]
- Xin, H.; Gao, M.; Wang, X.; Qiu, T.; Guo, Y.; Zhang, L. Animal farms are hot spots for airborne antimicrobial resistance. Sci. Total Environ. 2022, 851, 158050. [Google Scholar] [CrossRef]
- Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Med. Chem. 2014, 6, 25–64. [Google Scholar] [CrossRef]
- Kang, C.I.; Wi, Y.M.; Lee, M.Y.; Ko, K.S.; Chung, D.R.; Peck, K.R.; Lee, N.Y.; Song, J.H. Epidemiology and risk factors of community onset infections caused by extended-spectrum beta-lactamase-producing Escherichia coli strains. J. Clin. Microbiol. 2012, 50, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Angst, D.C.; Hall, A.R. The cost of antibiotic resistance depends on evolutionary history in Escherichia coli. BMC Evol. Biol. 2013, 13, 163. [Google Scholar] [CrossRef] [PubMed]
- Frye, J.G.; Jackson, C.R. Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. Front. Microbiol. 2013, 4, 135. [Google Scholar] [CrossRef]
- Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heuer, O.E.; et al. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect. 2015, 6, 22–29, Correction in New Microbes New Infect. 2015, 10, 175. https://doi.org/10.1016/j.nmni.2015.09.004. [Google Scholar] [CrossRef]
- Allocati, N.; Masulli, M.; Alexeyev, M.F.; Di Ilio, C. Escherichia coli in Europe: An overview. Int. J. Environ. Res. Public Health 2013, 10, 6235–6254. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, L.; Kaleva, M.; Zaharieva, M.M.; Stoykova, C.; Tsvetkova, I.; Angelovska, M.; Ilieva, Y.; Kussovski, V.; Naydenska, S.; Najdenski, H. Prevalence of Antibiotic-Resistant Escherichia coli Isolated from Swine Faeces and Lagoons in Bulgaria. Antibiotics 2021, 10, 940. [Google Scholar] [CrossRef]
- Poirel, L.; Madec, J.Y.; Lupo, A.; Schink, A.K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, arba-0026-2017. [Google Scholar] [CrossRef]
- Qadri, F.; Svennerholm, A.M.; Faruque, A.S.; Sack, R.B. Enterotoxigenic Escherichia coli in developing countries: Epidemiology, microbiology, clinical features, treatment, and prevention. Clin. Microbiol. Rev. 2005, 18, 465–483. [Google Scholar] [CrossRef]
- Bonten, M.; Johnson, J.R.; van den Biggelaar, A.H.J.; Georgalis, L.; Geurtsen, J.; de Palacios, P.I.; Gravenstein, S.; Verstraeten, T.; Hermans, P.; Poolman, J.T. Epidemiology of Escherichia coli Bacteremia: A Systematic Literature Review. Clin. Infect. Dis. 2021, 72, 1211–1219. [Google Scholar] [CrossRef]
- Fatoba, D.O.; Amoako, D.G.; Abia, A.L.K.; Essack, S.Y. Transmission of Antibiotic-Resistant Escherichia coli from Chicken Litter to Agricultural Soil. Front. Environ. Sci. 2022, 9, 751732. [Google Scholar] [CrossRef]
- Christopher, A.; Hora, S.; Ali, Z. Investigation of plasmid profile, antibiotic susceptibility pattern multiple antibiotic resistance index calculation of Escherichia coli isolates obtained from different human clinical specimens at tertiary care hospital in Bareilly-India. Ann. Trop. Med. Public Health 2013, 6, 285. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Simao, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, R.L.; Gunturu, S.; Harvey, W.T.; Rossello-Mora, R.; Tiedje, J.M.; Cole, J.R.; Konstantinidis, K.T. The Microbial Genomes Atlas (MiGA) webserver: Taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res. 2018, 46, W282–W288. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Awosika, J.; Baldwin, C.; Bishop-Lilly, K.A.; Biswas, B.; Broomall, S.; Chain, P.S.; Chertkov, O.; Chokoshvili, O.; Coyne, S.; et al. Genomic comparison of Escherichia coli O104:H4 isolates from 2009 and 2011 reveals plasmid, and prophage heterogeneity, including shiga toxin encoding phage stx2. PLoS ONE 2012, 7, e48228. [Google Scholar] [CrossRef] [PubMed]
- Hamner, S.; Brown, B.L.; Hasan, N.A.; Franklin, M.J.; Doyle, J.; Eggers, M.J.; Colwell, R.R.; Ford, T.E. Metagenomic Profiling of Microbial Pathogens in the Little Bighorn River, Montana. Int. J. Environ. Res. Public Health 2019, 16, 97. [Google Scholar] [CrossRef]
- Manges, A.R.; Johnson, J.R.; Foxman, B.; O’Bryan, T.T.; Fullerton, K.E.; Riley, L.W. Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. N. Engl. J. Med. 2001, 345, 1007–1013. [Google Scholar] [CrossRef]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef]
- Waters, N.R.; Abram, F.; Brennan, F.; Holmes, A.; Pritchard, L. Easy phylotyping of Escherichia coli via the EzClermont web app and command-line tool. Access Microbiol. 2020, 2, acmi000143. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K.; et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res 2023, 51, D690–D699. [Google Scholar] [CrossRef]
- Saier, M.H.; Reddy, V.S.; Moreno-Hagelsieb, G.; Hendargo, K.J.; Zhang, Y.; Iddamsetty, V.; Lam, K.J.K.; Tian, N.; Russum, S.; Wang, J.; et al. The Transporter Classification Database (TCDB): 2021 update. Nucleic Acids Res. 2021, 49, D461–D467. [Google Scholar] [CrossRef]
- Mao, C.; Abraham, D.; Wattam, A.R.; Wilson, M.J.; Shukla, M.; Yoo, H.S.; Sobral, B.W. Curation, integration and visualization of bacterial virulence factors in PATRIC. Bioinformatics 2015, 31, 252–258. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef] [PubMed]
- Devi, N.S.; Mythili, R.; Cherian, T.; Dineshkumar, R.; Sivaraman, G.K.; Jayakumar, R.; Prathaban, M.; Duraimurugan, M.; Chandrasekar, V.; Peijnenburg, W.J.G.M. Overview of antimicrobial resistance and mechanisms: The relative status of the past and current. Microbe 2024, 3, 100083. [Google Scholar] [CrossRef]
- Park, S.R.; Park, J.W.; Ban, Y.H.; Sohng, J.K.; Yoon, Y.J. 2-Deoxystreptamine-containing aminoglycoside antibiotics: Recent advances in the characterization and manipulation of their biosynthetic pathways. Nat. Prod. Rep. 2013, 30, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Croxen, M.A.; Law, R.J.; Scholz, R.; Keeney, K.M.; Wlodarska, M.; Finlay, B.B. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev. 2013, 26, 822–880. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Shen, J.; Kadlec, K.; Wang, Y.; Brenner Michael, G.; Fessler, A.T.; Vester, B. Lincosamides, Streptogramins, Phenicols, and Pleuromutilins: Mode of Action and Mechanisms of Resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a027037. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Zhang, W.; Du, X.D.; Kruger, H.; Fessler, A.T.; Ma, S.; Zhu, Y.; Wu, C.; Shen, J.; Wang, Y. Mobile Oxazolidinone Resistance Genes in Gram-Positive and Gram-Negative Bacteria. Clin. Microbiol. Rev. 2021, 34, e0018820. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Brunel, J.M.; Dubus, J.C.; Reynaud-Gaubert, M.; Rolain, J.M. Colistin: An update on the antibiotic of the 21st century. Expert. Rev. Anti Infect. Ther. 2012, 10, 917–934. [Google Scholar] [CrossRef]
- Hancock, R.E. Peptide antibiotics. Lancet 1997, 349, 418–422. [Google Scholar] [CrossRef]
- Kempf, I.; Fleury, M.A.; Drider, D.; Bruneau, M.; Sanders, P.; Chauvin, C.; Madec, J.Y.; Jouy, E. What do we know about resistance to colistin in Enterobacteriaceae in avian and pig production in Europe? Int. J. Antimicrob. Agents 2013, 42, 379–383. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Ekstrom, B.; Forsgren, U.; Ortengren, B.; Bergan, T. Development of sulphonamide-trimethoprim combinations for urinary tract infections. Part I: Comparison of the antibacterial effect of sulphonamides alone and in combination with trimethoprim. Infection 1979, 7, S359–S366. [Google Scholar] [CrossRef]
- Fabrega, A.; Madurga, S.; Giralt, E.; Vila, J. Mechanism of action of and resistance to quinolones. Microb. Biotechnol. 2009, 2, 40–61. [Google Scholar] [CrossRef]
- Hopkins, K.L.; Davies, R.H.; Threlfall, E.J. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: Recent developments. Int. J. Antimicrob. Agents 2005, 25, 358–373. [Google Scholar] [CrossRef]
- da Costa, M.M.; Drescher, G.; Maboni, F.; Weber, S.; de Avila Botton, S.; Vainstein, M.H.; Schrank, I.S.; de Vargas, A.C. Virulence factors and antimicrobial resistance of Escherichia coli isolated from urinary tract of swine in southern of Brazil. Braz. J. Microbiol. 2008, 39, 741–743. [Google Scholar] [CrossRef]
- Mammeri, H.; Poirel, L.; Fortineau, N.; Nordmann, P. Naturally occurring extended-spectrum cephalosporinases in Escherichia coli. Antimicrob. Agents Chemother. 2006, 50, 2573–2576. [Google Scholar] [CrossRef]
- Bonnin, R.A.; Jousset, A.B.; Emeraud, C.; Oueslati, S.; Dortet, L.; Naas, T. Genetic Diversity, Biochemical Properties, and Detection Methods of Minor Carbapenemases in Enterobacterales. Front. Med. 2020, 7, 616490. [Google Scholar] [CrossRef]
- Schmidt, J.; Zdarska, V.; Kolar, M.; Mlynarcik, P. Analysis of BlaEC family class C beta-lactamase. FEMS Microbiol. Lett. 2023, 370, fnad097. [Google Scholar] [CrossRef]
- Barton, M.D. Impact of antibiotic use in the swine industry. Curr. Opin. Microbiol. 2014, 19, 9–15. [Google Scholar] [CrossRef]
- Luppi, A.; Bonilauri, P.; Dottori, M.; Gherpelli, Y.; Biasi, G.; Merialdi, G.; Maioli, G.; Martelli, P. Antimicrobial resistance of F4+ Escherichia coli isolated from Swine in Italy. Transbound. Emerg. Dis. 2015, 62, 67–71. [Google Scholar] [CrossRef]
- Luppi, A. Swine enteric colibacillosis: Diagnosis, therapy and antimicrobial resistance. Porc. Health Manag. 2017, 3, 16. [Google Scholar] [CrossRef]
- Jensen, V.F.; Jakobsen, L.; Emborg, H.D.; Seyfarth, A.M.; Hammerum, A.M. Correlation between apramycin and gentamicin use in pigs and an increasing reservoir of gentamicin-resistant Escherichia coli. J. Antimicrob. Chemother. 2006, 58, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Aarestrup, F.M.; Oliver Duran, C.; Burch, D.G. Antimicrobial resistance in swine production. Anim. Health Res. Rev. 2008, 9, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.S.; Tan, L.K.; Ooi, P.T.; Yeo, C.C.; Thong, K.L. Prevalence and characterization of verotoxigenic-Escherichia coli isolates from pigs in Malaysia. BMC Vet. Res. 2013, 9, 109. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.G.; Jordan, D.; Chapman, T.A.; Chin, J.J.; Barton, M.D.; Do, T.N.; Fahy, V.A.; Fairbrother, J.M.; Trott, D.J. Antimicrobial resistance and virulence gene profiles in multi-drug resistant enterotoxigenic Escherichia coli isolated from pigs with post-weaning diarrhoea. Vet. Microbiol. 2010, 145, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Do, K.H.; Byun, J.W.; Lee, W.K. Virulence genes and antimicrobial resistance of pathogenic Escherichia coli isolated from diarrheic weaned piglets in Korea. J. Anim. Sci. Technol. 2020, 62, 543–552. [Google Scholar] [CrossRef]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes De Novo Assembler. Curr. Protoc. Bioinform. 2020, 70, e102. [Google Scholar] [CrossRef]
- Rose, R.; Golosova, O.; Sukhomlinov, D.; Tiunov, A.; Prosperi, M. Flexible design of multiple metagenomics classification pipelines with UGENE. Bioinformatics 2019, 35, 1963–1965. [Google Scholar] [CrossRef]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for BACTERIA Isolated from Animals, 6th ed.; VET01-Ed6; Clinical and Laboratory Standards institute: Wayne, PA, USA, 2024. [Google Scholar]
- Dean, A.G.; Ching, Y.C.; Williams, R.G.; Harden, L.B. Test for Escherichia coli enterotoxin using infant mice: Application in a study of diarrhea in children in Honolulu. J. Infect. Dis. 1972, 125, 407–411. [Google Scholar] [CrossRef]
- De, S.N.; Bhattacharya, K.; Sarkar, J.K. A study of the pathogenicity of strains of Bacterium coli from acute and chronic enteritis. J. Pathol. Bacteriol. 1956, 71, 201–209. [Google Scholar] [CrossRef]
- Beutin, L.; Steinrück, H.; Krause, G.; Steege, K.; Haby, S.; Hultsch, G.; Appel, B. Comparative evaluation of the Ridascreen Verotoxin enzyme immunoassay for detection of Shiga-toxin-producing strains of Escherichia coli (STEC) from food and other sources. J. Appl. Microbiol. 2007, 102, 630–639. [Google Scholar] [CrossRef]
- Olson, R.D.; Assaf, R.; Brettin, T.; Conrad, N.; Cucinell, C.; Davis, J.J.; Dempsey, D.M.; Dickerman, A.; Dietrich, E.M.; Kenyon, R.W.; et al. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): A resource combining PATRIC, IRD and ViPR. Nucleic Acids Res. 2023, 51, D678–D689. [Google Scholar] [CrossRef] [PubMed]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [CrossRef]
- Saier, M.H., Jr.; Reddy, V.S.; Tsu, B.V.; Ahmed, M.S.; Li, C.; Moreno-Hagelsieb, G. The Transporter Classification Database (TCDB): Recent advances. Nucleic Acids Res. 2016, 44, D372–D379. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef]
- Law, V.; Knox, C.; Djoumbou, Y.; Jewison, T.; Guo, A.C.; Liu, Y.; Maciejewski, A.; Arndt, D.; Wilson, M.; Neveu, V.; et al. DrugBank 4.0: Shedding new light on drug metabolism. Nucleic Acids Res. 2014, 42, D1091–D1097. [Google Scholar] [CrossRef] [PubMed]
- Ondov, B.D.; Treangen, T.J.; Melsted, P.; Mallonee, A.B.; Bergman, N.H.; Koren, S.; Phillippy, A.M. Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016, 17, 132. [Google Scholar] [CrossRef]
- Davis, J.J.; Gerdes, S.; Olsen, G.J.; Olson, R.; Pusch, G.D.; Shukla, M.; Vonstein, V.; Wattam, A.R.; Yoo, H. PATtyFams: Protein Families for the Microbial Genomes in the PATRIC Database. Front. Microbiol. 2016, 7, 118. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A.; Hoover, P.; Rougemont, J. A rapid bootstrap algorithm for the RAxML Web servers. Syst. Biol. 2008, 57, 758–771. [Google Scholar] [CrossRef]
| Characteristic | E. coli 533 | E. coli 546 | E. coli 923 | E. coli 933 |
|---|---|---|---|---|
| Serotype | O141:K99 | O41:K99 | O26:F41 | O157:K88 |
| Toxin production | ST-II | RTX α-hemolysin, LT, ST-II | Stx2e, RTX α-hemolysin, AB5, microcin V | Stx2e, RTX α-hemolysin, AB5 |
| Production of hemolysins | E | A, D, E | E | A, D, C, E |
| Type of hemolysis | β-hemolysis | α-hemolysis | β-hemolysis | α-hemolysis |
| Colony type on solid media | S-form | S-form | S-form | S-form |
| Characteristic | E. coli 533 | E. coli 546 | E. coli 923 | E. coli 933 |
|---|---|---|---|---|
| H2S. | – | – | – | – |
| IND | + 1 | + | + | + |
| INO | – | – | – | – |
| VPT | – | – | – | – |
| LYS | + | + | + | + |
| ORN | – | + | – | – |
| ONP | – | – | + | + |
| URE | – | – | – | – |
| LAC | – | – | + | + |
| GLU | + | + | + | + |
| ADO | – | – | – | – |
| ARB | + | + | + | + |
| CEL | – | – | – | – |
| DUL | – | – | – | – |
| ESL | – | – | – | – |
| MAL | – | – | + | + |
| PHE | – | – | – | – |
| RAF | + | + | – | – |
| SCI | – | – | – | – |
| SOR | + | + | + | + |
| SUC | + | + | – | – |
| TRE | + | + | – | – |
| MAN | + | + | + | + |
| Antibiotic | E. coli 533 | E. coli 546 | E. coli 923 | E. coli 933 | ||||
|---|---|---|---|---|---|---|---|---|
| Aminoglycosides | ||||||||
| Amikacin (AMK) | ≤18 | R 1 | ≥18 | S 1 | ≥18 | S | ≤18 | R |
| Gentamicin (GEN) | ≤17 | R | ≤17 | R | ≤17 | R | ≤17 | R |
| Streptomycin (STR) | ≤24 | R | ≤24 | R | ≤24 | R | ≤24 | R |
| Tobramycin (TOB) | ≤16 | R | ≤16 | R | ≤16 | R | ≤16 | R |
| Β-lactams | ||||||||
| Penicillins | ||||||||
| Amoxicillin (AMC) | ≤24 | R | ≤24 | R | ≤24 | R | ≤24 | R |
| Amoxicillin/Clavulanic acid (AMC/CLA) | ≤19 | R | ≤19 | R | ≤19 | R | ≤19 | R |
| Ampicillin (AM) | ≤14 | R | ≤14 | R | ≤14 | R | ≤14 | R |
| Benzyl penicillin (PEN) | ≤30 | R | ≤30 | R | ≤30 | R | ≤30 | R |
| Carbenicillin (CB) | ≤22 | R | ≤22 | R | ≤22 | R | ≤22 | R |
| Oxacillin (OX) | ≤18 | R | ≤18 | R | ≤18 | R | ≤18 | R |
| Ticarcillin/Clavulanic acid (TIC/CLA) | ≥20 | S | ≥20 | S | ≥20 | S | ≥23 | S |
| Cephalosporins | ||||||||
| Cefoperazone (CFZ) | ≥21 | S | ≥21 | S | ≥21 | S | ≤21 | R |
| Cefotaxime (CTX) | ≥20 | S | ≥20 | S | ≥20 | S | ≥20 | S |
| Ceftazidime (CAZ) | ≤19 | R | ≥22 | S | ≤19 | R | ≤19 | R |
| Ceftriaxone (CFX) | ≤22 | R | ≤25 | R | ≤22 | R | ≤22 | R |
| Cefuroxime (CEF) | ≤19 | R | ≤19 | R | ≤19 | R | ≤19 | R |
| Carbapenems | ||||||||
| Imipenem (IMN) | ≤19 | R | ≥22 | S | ≤22 | R | ≤19 | R |
| Meropenem (MRN) | ≥22 | S | ≥22 | S | ≥22 | S | ≥22 | S |
| Glycopeptides | ||||||||
| Vancomycin (VAN) | ≤15 | R | ≤15 | R | ≤15 | R | ≤15 | R |
| Lincosamines | ||||||||
| Clindamycin (CLI) | ≤15 | R | ≤15 | R | ≤15 | R | ≤15 | R |
| Macrolides | ||||||||
| Azithromycin (AZM) | ≤18 | R | ≤18 | R | ≤18 | R | ≤18 | R |
| Clarithromycin (CLR) | ≤14 | R | ≤14 | R | ≤14 | R | ≤14 | R |
| Tylosin (TIL) | ≤15 | R | ≤15 | R | ≤15 | R | ≤15 | R |
| Erythromycin (ERY) | ≤15 | R | ≤15 | R | ≤15 | R | ≤15 | R |
| Nitrofurans | ||||||||
| Furadonin (FUR) | ≤21 | R | ≤21 | R | ≤21 | R | ≤21 | R |
| Oxazolidinones | ||||||||
| Linezolid (LZD) | ≤25 | R | ≤25 | R | ≤25 | R | ≤25 | R |
| Polypeptides | ||||||||
| Colistin (COL) | ≤24 | R | ≤24 | R | ≤24 | R | ≤24 | R |
| Rifampicin | ||||||||
| Rifampicin (RIF) | ≤14 | R | ≤14 | R | ≤14 | R | ≤14 | R |
| Sulfonamides/diaminopyrimidines | ||||||||
| Trimethoprim/sulfamethoxazole (TMP/SMZ) | ≥14 | S | ≤11 | R | ≥14 | S | ≥14 | S |
| Tetracyclines | ||||||||
| Doxycycline (DOX) | ≤16 | R | ≤16 | R | ≤16 | R | ≤16 | R |
| Tetracycline (TET) | ≤14 | R | ≤14 | R | ≤14 | R | ≤19 | R |
| Phenicols | ||||||||
| Laevomycetin (chloramphenicol) (LEV) | ≤21 | R | ≤21 | R | ≤21 | R | ≤21 | R |
| Florfenicol (FFC) | ≤18 | R | ≤18 | R | ≤18 | R | ≤18 | R |
| Fluoroquinolones | ||||||||
| Levofloxacin (LFX) | ≤19 | R | ≤19 | R | ≤23 | R | ≤19 | R |
| Norfloxacin (NFX) | ≤24 | R | ≤24 | R | ≤24 | R | ≤24 | R |
| Ofloxacin (OFX) | ≤22 | R | ≥24 | S | ≤24 | R | ≤24 | R |
| Ciprofloxacin (CIP) | ≤22 | R | ≤25 | R | ≤22 | R | ≤22 | R |
| Enrofloxacin (ENR) | ≤21 | R | ≥22 | S | ≥22 | S | ≥22 | S |
| Other pharmacological groups | ||||||||
| Fusidic acid (FUS) | ≤15 | R | ≤15 | R | ≤15 | R | ≤15 | R |
| Amphotericin (AMT) | ≤15 | R | ≤15 | R | ≤15 | R | ≤15 | R |
| Antibiotic Resistance Profile | Strain | Antibiotic Resistance (Number of ABDs) | MAR |
|---|---|---|---|
| AZM, AMK, AMC, AMC/CLA, AM, AMT, PEN, VAN, GEN, DOX, IMN, CB, CLR, CLI, COL, LVC, LFX, LZD, NFX, OX, OFX, RIF, STR, TET, TIL, TOB, FFC, FUS, FUR, CAZ, CFX, CEF, CIP, ENR, ERY | 533 | 35 | 0.875 |
| AZM, AMC, AMC/CLA, AM, AMT, PEN, VAN, GEN, DOX, CB, CLR, CLI, COL, LVC, LFX, LZD, NFX, OX, RIF, STR, TET, TIL, TOB, TMP/SMZ, FFC, FUS, FUR, CFX, CEF, CIP, ERY | 546 | 31 | 0.775 |
| AZM, AMC, AMC/CLA, AM, AMT, PEN, VAN, GEN, DOX, IM, CB, CLR, CLI, COL, LVC, LFX, LZD, NFX, OX, OFX, RIF, STR, TET, TIL, TOB, FFC, FUS, FUR, CAZ, CFX, CEF, CIP, ERY | 923 | 33 | 0.825 |
| AZM, AMK, AMC, AMC/CLA, AM, AMT, PEN, VAN, GEN, DOX, IMN, CB, CLR, CLI, COL, LVC, LFX, LZD, NFX, OX, OFX, RIF, STR, TET, TIL, TOB, FFC, FUS, FUR, CFZ, CAZ, CFX, CEF, CIP, ERY | 933 | 35 | 0.875 |
| E. coli 533 | E. coli 933 | E. coli 546 | E. coli 923 | |
|---|---|---|---|---|
| Completeness, % | 100 | 100 | 100 | 99.9 |
| Contamination, % | 5.4 | 2.3 | 0 | 6.6 |
| Total number of contigs | 961 | 710 | 315 | 1058 |
| Number of contigs (>1000 bp) | 466 | 266 | 145 | 347 |
| Total length of contigs (>1000 bp) | 5,119,394 | 5,130,089 | 5,042,042 | 5,058,267 |
| N50 | 16,921 | 32,352 | 111,514 | 24,460 |
| L50 | 92 | 42 | 16 | 68 |
| Genome coverage | 13.7x | 15.7x | 54.1x | 12.8x |
| GC content, % | 50.57 | 50.29 | 50.61 | 50.24 |
| Proteins with functional assignments | 5060 | 4873 | 4661 | 4949 |
| Hypothetical proteins | 930 | 861 | 603 | 1029 |
| tRNA | 80 | 81 | 83 | 92 |
| Database | E. coli 533 | E. coli 933 | E. coli 546 | E. coli 923 |
|---|---|---|---|---|
| Antibiotic Resistance (Victors) | 4 | 3 | 4 | 3 |
| Antibiotic Resistance (CARD) | 90 | 77 | 78 | 82 |
| Antibiotic Resistance (NDARO) | 2 | 1 | 1 | 1 |
| Antibiotic Resistance (PATRIC) | 68 | 62 | 61 | 68 |
| Drug Target (DrugBank) | 413 | 401 | 397 | 415 |
| Drug Target (TTD) | 66 | 63 | 61 | 66 |
| Transporter (TCDB) | 1024 | 921 | 924 | 942 |
| Virulence Factor (PATRIC_VF) | 228 | 225 | 217 | 221 |
| Virulence Factor (VFDB) | 101 | 111 | 86 | 109 |
| Virulence Factor (Victors) | 256 | 251 | 239 | 250 |
| Mechanism of Antibiotic Resistance | Genes | Function |
|---|---|---|
| Antibiotic inactivation enzyme | blaEC family | β-lactamases, cleave the β-lactam ring of penicillins, cephalosporins, oxime-cephalosporins, and monobactams |
| Antibiotic resistance gene cluster, cassette, or operon | marA, marB, marR | the operon, which influences multidrug resistance by modulating efflux pumps and porin expression |
| Antibiotic target in susceptible species | folA, dfr, folP | folic acid biosynthesis, sulfonamide antibiotics (trimethoprim/sulfamethoxazole) target |
| gyrA | DNA gyrase subunit, primary target of fluoroquinolones | |
| S12p gene | ribosomal protein, aminoglycoside target data | |
| Antibiotic target protection protein | bcrC | quaternary ammonium compound efflux SMR transporter, named after bacitracin |
| Efflux pump conferring antibiotic resistance | acrAB-tolC | a major efflux pump, protects against a wide spectrum of drugs, including β-lactams, tetracyclines, fluoroquinolones, rifamycin, phenicols, etc. |
| acrAD-tolC | carries aminoglycosides out of the cell | |
| acrEF-tolC | efflux pump, acts against beta-lactams and fluoroquinolones | |
| acrZ | entry into the AcrAB-TolC channel through the inner membrane from the cytoplasm side | |
| emrAB-tolC | MSF pump for fluoroquinolone efflux | |
| emrD | MFS pump, expels amphipathic compounds across the inner membrane | |
| emrKY-tolC | provides resistance to tetracyclines | |
| macA | macrolide export protein, periplasmic MFP in the MacAB-TolC pump | |
| macB | ATPase in MacAB-TolC efflux system | |
| mdfA/cmr | MdfA—efflux of tetracyclines, disinfectants, and antiseptics; Cmr—chloramphenicol resistance | |
| mdtABC-tolC | RND efflux pump, aminocoumarin antibiotics | |
| mdtEF-tolC | RND efflux pump, macrolides, fluoroquinolones, penicillins | |
| mdtL | MFS pump, Na(+)/drug antiporter | |
| mdtM | MFS pump, fluoroquinolones, lincosamide antibiotics, nucleoside antibiotics, amphenicols, disinfectants, and antiseptics | |
| sugE | SMR efflux pump, quaternary ammonium compounds | |
| tet(A) | Resistance to tetracycline by an active tetracycline efflux | |
| tolC/opmH | OpmH is a TolC homolog | |
| Gene conferring resistance via absence | gidB | streptomycin resistance due to point mutation in 16S rRNA (guanine527-N7)-methyltransferase gene |
| Protein altering cell wall charge conferring antibiotic resistance | gdpD | glycerolphosphodiesterase |
| pgsA | phosphatidylglycerophosphate synthetase, mutations in both proteins confer resistance to peptide antibiotic daptomycin |
| E. coli Strain | Date of Isolation | Animal | Organ | Diagnosis |
|---|---|---|---|---|
| KubGAU B-533 (hereinafter E. coli 533) | 21 April 2002 | Weaned piglet | Mesenteric lymph node | Edema disease |
| KubGAU B-546 (hereinafter E. coli 546) | 31 April 2002 | 10-day-old piglet | Tubular bone | Edema disease |
| KubGAU B-923 (hereinafter E. coli 923) | 29 September 2003 | Weaned piglet | Spleen | Enteritis |
| KubGAU B-933 (hereinafter E. coli 933) | 12 October 2003 | 10-day-old calf | Mesenteric lymph node; intestine | Enterocolitis |
| Collection | E. coli 533 | E. coli 546 | E. coli 923 | E. coli 933 |
|---|---|---|---|---|
| BioSample | SAMN31169425 | SAMN31181481 | SAMN31181488 | SAMN31185483 |
| GenBank | ASM2566039v1 | ASM2581757v1 | ASM2581758v1 | ASM2567444v1 |
| Sequence Read Archive (SRA) | SRS15925162 | SRS15925163 | SRS15925164 | SRS15925165 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tishchenko, A.; Shumkov, M.; Kazakova, E.; Tarasova, I.; Karpov, D.; Kopyltsov, S.; Goncharenko, A. Genetic Basis of Multiple Antibiotic Resistance of Pathogenic Escherichia coli Strains Isolated from Livestock Complexes in Krasnodar Krai, Russia. Int. J. Mol. Sci. 2026, 27, 305. https://doi.org/10.3390/ijms27010305
Tishchenko A, Shumkov M, Kazakova E, Tarasova I, Karpov D, Kopyltsov S, Goncharenko A. Genetic Basis of Multiple Antibiotic Resistance of Pathogenic Escherichia coli Strains Isolated from Livestock Complexes in Krasnodar Krai, Russia. International Journal of Molecular Sciences. 2026; 27(1):305. https://doi.org/10.3390/ijms27010305
Chicago/Turabian StyleTishchenko, Alexander, Mikhail Shumkov, Elizaveta Kazakova, Irina Tarasova, Dmitry Karpov, Sergey Kopyltsov, and Anna Goncharenko. 2026. "Genetic Basis of Multiple Antibiotic Resistance of Pathogenic Escherichia coli Strains Isolated from Livestock Complexes in Krasnodar Krai, Russia" International Journal of Molecular Sciences 27, no. 1: 305. https://doi.org/10.3390/ijms27010305
APA StyleTishchenko, A., Shumkov, M., Kazakova, E., Tarasova, I., Karpov, D., Kopyltsov, S., & Goncharenko, A. (2026). Genetic Basis of Multiple Antibiotic Resistance of Pathogenic Escherichia coli Strains Isolated from Livestock Complexes in Krasnodar Krai, Russia. International Journal of Molecular Sciences, 27(1), 305. https://doi.org/10.3390/ijms27010305

