Long-Term Impact of Western Diet on Right Ventricular Transcriptome: Uncovering Sex-Specific Patterns in C57BL/6J Mice
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Animal and Diet
4.2. Physiological Measurements and Echocardiography
4.3. mRNA Library Preparation and Sequencing
4.4. Data Processing and Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maurya, S.K.; Carley, A.N.; Maurya, C.K.; Lewandowski, E.D. Western Diet Causes Heart Failure with Reduced Ejection Fraction and Metabolic Shifts After Diastolic Dysfunction and Novel Cardiac Lipid Derangements. JACC Basic Transl. Sci. 2023, 8, 422–435. [Google Scholar] [CrossRef] [PubMed]
- Liu, I.-F.; Lin, T.-C.; Wang, S.-C.; Yen, C.-H.; Li, C.-Y.; Kuo, H.-F.; Hsieh, C.-C.; Chang, C.-Y.; Chang, C.-R.; Chen, Y.-H.; et al. Long-term administration of Western diet induced metabolic syndrome in mice and causes cardiac microvascular dysfunction, cardiomyocyte mitochondrial damage, and cardiac remodeling involving caveolae and caveolin-1 expression. Biol. Direct 2023, 18, 9. [Google Scholar] [CrossRef]
- Stepanyan, A.; Brojakowska, A.; Zakharyan, R.; Hakobyan, S.; Davitavyan, S.; Sirunyan, T.; Khachatryan, G.; Khlgatian, M.K.; Bisserier, M.; Zhang, S.; et al. Evaluating sex-specific responses to western diet across the lifespan: Impact on cardiac function and transcriptomic signatures in C57BL/6J mice at 530 and 640/750 days of age. Cardiovasc. Diabetol. 2024, 23, 454. [Google Scholar] [CrossRef]
- Stadiotti, I.; Piacentini, L.; Vavassori, C.; Chiesa, M.; Scopece, A.; Guarino, A.; Micheli, B.; Polvani, G.; Colombo, G.I.; Pompilio, G.; et al. Human Cardiac Mesenchymal Stromal Cells from Right and Left Ventricles Display Differences in Number, Function, and Transcriptomic Profile. Front. Physiol. 2020, 11, 604. [Google Scholar] [CrossRef] [PubMed]
- Amsallem, M.; Mercier, O.; Kobayashi, Y.; Moneghetti, K.; Haddad, F. Forgotten No More. JACC Heart Fail. 2018, 6, 891–903. [Google Scholar] [CrossRef]
- Brittain, E.L.; Talati, M.; Fortune, N.; Agrawal, V.; Meoli, D.F.; West, J.; Hemnes, A.R. Adverse physiologic effects of Western diet on right ventricular structure and function: Role of lipid accumulation and metabolic therapy. Pulm. Circ. 2018, 9, 2045894018817741. [Google Scholar] [CrossRef]
- Kelly, S.C.; Rau, C.D.; Ouyang, A.; Thorne, P.K.; Olver, T.D.; Edwards, J.C.; Domeier, T.L.; Padilla, J.; Grisanti, L.A.; Fleenor, B.S.; et al. The right ventricular transcriptome signature in Ossabaw swine with cardiometabolic heart failure: Implications for the coronary vasculature. Physiol. Genom. 2021, 53, 99–115. [Google Scholar] [CrossRef]
- Fulghum, K.; Collins, H.E.; Jones, S.P.; Hill, B.G. Influence of biological sex and exercise on murine cardiac metabolism. J. Sport Health Sci. 2022, 11, 479–494. [Google Scholar] [CrossRef]
- McClements, L.; Kautzky-Willer, A.; Kararigas, G.; Ahmed, S.B.; Stallone, J.N. The role of sex differences in cardiovascular, metabolic, and immune functions in health and disease: A review for “Sex Differences in Health Awareness Day”. Biol. Sex Differ. 2025, 16, 33. [Google Scholar] [CrossRef]
- de Arellano, M.L.B.; Pozdniakova, S.; Kühl, A.A.; Baczko, I.; Ladilov, Y.; Regitz-Zagrosek, V. Sex differences in the aging human heart: Decreased sirtuins, pro-inflammatory shift and reduced anti-oxidative defense. Aging 2019, 11, 1918–1933. [Google Scholar] [CrossRef]
- Hinte, L.C.; Castellano-Castillo, D.; von Meyenn, F. Long-term impact of obesity: Unraveling adipose epigenetic memory. Clin. Transl. Med. 2025, 15, e70254. [Google Scholar] [CrossRef]
- Dong, H.; Sun, Y.; Nie, L.; Cui, A.; Zhao, P.; Leung, W.K.; Wang, Q. Metabolic memory: Mechanisms and diseases. Signal Transduct. Target. Ther. 2024, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.C.; Pereira, C.; Fonseca, A.C.R.G.; Pinto-Do-Ó, P.; Nascimento, D.S. Bearing My Heart: The Role of Extracellular Matrix on Cardiac Development, Homeostasis, and Injury Response. Front. Cell Dev. Biol. 2021, 8, 621644. [Google Scholar] [CrossRef]
- Lin, P.K.; Davis, G.E. Extracellular Matrix Remodeling in Vascular Disease: Defining Its Regulators and Pathological Influence. Arter. Thromb. Vasc. Biol. 2023, 43, 1599–1616. [Google Scholar] [CrossRef]
- Candasamy, A.J.; Haworth, R.S.; Cuello, F.; Ibrahim, M.; Aravamudhan, S.; Krüger, M.; Holt, M.R.; Terracciano, C.M.; Mayr, M.; Gautel, M.; et al. Phosphoregulation of the Titin-cap Protein Telethonin in Cardiac Myocytes. J. Biol. Chem. 2014, 289, 1282–1293. [Google Scholar] [CrossRef]
- Oike, Y.; Tian, Z.; Miyata, K.; Morinaga, J.; Endo, M.; Kadomatsu, T. ANGPTL2—A New Causal Player in Accelerating Heart Disease Development in the Aging—. Circ. J. 2017, 81, 1379–1385. [Google Scholar] [CrossRef]
- Liang, Y.; Bradford, W.H.; Zhang, J.; Sheikh, F. Four and a half LIM domain protein signaling and cardiomyopathy. Biophys. Rev. 2018, 10, 1073–1085. [Google Scholar] [CrossRef] [PubMed]
- Vermeer, M.C.; Bolling, M.C.; Bliley, J.M.; Gomez, K.F.A.; Pavez-Giani, M.G.; Kramer, D.; Romero-Herrera, P.H.; Westenbrink, B.D.; Diercks, G.F.; van den Berg, M.P.; et al. Gain-of-function mutation in ubiquitin ligase KLHL24 causes desmin degradation and dilatation in hiPSC-derived engineered heart tissues. J. Clin. Investig. 2021, 131, 140615. [Google Scholar] [CrossRef]
- Zheng, Y.; Lang, Y.; Qi, B.; Li, T. TSPAN4 and migrasomes in atherosclerosis regression correlated to myocardial infarction and pan-cancer progression. Cell Adhes. Migr. 2022, 17, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Tulacz, D.; Mackiewicz, U.; Maczewski, M.; Maciejak, A.; Gora, M.; Burzynska, B. Transcriptional profiling of left ventricle and peripheral blood mononuclear cells in a rat model of postinfarction heart failure. BMC Med. Genom. 2013, 6, 49. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Z.; Liang, F.; Wang, Y. Identifying Immune Cell Infiltration and Hub Genes During the Myocardial Remodeling Process After Myocardial Infarction. J. Inflamm. Res. 2023, 16, 2893–2906. [Google Scholar] [CrossRef]
- Komal, S.; Gao, Y.; Wang, Z.-M.; Yu, Q.-W.; Wang, P.; Zhang, L.-R.; Han, S.-N. Epigenetic Regulation in Myocardial Fibroblasts and Its Impact on Cardiovascular Diseases. Pharmaceuticals 2024, 17, 1353. [Google Scholar] [CrossRef]
- Rasi, K.; Piuhola, J.; Czabanka, M.; Sormunen, R.; Ilves, M.; Leskinen, H.; Rysä, J.; Kerkelä, R.; Janmey, P.; Heljasvaara, R.; et al. Collagen XV Is Necessary for Modeling of the Extracellular Matrix and Its Deficiency Predisposes to Cardiomyopathy. Circ. Res. 2010, 107, 1241–1252. [Google Scholar] [CrossRef]
- Fang, S.; Wu, J.; Reho, J.J.; Lu, K.-T.; Brozoski, D.T.; Kumar, G.; Werthman, A.M.; Silva, S.D.; Veitia, P.C.M.; Wackman, K.K.; et al. RhoBTB1 reverses established arterial stiffness in angiotensin II–induced hypertension by promoting actin depolymerization. J. Clin. Investig. 2022, 7, e158043. [Google Scholar] [CrossRef]
- Barbera, S.; Raucci, L.; Lugano, R.; Tosi, G.M.; Dimberg, A.; Santucci, A.; Galvagni, F.; Orlandini, M. CD93 Signaling via Rho Proteins Drives Cytoskeletal Remodeling in Spreading Endothelial Cells. Int. J. Mol. Sci. 2021, 22, 12417. [Google Scholar] [CrossRef]
- Arlt, A.; Schäfer, H. Role of the immediate early response 3 (IER3) gene in cellular stress response, inflammation and tumorigenesis. Eur. J. Cell Biol. 2011, 90, 545–552. [Google Scholar] [CrossRef]
- Sasaki, Y.; Ohta, M.; Desai, D.; Figueiredo, J.-L.; Whelan, M.C.; Sugano, T.; Yamabi, M.; Yano, W.; Faits, T.; Yabusaki, K.; et al. Angiopoietin Like Protein 2 (ANGPTL2) Promotes Adipose Tissue Macrophage and T lymphocyte Accumulation and Leads to Insulin Resistance. PLoS ONE 2015, 10, e0131176. [Google Scholar] [CrossRef] [PubMed]
- Tilstam, P.V.; Qi, D.; Leng, L.; Young, L.; Bucala, R. MIF family cytokines in cardiovascular diseases and prospects for precision-based therapeutics. Expert Opin. Ther. Targets 2017, 21, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Sun, L.; Kaptoge, S. Association of beta-2-microglobulin and cardiovascular events and mortality: A systematic review and meta-analysis. Atherosclerosis 2021, 320, 70–78. [Google Scholar] [CrossRef]
- Kusumoto, Y.; Okuyama, H.; Shibata, T.; Konno, K.; Takemoto, Y.; Maekawa, D.; Kononaga, T.; Ishii, T.; Akashi-Takamura, S.; Saitoh, S.-I.; et al. Epithelial membrane protein 3 (Emp3) downregulates induction and function of cytotoxic T lymphocytes by macrophages via TNF-α production. Cell. Immunol. 2018, 324, 33–41. [Google Scholar] [CrossRef]
- Jung, S.E.; Kim, S.W.; Jeong, S.; Moon, H.; Choi, W.S.; Lim, S.; Lee, S.; Hwang, K.-C.; Choi, J.-W. MicroRNA-26a/b-5p promotes myocardial infarction-induced cell death by downregulating cytochrome c oxidase 5a. Exp. Mol. Med. 2021, 53, 1332–1343. [Google Scholar] [CrossRef]
- Talley, S.; Bonomo, R.; Gavini, C.; Hatahet, J.; Gornick, E.; Cook, T.; Chun, B.J.; Kekenes-Huskey, P.; Aubert, G.; Campbell, E.; et al. Monitoring of inflammation using novel biosensor mouse model reveals tissue- and sex-specific responses to Western diet. Dis. Model. Mech. 2022, 15, dmm049313. [Google Scholar] [CrossRef]
- Mouton, A.J.; Li, X.; Hall, M.E.; Hall, J.E. Obesity, Hypertension, and Cardiac Dysfunction. Circ. Res. 2020, 126, 789–806. [Google Scholar] [CrossRef]
- Christ, A.; Lauterbach, M.; Latz, E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019, 51, 794–811. [Google Scholar] [CrossRef]
- Das, B.B. Novel Therapies for Right Ventricular Failure. Curr. Cardiol. Rep. 2025, 27, 26. [Google Scholar] [CrossRef]
- Jurida, L.; Werner, S.; Knapp, F.; Niemann, B.; Li, L.; Grün, D.; Wirth, S.; Weber, A.; Beuerlein, K.; Liebetrau, C.; et al. A common gene signature of the right ventricle in failing rat and human hearts. Nat. Cardiovasc. Res. 2024, 3, 819–840. [Google Scholar] [CrossRef]
- Rubin, J.B.; Abou-Antoun, T.; Ippolito, J.E.; Llaci, L.; Marquez, C.T.; Wong, J.P.; Yang, L. Epigenetic developmental mechanisms underlying sex differences in cancer. J. Clin. Investig. 2024, 134, e180071. [Google Scholar] [CrossRef]
- Andrews, R.R.; Anderson, K.R.; Fry, J.L. Sex-Specific Variation in Metabolic Responses to Diet. Nutrients 2024, 16, 2921. [Google Scholar] [CrossRef]
- Sauza, K.A.S.; Ryan, K.K. FGF21 mediating the Sex-dependent Response to Dietary Macronutrients. J. Clin. Endocrinol. Metab. 2024, 109, e1689–e1696. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Sadhukhan, D.; Saraswathy, R. Role of sex in immune response and epigenetic mechanisms. Epigenetics Chromatin 2024, 17, 1. [Google Scholar] [CrossRef]
- Akki, A.; Seymour, A.-M.L. Western diet impairs metabolic remodelling and contractile efficiency in cardiac hypertrophy. Cardiovasc. Res. 2008, 81, 610–617. [Google Scholar] [CrossRef]
- Men, L.; Hui, W.; Guan, X.; Song, T.; Wang, X.; Zhang, S.; Chen, X. Cardiac Transcriptome Analysis Reveals Nr4a1 Mediated Glucose Metabolism Dysregulation in Response to High-Fat Diet. Genes 2020, 11, 720. [Google Scholar] [CrossRef]
- Natarajan, N.; Vujic, A.; Das, J.; Wang, A.C.; Phu, K.K.; Kiehm, S.H.; Ricci-Blair, E.M.; Zhu, A.Y.; Vaughan, K.L.; Colman, R.J.; et al. Effect of dietary fat and sucrose consumption on cardiac fibrosis in mice and rhesus monkeys. J. Clin. Investig. 2019, 4, e128685. [Google Scholar] [CrossRef]
- Piao, L.; Marsboom, G.; Archer, S.L. Mitochondrial metabolic adaptation in right ventricular hypertrophy and failure. J. Mol. Med. 2010, 88, 1011–1020. [Google Scholar] [CrossRef]
- Chahal, H.; McClelland, R.L.; Tandri, H.; Jain, A.; Turkbey, E.B.; Hundley, W.G.; Barr, R.G.; Kizer, J.; Lima, J.A.; Bluemke, D.A.; et al. Obesity and Right Ventricular Structure and Function. Chest 2012, 141, 388–395. [Google Scholar] [CrossRef]
- Widya, R.L.; Hammer, S.; Boon, M.R.; van der Meer, R.W.; Smit, J.W.A.; de Roos, A.; Rensen, P.C.N.; Lamb, H.J. Effects of Short-Term Nutritional Interventions on Right Ventricular Function in Healthy Men. PLoS ONE 2013, 8, e76406. [Google Scholar] [CrossRef]
- Harhay, M.O.; Kizer, J.R.; Criqui, M.H.; Lima, J.A.C.; Tracy, R.; Bluemke, D.A.; Kawut, S.M. Adipokines and the Right Ventricle: The MESA-RV Study. PLoS ONE 2015, 10, e0136818. [Google Scholar] [CrossRef]
- Serrano-Ferrer, J.; Walther, G.; Crendal, E.; Vinet, A.; Dutheil, F.; Naughton, G.; Lesourd, B.; Chapier, R.; Courteix, D.; Obert, P. Right ventricle free wall mechanics in metabolic syndrome without type-2 diabetes: Effects of a 3-month lifestyle intervention program. Cardiovasc. Diabetol. 2014, 13, 116. [Google Scholar] [CrossRef] [PubMed]
- McTiernan, C.F.; Lemster, B.H.; Bedi, K.C.; Margulies, K.B.; Moravec, C.S.; Hsieh, P.N.; Shusterman, V.; Saba, S. Circadian Pattern of Ion Channel Gene Expression in Failing Human Hearts. Circ. Arrhythmia Electrophysiol. 2020, 14, e009254. [Google Scholar] [CrossRef] [PubMed]
- Joshi, T.P.; Fiorotto, M.L. Variation in AIN-93G/M Diets Across Different Commercial Manufacturers: Not All AIN-93 Diets are Created Equal. J. Nutr. 2021, 151, 3271–3275. [Google Scholar] [CrossRef]
- Pellizzon, M.A.; Ricci, M.R. Choice of Laboratory Rodent Diet May Confound Data Interpretation and Reproducibility. Curr. Dev. Nutr. 2020, 4, nzaa031. [Google Scholar] [CrossRef]
- Lee, J.; Purello, C.; Booth, S.L.; Bennett, B.; Wiley, C.D.; Korstanje, R. Chow diet in mouse aging studies: Nothing regular about it. GeroScience 2023, 45, 2079–2084. [Google Scholar] [CrossRef]
- Sigurgeirsson, B.; Emanuelsson, O.; Lundeberg, J. Sequencing Degraded RNA Addressed by 3′ Tag Counting. PLoS ONE 2014, 9, e91851. [Google Scholar] [CrossRef]
- Putri, G.H.; Anders, S.; Pyl, P.T.; Pimanda, J.E.; Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 2022, 38, 2943–2945. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’Ayan, A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013, 14, 128. [Google Scholar] [CrossRef] [PubMed]



| Gene Type | Gene Name | Gene Description | Log2FC | padj |
|---|---|---|---|---|
| MALES | ||||
| protein_coding | Per2 | period circadian clock 2 | 0.799 | 8.02 × 10−3 |
| protein_coding | Cebpb | CCAAT/enhancer binding protein (C/EBP), beta | 0.502 | 8.02 × 10−3 |
| protein_coding | Rhobtb1 | Rho-related BTB domain-containing 1 | 0.401 | 1.94 × 10−5 |
| protein_coding | Col15a1 | collagen, type XV, alpha 1 | −0.564 | 9.42 × 10−2 |
| protein_coding | Cd93 | CD93 antigen | −0.420 | 1.01 × 10−2 |
| FEMALES | ||||
| lncRNA | Gm55594 | predicted gene, 55594 | 0.728 | 2.69 × 10−2 |
| protein_coding | Cldn5 | claudin 5 | 0.573 | 1.63 × 10−2 |
| protein_coding | Fhl1 | Four and a half LIM domains 1 | 0.408 | 2.94 × 10−2 |
| protein_coding | Mtus2 | microtubule-associated tumor suppressor candidate 2 | 0.344 | 3.46 × 10−2 |
| protein_coding | Klhl24 | Kelch-like 24 | 0.273 | 3.75 × 10−2 |
| lncRNA | Norad | non-coding RNA activated by DNA damage | 0.234 | 4.23 × 10−2 |
| protein_coding | Tspan4 | tetraspanin 4 | −0.678 | 1.64 × 10−2 |
| protein_coding | Ier3 | immediate early response 3 | −0.630 | 8.13 × 10−3 |
| protein_coding | Cbr2 | carbonyl reductase 2 | −0.624 | 2.11 × 10−2 |
| protein_coding | Tef | thyrotropin embryonic factor | −0.546 | 5.87 × 10−5 |
| protein_coding | Emp3 | epithelial membrane protein 3 | −0.532 | 3.46 × 10−2 |
| protein_coding | Tcap | titin-cap | −0.454 | 3.65 × 10−5 |
| protein_coding | Id1 | inhibitor of DNA binding 1, HLH protein | −0.372 | 2.11 × 10−2 |
| protein_coding | Angptl2 | angiopoietin-like 2 | −0.368 | 8.13 × 10−3 |
| protein_coding | Cox5a | cytochrome c oxidase subunit 5A | −0.368 | 2.69 × 10−2 |
| protein_coding | B2m | beta-2 microglobulin | −0.342 | 2.69 × 10−2 |
| protein_coding | Mif | macrophage migration inhibitory factor | −0.335 | 8.13 × 10−3 |
| protein_coding | Higd2a | HIG1 domain family, member 2A | −0.316 | 3.46 × 10−2 |
| protein_coding | Hypk | Huntingtin-interacting protein K | −0.261 | 2.70 × 10−2 |
| protein_coding | Cuta | cutA divalent cation tolerance homolog | −0.246 | 4.93 × 10−2 |
| protein_coding | Smyd2 | SET and MYND domain-containing 2 | −0.239 | 4.23 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Stepanyan, A.; Hakobyan, S.; Brojakowska, A.; Bisserier, M.; Zakharyan, R.; Davitavyan, S.; Sirunyan, T.; Khachatryan, G.; Khlgatian, M.K.; Zhang, S.; et al. Long-Term Impact of Western Diet on Right Ventricular Transcriptome: Uncovering Sex-Specific Patterns in C57BL/6J Mice. Int. J. Mol. Sci. 2026, 27, 259. https://doi.org/10.3390/ijms27010259
Stepanyan A, Hakobyan S, Brojakowska A, Bisserier M, Zakharyan R, Davitavyan S, Sirunyan T, Khachatryan G, Khlgatian MK, Zhang S, et al. Long-Term Impact of Western Diet on Right Ventricular Transcriptome: Uncovering Sex-Specific Patterns in C57BL/6J Mice. International Journal of Molecular Sciences. 2026; 27(1):259. https://doi.org/10.3390/ijms27010259
Chicago/Turabian StyleStepanyan, Ani, Siras Hakobyan, Agnieszka Brojakowska, Malik Bisserier, Roksana Zakharyan, Suren Davitavyan, Tamara Sirunyan, Gisane Khachatryan, Mary K. Khlgatian, Shihong Zhang, and et al. 2026. "Long-Term Impact of Western Diet on Right Ventricular Transcriptome: Uncovering Sex-Specific Patterns in C57BL/6J Mice" International Journal of Molecular Sciences 27, no. 1: 259. https://doi.org/10.3390/ijms27010259
APA StyleStepanyan, A., Hakobyan, S., Brojakowska, A., Bisserier, M., Zakharyan, R., Davitavyan, S., Sirunyan, T., Khachatryan, G., Khlgatian, M. K., Zhang, S., Baghoomian, A., Sahoo, S., Hadri, L., Garikipati, V. N. S., Arakelyan, A., & Goukassian, D. A. (2026). Long-Term Impact of Western Diet on Right Ventricular Transcriptome: Uncovering Sex-Specific Patterns in C57BL/6J Mice. International Journal of Molecular Sciences, 27(1), 259. https://doi.org/10.3390/ijms27010259

